Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Preparation of Soup Samples for Anticholinesterase Activity Testing
2.4. Inhibition of AChE and BChE
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | amyloid beta |
AChE | acetylcholinesterase |
AD | Alzheimer’s disease |
ATCh | acetylthiocholine iodide |
BChE | butyrylcholinesterase |
DNTB | 5,5′-dithiobis-(2-nitrobenzoic acid) |
References
- Afsar, A.; Chacon Castro, M.D.C.; Soladogun, A.S.; Zhang, L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 7258. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Majdi, A.; Sadigh-Eteghad, S.; Rahigh Aghsan, S.; Farajdokht, F.; Vatandoust, S.M.; Namvaran, A.; Mahmoudi, J. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: Seeking direction in a tangle of clues. Rev. Neurosci. 2020, 31, 391–413. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules 2021, 26, 5582. [Google Scholar] [CrossRef]
- Menzel, J.; Jabakhanji, A.; Biemann, R.; Mai, K.; Abraham, K.; Weikert, C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci. Rep. 2020, 10, 21736. [Google Scholar] [CrossRef]
- Ellouze, I.; Sheffler, J.; Nagpal, R.; Arjmandi, B. Dietary patterns and Alzheimer’s disease: An updated review linking nutrition to neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef]
- Gajowniczek-Ałasa, D.; Szwajgier, D.; Baranowska-Wójcik, E. Plant Soup Formulations Show Cholinesterase Inhibition Potential in the Prevention of Alzheimer’s Disease. Curr. Alzheimer Res. 2024, 21, 81–89. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Winiarska-Mieczan, A. Honey as the potential natural source of cholinesterase inhibitors in Alzheimer’s disease. Plant Foods Hum. Nutr. 2020, 75, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Yagi, S.; Nilofar Zengin, G.; Yildiztugay, E.; Caprioli, G.; Piatti, D.; Menghini, L.; Ferrante, C.; Di Simone, S.C.; Chiavaroli, A.; Maggi, F. Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods 2023, 12, 4507. [Google Scholar] [CrossRef] [PubMed]
- Marčetić, M.; Samardžić, S.; Ilić, T.; Božić, D.D.; Vidović, B. Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus spinosa L. Fruits. Foods 2022, 11, 3289. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Nowicka, P. Anti-diabetic, anti-cholinesterase, and antioxidant potential, chemical composition and sensory evaluation of novel sea buckthorn-based smoothies. Food Chem. 2021, 338, 128105. [Google Scholar] [CrossRef]
- Karaman, M.; Čapelja, E.; Rašeta, M.; Rakić, M. Diversity, chemistry, and environmental contamination of wild growing medicinal mushroom species as sources of biologically active substances (Antioxidants, Anti-Diabetics, and AChE Inhibitors). In Biology, Cultivation and Applications of Mushrooms; Springer: Singapore, 2022; pp. 203–257. [Google Scholar]
- Sakr, E.A.; Mohamed, M.M. The potential of Fermented Asparagus sprengeri extract by Lactobacillus plantarum DMS 20174 on Antioxidant Properties and Memory Retention in vitro and in vivo. Egypt. J. Chem. 2023, 66, 479–494. [Google Scholar] [CrossRef]
- Jamal, Q.M.S.; Khan, M.I.; Alharbi, A.H.; Ahmad, V.; Yadav, B.S. Identification of natural compounds of the apple as inhibitors against cholinesterase for the treatment of Alzheimer’s disease: An in silico molecular docking simulation and ADMET study. Nutrients 2023, 15, 1579. [Google Scholar] [CrossRef]
- Asen, N.D.; Aluko, R.E. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. J. Food Biochem. 2022, 46, e14289. [Google Scholar] [CrossRef]
- Li, N.; Jiang, H.; Yang, J.; Wang, C.; Wu, L.; Hao, Y.; Liu, Y. Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. Food Biosci. 2021, 42, 101204. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Gonçalves, S.; Romano, A.; Gutiérrez-Grijalva, E.P.; Heredia, J.B.; Talukdar, A.D.; Shome, S.; Shin, H.S. Galangal, the multipotent super spices: A comprehensive review. Trends Food Sci. Technol. 2020, 101, 50–62. [Google Scholar] [CrossRef]
- Abirami, A.; Nagarani, G.; Siddhuraju, P. The medicinal and nutritional role of underutilized citrus fruit Citrus hystrix (Kaffir lime): A review. Drug Invent. Today 2014, 6, 1–5. [Google Scholar]
- Bibi, R.; Gul, S.; Wahab, A.; Khan, M.I.; Khan, M.A. The Anticholinesterase Activity of Three Local Food Spices and Their Anti-Alzheimer Application. Curr. Nutraceuticals 2020, 2, 71–77. [Google Scholar] [CrossRef]
- Sharma, H.; Sharma, N.; An, S.S.A. Black Pepper (Piper nigrum) Alleviates Oxidative Stress, Exerts Potential Anti-Glycation and Anti-AChE Activity: A Multitargeting Neuroprotective Agent against Neurodegenerative Diseases. Antioxidants 2023, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Kucukaydin, S.; Ceylan, O.; Sarac, N.; Duru, M.E. Phenolic composition, enzyme inhibitory and anti-quorum sensing activities of cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum Linn). Chem. Afr. 2021, 4, 759–767. [Google Scholar] [CrossRef]
- Samai, Z.; Toudert, N.; Dadda, N.; Hamel, T.; Zakkad, F.; Zerrad, C.; Boutemedjet, S.; Bensouici, C.; Djilani, S.E. Discovery Phenolic Profiles and in vitro Antioxidants, Neuroprotective, Anti-diabetic Activities of Extracts from of Algerian Plant: Calendula monardii Boiss. & Reut. Curr. Enzym. Inhib. 2024, 20, 30–39. [Google Scholar]
- Popova, I.; Sell, B.; Pillai, S.S.; Kuhl, J.; Dandurand, L.M. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants 2022, 11, 269. [Google Scholar] [CrossRef]
- Bhatt, R.; Tiwari, B.S. CRISPRi/dCas9-KRAB mediated suppression of Solanidine galactosyltransferase (sgt1) in Solanum tuberosum leads to the reduction in α-solanine level in potato tubers without any compensatory effect in α-chaconine. Biocatal. Agric. Biotechnol. 2024, 58, 103133. [Google Scholar] [CrossRef]
- Rocchetti, G.; Zhang, L.; Bocchi, S.; Giuberti, G.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Ceylan, R.; Picot-Allain, M.C.; Mahomoodally, M.F.; et al. The functional potential of nine Allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chem. 2022, 368, 130782. [Google Scholar] [CrossRef]
- Ertik, O.; Sacan, O.; Yanardag, R. Anti-adenosine deaminase, anti-neuraminidase, anti-xanthine oxidase, anti-acetylcholinesterase and antioxidant activities of parsley extract. J. Herb. Med. 2023, 42, 100787. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajowniczek-Ałasa, D.; Baranowska-Wójcik, E.; Szwajgier, D. Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors. Nutrients 2024, 16, 2025. https://doi.org/10.3390/nu16132025
Gajowniczek-Ałasa D, Baranowska-Wójcik E, Szwajgier D. Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors. Nutrients. 2024; 16(13):2025. https://doi.org/10.3390/nu16132025
Chicago/Turabian StyleGajowniczek-Ałasa, Dorota, Ewa Baranowska-Wójcik, and Dominik Szwajgier. 2024. "Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors" Nutrients 16, no. 13: 2025. https://doi.org/10.3390/nu16132025
APA StyleGajowniczek-Ałasa, D., Baranowska-Wójcik, E., & Szwajgier, D. (2024). Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors. Nutrients, 16(13), 2025. https://doi.org/10.3390/nu16132025