Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching and Selection Processes
2.2. Inclusion and Exclusion Criteria
- Population: Adult human (>18 years) breast, lung, colon and rectum, prostate, stomach, and liver cancer patients, and/or cancer survivors. Patients at any cancer stage, with any comorbidity, at any body mass index (BMI), or under any pharmacological treatment were included.
- Intervention: Any physical activity/exercise intervention combined with any diet/nutrition intervention, as well as physical and/or remote counseling, behavioral models, education as a combined physical activity/exercise, and diet/nutrition intervention, as long as this intervention was specific and measurable. Interventions took place for at least two weeks.
- Comparator: As a control condition, we included randomized controlled trials (RCT) with a control group (i.e., usual care) and RCT with a cross-over design control condition.
- Outcome: Measurement of biological/biochemical indices, QoL, and depression.
- Study design: RCTs with parallel or cross-over design.
- We rejected studies that involved animals, reviews, letters, congress papers, magazines, and gray literature.
2.3. Risk of Bias Assessment
2.4. Data Extraction
2.5. Data Synthesis
2.6. Quality of Evidence
3. Results
3.1. Searching and Selection Processes Results
3.2. Risk of Bias Assessment Results
3.3. Narrative Data Synthesis Results
3.4. Meta-Analysis Outcomes
3.4.1. Biological/Biochemical Indices
3.4.2. Quality of Life Indices
3.5. Quality of Evidence Results
4. Discussion
4.1. Summary of Main Findings
4.2. Completeness and Applicability of Evidence
4.3. Strengths and Limitations
4.4. Important Deviations from the Published Protocol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Full Name | ||
1 | Apostolos Kamnitsas | [email protected] |
2 | Aristoula Tzalidi | [email protected] |
3 | Aikaterini Pipertzi | [email protected] |
4 | Aikaterini Makedoniti | [email protected] |
5 | Aikaterini Makri | [email protected] |
6 | Asteria Skliri | [email protected] |
7 | Asteria Sideri Tsiami | [email protected] |
8 | Anastasia Riyinou | [email protected] |
9 | Alkmini Rouchota | [email protected] |
10 | Anastasia Kraniotaki | [email protected] |
11 | Aggeliki Chalvatzi | [email protected] |
12 | Anastasia Kanaridou | [email protected] |
13 | Ariandi Marinou | [email protected] |
14 | Angelos Chaniotakis | [email protected] |
15 | Alexandros Foteinos | [email protected] |
16 | Apostolos Aggelos Patsatzis | [email protected] |
17 | Argiro Diotima Tiktopoulou | [email protected] |
18 | Chariklia Fygka | [email protected] |
19 | Chariklia Petropoulou | [email protected] |
20 | Chrisanthi Kyriazi Theodori | [email protected] |
21 | Dimitris Grigoriou | [email protected] |
22 | Eirini Mitou | [email protected] |
23 | Eirini Mpalampani | [email protected] |
24 | Eirini Pavlou | [email protected] |
25 | Eugenia Anthi | [email protected] |
26 | Evdokia Chatzimanoli | [email protected] |
27 | Eleni Sofia Kapsokavadi | [email protected] |
28 | Euaggelia Vordoni | [email protected] |
29 | Eleni Papadima | [email protected] |
30 | Elisavet Pappa | [email protected] |
31 | Ermioni Dimopoulou | [email protected] |
32 | Georgia Fafaliou | [email protected] |
33 | Georgios Kalogiannakis | [email protected] |
34 | Ioanna Apostolou | [email protected] |
35 | Ioannis Manolarakis | [email protected] |
36 | Konstantina Stamou | [email protected] |
37 | Konstantina Michailidou | [email protected] |
38 | Maria Gerostergiou | [email protected] |
39 | Maria Liveri | [email protected] |
40 | Maria Mpoufikou | [email protected] |
41 | Maria Paschalidou | [email protected] |
42 | Marianthi Aristea Vasilopoulou | [email protected] |
43 | Marianthi Koropouli | [email protected] |
44 | Nikolaos Gerasimos Efthimiadis | [email protected] |
45 | Niki Stathi | [email protected] |
46 | Niki Ioanna Karanikola | [email protected] |
47 | Nektaria Dimitra Kotsiari | [email protected] |
48 | Paoulina Maria Pietchoux | [email protected] |
49 | Paraskevi Mpourda | [email protected] |
50 | Petros Stefanidis | [email protected] |
51 | Sevastiani Voulgaraki | [email protected] |
52 | Vasiliki Kotopouli | [email protected] |
53 | Vasiliki Paraskevi Voutiritsa | [email protected] |
54 | Vasiliki Alexaki | [email protected] |
55 | Zoi Nona | [email protected] |
56 | Zinovia Βermperi | [email protected] |
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 26 March 2024).
- Chen, S.; Cao, Z.; Prettner, K.; Kuhn, M.; Yang, J.; Jiao, L.; Wang, Z.; Li, W.; Geldsetzer, P.; Bärnighausen, T.; et al. Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories from 2020 to 2050. JAMA Oncol. 2023, 9, 465–472. [Google Scholar] [CrossRef] [PubMed]
- NCD Countdown 2030 collaborators. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 2018, 392, 1072–1088. [Google Scholar] [CrossRef] [PubMed]
- Schüz, J.; Espina, C.; Villain, P.; Herrero, R.; Leon, M.E.; Minozzi, S.; Romieu, I.; Segnan, N.; Wardle, J.; Wiseman, M.; et al. European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk. Cancer Epidemiol. 2015, 39 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Available online: https://apps.who.int/iris/handle/10665/94384 (accessed on 26 March 2024).
- National Cancer Institute. Cancer Prevention Overview (PDQ®)–Patient Version. Available online: https://www.cancer.gov/about-cancer/causes-prevention/patient-prevention-overview-pdq (accessed on 26 March 2024).
- National Cancer Institute. Cancer Prevention Overview (PDQ®)–Health Professional Version. Available online: https://www.cancer.gov/about-cancer/causes-prevention/hp-prevention-overview-pdq (accessed on 26 March 2024).
- Zhao, L.; Zhang, X.; Coday, M.; Garcia, D.O.; Li, X.; Mossavar-Rahmani, Y.; Naughton, M.J.; Lopez-Pentecost, M.; Saquib, N.; Shadyab, A.H.; et al. Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Liver Cancer and Chronic Liver Disease Mortality. JAMA 2023, 330, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, R.W.M.; Zeraatkar, D.; Han, M.A.; El Dib, R.; Zworth, M.; Milio, K.; Sit, D.; Lee, Y.; Gomaa, H.; Valli, C.; et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Zeraatkar, D.; Johnston, B.C.; Bartoszko, J.; Cheung, K.; Bala, M.M.; Valli, C.; Rabassa, M.; Sit, D.; Milio, K.; Sadeghirad, B.; et al. Effect of Lower Versus Higher Red Meat Intake on Cardiometabolic and Cancer Outcomes: A Systematic Review of Randomized Trials. Ann. Intern. Med. 2019, 171, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef]
- Alam, M.M.; Rahman, T.; Afroz, Z.; Chakraborty, P.A.; Wahab, A.; Zaman, S.; Hawlader, M.D.H. Quality of Life (QoL) of cancer patients and its association with nutritional and performance status: A pilot study. Heliyon 2020, 6, e05250. [Google Scholar] [CrossRef]
- Smith, H.R. Depression in cancer patients: Pathogenesis, implications and treatment (Review). Oncol. Lett. 2015, 9, 1509–1514. [Google Scholar] [CrossRef]
- Dinas, P.C.; Koutedakis, Y.; Flouris, A.D. Effects of exercise and physical activity on depression. Ir. J. Med. Sci. 2011, 180, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Jacot, W.; Arnaud, A.; Jarlier, M.; Lefeuvre-Plesse, C.; Dalivoust, P.; Senesse, P.; Azzedine, A.; Tredan, O.; Sadot-Lebouvier, S.; Mas, S.; et al. Brief Hospital Supervision of Exercise and Diet During Adjuvant Breast Cancer Therapy Is Not Enough to Relieve Fatigue: A Multicenter Randomized Controlled Trial. Nutrients 2020, 12, 3081. [Google Scholar] [CrossRef] [PubMed]
- Focht, B.C.; Lucas, A.R.; Grainger, E.; Simpson, C.; Fairman, C.M.; Thomas-Ahner, J.M.; Buell, J.; Monk, J.P.; Mortazavi, A.; Clinton, S.K. Effects of a Group-Mediated Exercise and Dietary Intervention in the Treatment of Prostate Cancer Patients Undergoing Androgen Deprivation Therapy: Results from the IDEA-P Trial. Ann. Behav. Med. 2018, 52, 412–428. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.F.; Haseen, F.; Murray, L.J.; O’Sullivan, J.M.; Cantwell, M.M. A randomised controlled trial to evaluate the efficacy of a 6-month dietary and physical activity intervention for patients receiving androgen deprivation therapy for prostate cancer. J. Cancer Surviv. 2015, 9, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Puklin, L.S.; Harrigan, M.; Cartmel, B.; Sanft, T.; Gottlieb, L.; Zhou, B.; Ferrucci, L.M.; Li, F.Y.; Spiegelman, D.; Sharifi, M.; et al. Randomized Trial Evaluating a Self-Guided Lifestyle Intervention Delivered via Evidence-Based Materials versus a Waitlist Group on Changes in Body Weight, Diet Quality, Physical Activity, and Quality of Life among Breast Cancer Survivors. Cancers 2023, 15, 4719. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; MJ, P. Cochrane Handbook for Systematic Review of Interventions Version 6.2; Cochrane Collaboration: London, UK, 2021. [Google Scholar]
- PROSPERO. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=481429 (accessed on 22 February 2024).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Review Manager (RevMan) [Computer Program]. Version 5.4.1. The Cochrane Collaboration: London, UK, 2020. Available online: https://revman.cochrane.org (accessed on 22 February 2024).
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Bourke, L.; Gilbert, S.; Hooper, R.; Steed, L.A.; Joshi, M.; Catto, J.W.; Saxton, J.M.; Rosario, D.J. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: A randomised controlled trial. Eur. Urol. 2014, 65, 865–872. [Google Scholar] [CrossRef]
- Demark-Wahnefried, W.; Morey, M.C.; Sloane, R.; Snyder, D.C.; Miller, P.E.; Hartman, T.J.; Cohen, H.J. Reach out to enhance wellness home-based diet-exercise intervention promotes reproducible and sustainable long-term improvements in health behaviors, body weight, and physical functioning in older, overweight/obese cancer survivors. J. Clin. Oncol. 2012, 30, 2354–2361. [Google Scholar] [CrossRef]
- Freedland, S.J.; Howard, L.; Allen, J.; Smith, J.; Stout, J.; Aronson, W.; Inman, B.A.; Armstrong, A.J.; George, D.; Westman, E.; et al. A lifestyle intervention of weight loss via a low-carbohydrate diet plus walking to reduce metabolic disturbances caused by androgen deprivation therapy among prostate cancer patients: Carbohydrate and prostate study 1 (CAPS1) randomized controlled trial. Prostate Cancer Prostatic Dis. 2019, 22, 428–437. [Google Scholar] [CrossRef]
- Frugé, A.D.; Ptacek, T.; Tsuruta, Y.; Morrow, C.D.; Azrad, M.; Desmond, R.A.; Hunter, G.R.; Rais-Bahrami, S.; Demark-Wahnefried, W. Dietary Changes Impact the Gut Microbe Composition in Overweight and Obese Men with Prostate Cancer Undergoing Radical Prostatectomy. J. Acad. Nutr. Diet. 2018, 118, 714–723.e1. [Google Scholar] [CrossRef]
- Hébert, J.R.; Hurley, T.G.; Harmon, B.E.; Heiney, S.; Hebert, C.J.; Steck, S.E. A diet, physical activity, and stress reduction intervention in men with rising prostate-specific antigen after treatment for prostate cancer. Cancer Epidemiol. 2012, 36, e128–e136. [Google Scholar] [CrossRef]
- Mefferd, K.; Nichols, J.F.; Pakiz, B.; Rock, C.L. A cognitive behavioral therapy intervention to promote weight loss improves body composition and blood lipid profiles among overweight breast cancer survivors. Breast Cancer Res. Treat 2007, 104, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Morey, M.C.; Snyder, D.C.; Sloane, R.; Cohen, H.J.; Peterson, B.; Hartman, T.J.; Miller, P.; Mitchell, D.C.; Demark-Wahnefried, W. Effects of home-based diet and exercise on functional outcomes among older, overweight long-term cancer survivors: RENEW: A randomized controlled trial. JAMA 2009, 301, 1883–1891. [Google Scholar] [CrossRef]
- Pakiz, B.; Flatt, S.W.; Bardwell, W.A.; Rock, C.L.; Mills, P.J. Effects of a weight loss intervention on body mass, fitness, and inflammatory biomarkers in overweight or obese breast cancer survivors. Int. J. Behav. Med. 2011, 18, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Sturgeon, K.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. A randomized trial of exercise and diet on body composition in survivors of breast cancer with overweight or obesity. Breast Cancer Res. Treat. 2021, 189, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Sturgeon, K.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. A randomized trial of exercise and diet on health-related quality of life in survivors of breast cancer with overweight or obesity. Cancer 2021, 127, 3856–3864. [Google Scholar] [CrossRef]
- Chaplow, Z.L.; Focht, B.C.; Lucas, A.R.; Grainger, E.; Simpson, C.; Buell, J.; Fairman, C.M.; Thomas-Ahner, J.M.; Bowman, J.; DeScenza, V.R.; et al. Effects of a lifestyle intervention on body composition in prostate cancer patients on androgen deprivation therapy. JCSM Clin. Rep. 2020, 5, 52–60. [Google Scholar] [CrossRef]
- Greenlee, H.A.; Crew, K.D.; Mata, J.M.; McKinley, P.S.; Rundle, A.G.; Zhang, W.; Liao, Y.; Tsai, W.Y.; Hershman, D.L. A pilot randomized controlled trial of a commercial diet and exercise weight loss program in minority breast cancer survivors. Obesity 2013, 21, 65–76. [Google Scholar] [CrossRef]
- Harrigan, M.; Cartmel, B.; Loftfield, E.; Sanft, T.; Chagpar, A.B.; Zhou, Y.; Playdon, M.; Li, F.; Irwin, M.L. Randomized Trial Comparing Telephone Versus In-Person Weight Loss Counseling on Body Composition and Circulating Biomarkers in Women Treated for Breast Cancer: The Lifestyle, Exercise, and Nutrition (LEAN) Study. J. Clin. Oncol. 2016, 34, 669–676. [Google Scholar] [CrossRef]
- Puklin, L.; Cartmel, B.; Harrigan, M.; Lu, L.; Li, F.Y.; Sanft, T.; Irwin, M.L. Randomized trial of weight loss on circulating ghrelin levels among breast cancer survivors. npj Breast Cancer 2021, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Reeves, M.; Winkler, E.; McCarthy, N.; Lawler, S.; Terranova, C.; Hayes, S.; Janda, M.; Demark-Wahnefried, W.; Eakin, E. The Living Well after Breast Cancer™ Pilot Trial: A weight loss intervention for women following treatment for breast cancer. Asia-Pac. J. Clin. Oncol. 2017, 13, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Sanft, T.; Harrigan, M.; McGowan, C.; Cartmel, B.; Zupa, M.; Li, F.Y.; Ferrucci, L.M.; Puklin, L.; Cao, A.; Nguyen, T.H.; et al. Randomized Trial of Exercise and Nutrition on Chemotherapy Completion and Pathologic Complete Response in Women With Breast Cancer: The Lifestyle, Exercise, and Nutrition Early After Diagnosis Study. J. Clin. Oncol. 2023, 41, Jco2300871. [Google Scholar] [CrossRef]
- Wilson, R.L.; Taaffe, D.R.; Newton, R.U.; Hart, N.H.; Lyons-Wall, P.; Galvao, D.A. Maintaining weight loss in obese men with prostate cancer following a supervised exercise and nutrition program—A pilot study. Cancers 2021, 13, 3411. [Google Scholar] [CrossRef]
- Reeves, M.M.; Terranova, C.O.; Winkler, E.A.H.; McCarthy, N.; Hickman, I.J.; Ware, R.S.; Lawler, S.P.; Eakin, E.G.; Demark-Wahnefried, W. Effect of a Remotely Delivered Weight Loss Intervention in Early-Stage Breast Cancer: Randomized Controlled Trial. Nutrients 2021, 13, 4091. [Google Scholar] [CrossRef] [PubMed]
- Daubenmier, J.J.; Weidner, G.; Marlin, R.; Crutchfield, L.; Dunn-Emke, S.; Chi, C.; Gao, B.; Carroll, P.; Ornish, D. Lifestyle and health-related quality of life of men with prostate cancer managed with active surveillance. Urology 2006, 67, 125–130. [Google Scholar] [CrossRef]
- Ferreira, V.; Lawson, C.; Carli, F.; Scheede-Bergdahl, C.; Chevalier, S. Feasibility of a novel mixed-nutrient supplement in a multimodal prehabilitation intervention for lung cancer patients awaiting surgery: A randomized controlled pilot trial. Int. J. Surg. 2021, 93, 106079. [Google Scholar] [CrossRef]
- Ho, M.; Ho, J.W.C.; Fong, D.Y.T.; Lee, C.F.; Macfarlane, D.J.; Cerin, E.; Lee, A.M.; Leung, S.; Chan, W.Y.Y.; Leung, I.P.F.; et al. Effects of dietary and physical activity interventions on generic and cancer-specific health-related quality of life, anxiety, and depression in colorectal cancer survivors: A randomized controlled trial. J. Cancer Surviv. 2020, 14, 424–433. [Google Scholar] [CrossRef]
- Karimi, N.; Dabidi Roshan, V.; Fathi Bayatiyani, Z. Individually and Combined Water-Based Exercise with Ginger Supplement, on Systemic Inflammation and Metabolic Syndrome Indices, Among the Obese Women with Breast Neoplasms. Iran J. Cancer Prev. 2015, 8, e3856. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.; Daley, A.J.; Doll, H.; Woodroofe, N.; Coleman, R.E.; Mutrie, N.; Crank, H.; Powers, H.J.; Saxton, J.M. Effects of an exercise and hypocaloric healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: A randomized controlled trial. Cancer Causes Control 2013, 24, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Bourke, L.; Doll, H.; Crank, H.; Daley, A.; Rosario, D.; Saxton, J.M. Lifestyle intervention in men with advanced prostate cancer receiving androgen suppression therapy: A feasibility study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Baguley, B.J.; Adlard, K.; Jenkins, D.; Wright, O.R.L.; Skinner, T.L. Mediterranean Style Dietary Pattern with High Intensity Interval Training in Men with Prostate Cancer Treated with Androgen Deprivation Therapy: A Pilot Randomised Control Trial. Int. J. Environ. Res. Public Health 2022, 19, 5709. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, N.J.; Qiu, L.; Sears, D.D.; Chinchilli, V.; Brown, J.C.; Sarwer, D.B.; Schmitz, K.H.; Sturgeon, K.M. WISER Survivor Trial: Combined Effect of Exercise and Weight Loss Interventions on Insulin and Insulin Resistance in Breast Cancer Survivors. Nutrients 2021, 13, 3108. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. Updat. Oct. 2013, 2013, 15. [Google Scholar]
- Karimi, N.; Roshan, V.D. Change in adiponectin and oxidative stress after modifiable lifestyle interventions in breast cancer cases. Asian Pac. J. Cancer Prev. 2013, 14, 2845–2850. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Sturgeon, K.; Sarwer, D.B.; Troxel, A.B.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. The effects of exercise and diet on sex steroids in breast cancer survivors. Endocr. Relat. Cancer 2022, 29, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Sturgeon, K.; Sarwer, D.B.; Troxel, A.B.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. The effects of exercise and diet on oxidative stress and telomere length in breast cancer survivors. Breast Cancer Res. Treat. 2023, 199, 109–117. [Google Scholar] [CrossRef]
- Carayol, M.; Ninot, G.; Senesse, P.; Bleuse, J.P.; Gourgou, S.; Sancho-Garnier, H.; Sari, C.; Romieu, I.; Romieu, G.; Jacot, W. Short- and long-term impact of adapted physical activity and diet counseling during adjuvant breast cancer therapy: The “APAD1” randomized controlled trial. BMC Cancer 2019, 19, 737. [Google Scholar] [CrossRef]
- Sanft, T.; Usiskin, I.; Harrigan, M.; Cartmel, B.; Lu, L.; Li, F.Y.; Zhou, Y.; Chagpar, A.; Ferrucci, L.M.; Pusztai, L.; et al. Randomized controlled trial of weight loss versus usual care on telomere length in women with breast cancer: The lifestyle, exercise, and nutrition (LEAN) study. Breast Cancer Res. Treat 2018, 172, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.H.; Troxel, A.B.; Dean, L.T.; DeMichele, A.; Brown, J.C.; Sturgeon, K.; Zhang, Z.; Evangelisti, M.; Spinelli, B.; Kallan, M.J.; et al. Effect of Home-Based Exercise and Weight Loss Programs on Breast Cancer-Related Lymphedema Outcomes Among Overweight Breast Cancer Survivors: The WISER Survivor Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Frattaroli, J.; Weidner, G.; Dnistrian, A.M.; Kemp, C.; Daubenmier, J.J.; Marlin, R.O.; Crutchfield, L.; Yglecias, L.; Carroll, P.R.; Ornish, D. Clinical events in prostate cancer lifestyle trial: Results from two years of follow-up. Urology 2008, 72, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.F.; Ho, J.W.C.; Fong, D.Y.T.; Macfarlane, D.J.; Cerin, E.; Lee, A.M.; Leung, S.; Chan, W.Y.Y.; Leung, I.P.F.; Lam, S.H.S.; et al. Dietary and Physical Activity Interventions for Colorectal Cancer Survivors: A Randomized Controlled Trial. Sci. Rep. 2018, 8, 5731. [Google Scholar] [CrossRef] [PubMed]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Obesity and cancer: Local and systemic mechanisms. Annu. Rev. Med. 2015, 66, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.Z. Hyperinsulinemia--how innocent a bystander? Diabetes Care 1993, 16 (Suppl. 3), 56–70. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Borghouts, L.B.; Keizer, H.A. Exercise and insulin sensitivity: A review. Int. J. Sports Med. 2000, 21, 1–12. [Google Scholar] [CrossRef]
- Gołąbek, K.D.; Regulska-Ilow, B. Dietary support in insulin resistance: An overview of current scientific reports. Adv. Clin. Exp. Med. 2019, 28, 1577–1585. [Google Scholar] [CrossRef]
- Eglseer, D.; Traxler, M.; Embacher, S.; Reiter, L.; Schoufour, J.D.; Weijs, P.J.M.; Voortman, T.; Boirie, Y.; Cruz-Jentoft, A.; Bauer, S. Nutrition and Exercise Interventions to Improve Body Composition for Persons with Overweight or Obesity Near Retirement Age: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 516–538. [Google Scholar] [CrossRef]
- Au, P.C.; Li, H.L.; Lee, G.K.; Li, G.H.; Chan, M.; Cheung, B.M.; Wong, I.C.; Lee, V.H.; Mok, J.; Yip, B.H.; et al. Sarcopenia and mortality in cancer: A meta-analysis. Osteoporos. Sarcopenia 2021, 7, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.B.; Park, J.H.; Park, H.S.; Kim, H.J.; Park, J.J. Effects of Whey Protein Supplement on 4-Week Resistance Exercise-Induced Improvements in Muscle Mass and Isokinetic Muscular Function under Dietary Control. Nutrients 2023, 15, 1003. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef] [PubMed]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, H.; Borena, W.; Rapp, K.; Klenk, J.; Strasak, A.; Diem, G.; Concin, H.; Nagel, G. Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. Br. J. Cancer 2009, 101, 1202–1206. [Google Scholar] [CrossRef]
- Colleoni, M.; Mandala, M.; Peruzzotti, G.; Robertson, C.; Bredart, A.; Goldhirsch, A. Depression and degree of acceptance of adjuvant cytotoxic drugs. Lancet 2000, 356, 1326–1327. [Google Scholar] [CrossRef]
- Aydin, M.; Kose, E.; Odabas, I.; Meric Bingul, B.; Demirci, D.; Aydin, Z. The Effect of Exercise on Life Quality and Depression Levels of Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2021, 22, 725–732. [Google Scholar] [CrossRef]
- Cramer, H.; Lauche, R.; Klose, P.; Lange, S.; Langhorst, J.; Dobos, G.J. Yoga for improving health-related quality of life, mental health and cancer-related symptoms in women diagnosed with breast cancer. Cochrane Database Syst. Rev. 2017, 1, Cd010802. [Google Scholar] [CrossRef]
- Appleton, K.M.; Rogers, P.J.; Ness, A.R. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr. 2010, 91, 757–770. [Google Scholar] [CrossRef]
- Kraguljac, N.V.; Montori, V.M.; Pavuluri, M.; Chai, H.S.; Wilson, B.S.; Unal, S.S. Efficacy of omega-3 fatty acids in mood disorders—A systematic review and metaanalysis. Psychopharmacol. Bull. 2009, 42, 39–54. [Google Scholar] [PubMed]
- Marquez, D.X.; Aguiñaga, S.; Vásquez, P.M.; Conroy, D.E.; Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Sheppard, B.B.; Petruzzello, S.J.; et al. A systematic review of physical activity and quality of life and well-being. Transl. Behav. Med. 2020, 10, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Carson, T.L.; Hidalgo, B.; Ard, J.D.; Affuso, O. Dietary interventions and quality of life: A systematic review of the literature. J. Nutr. Educ. Behav. 2014, 46, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Canudas, S.; Becerra-Tomás, N.; Hernández-Alonso, P.; Galié, S.; Leung, C.; Crous-Bou, M.; De Vivo, I.; Gao, Y.; Gu, Y.; Meinilä, J.; et al. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1544–1554. [Google Scholar] [CrossRef]
- Pérez, L.M.; Amaral, M.A.; Mundstock, E.; Barbé-Tuana, F.M.; Guma, F.; Jones, M.H.; Machado, D.C.; Sarria, E.E.; Marques, E.M.M.; Preto, L.T.; et al. Effects of Diet on Telomere Length: Systematic Review and Meta-Analysis. Public Health Genom. 2017, 20, 286–292. [Google Scholar] [CrossRef]
- Song, S.; Lee, E.; Kim, H. Does Exercise Affect Telomere Length? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina 2022, 58, 242. [Google Scholar] [CrossRef]
Study | Aim | Type of Exercise/Physical Activity and Diet/Nutrition | Outcome |
---|---|---|---|
Brown 2022 (Breast cancer) [55] | To examine the effects of the intervention (physical activity and diet) on sex steroid hormones. | Duration: 52 weeks. Exercise Type: Resistance + aerobic. Exercise Content: 9 exercises twice weekly, 2–3 sets, weight permitted 10 repetitions. Moderate-intensity aerobic exercise, 180 min 3–6 days/week. Diet Type: Hypocaloric diet 10% loss of body weight. Diet Content: 7 daily servings of fruits and vegetables; behavioral techniques to prepare food. | No effect of the intervention on sex steroid hormones. |
Schmitz 2019 (Breast cancer) [59] | To examine the effects of the intervention (physical activity and diet) on breast cancer-related lymphedema. | Duration: 52 weeks. Exercise Type: Walking + resistance exercises Exercise Content: Walking goals/week were 90 min for weeks 1–3, 120 min for week 4, 150 min for weeks 5–6, and 180 min thereafter. Intensity was limited by 0.45–0.90 kg per 2 weeks, up to 9.45 kg, twice/session during weeks 1–6 and 3 times/session thereafter. Diet Type: Weight loss. Diet Content: Weeks 1–20: 7 servings of fruits and vegetables per day. Weeks 21–24 lessons for preparing food. Weeks 25–52, monthly meetings for weigh-ins and weight maintenance instructions, to achieve 10% weight reduction in comparison to baseline. | The intervention did not improve breast cancer-related lymphedema. |
Brown 2023 (Breast cancer) [56] | To examine the effects of the intervention (physical activity and diet) on oxidative stress and telomere length. | Duration: 52 weeks Exercise Type: Resistance + aerobic. Exercise Content: 9 exercises twice weekly, 2–3 sets, weight permitted 10 repetitions. Moderate-intensity aerobic exercise, 180 min 3–6 days/week. Diet Type: Hypocaloric diet 10% loss of body weight. Diet Content: 7 portions of fruits and vegetables per day; behavioral techniques to prepare food. | The intervention was associated with reduced oxidative stress. No effect of the intervention on telomere length. |
Carayol 2019 (Breast cancer) [57] | To examine the effects of the intervention (physical activity and diet) on cancer-related fatigue, QoL, anxiety, depression, BMI, and body composition. | Duration: 26 weeks. Exercise Type: Resistance + aerobic. Exercise Content: 1 resistance session/week, 2–5 sets, 6–12 repetitions. Two moderate-intensity 30–45 min aerobic sessions/week, 50–75% maximum heart rate. Diet Type: Balanced dietary intake. Diet Content: Diet prepared according to WCRF. | The intervention had positive changes in terms of psychological, physiological, and behavioral outcomes. |
Karimi 2013 (Breast cancer) [54] | To examine the effects of the intervention (physical activity and diet) on adiponectin and oxidative stress. | Duration: 6 weeks. Exercise Type: Water-based exercise. Exercise Content: 50–75% of heart rate reserve, in a pool, 4 times/week. Diet Type: Oral ginger supplement. Diet Content: Ginger rhizome powder (750 mg) in 250 mL of water, 4 times/day, during all main meals and in the afternoon. | The intervention had an antioxidant and anti-dysmetabolism effect. |
Sanft 2018 (Breast cancer) [58] | To examine the effects of the intervention (physical activity and diet) on telomere length. | Duration: 6 months. Exercise Type: Home-based exercise (walking). Exercise Content: 150 min/week of moderate-intensity activity and 10.000 steps/day. Diet Type: Reduced caloric intake. Diet Content: Reduction of 1200–2000 kcal/day, based on baseline weight, and decreasing fat to <25% of total energy intake. | The intervention led to telomere lengthening. |
Frattaroli 2008 (Prostate cancer) [60] | To examine the effects of the intervention (physical activity and diet) on prostate-specific antigen. | Duration: 2 years. Exercise Type: Moderate aerobic exercise. Exercise Content: Walking 30 min/day, 6 days/week. Diet Type: Vegan diet. Diet Content: Fruits, vegetables, whole grains, legumes, and soy products, low in carbohydrates, and 10% of calorie intake from fat. | The intervention allowed active surveillance to delay conventional treatment. |
Lee 2018 (Colorectal cancer) [61] | To examine the effects of the intervention (physical activity and diet) on consumption of red and processed meat. | Duration: 12 months. Exercise Type: Moderate to vigorous physical activity. Exercise Content: 60 min of moderate-vigorous physical activity, 5 days/week. Diet Type: Consultation using interviews and phone calls. Diet Content: High dietary fiber, low red and processed meat, and refined grain. | The intervention showed potential for the cancer survivors to modify their dietary habits. |
Outcomes | No of Participants (Studies/Entries) | Quality of the Evidence (GRADE) | Relative Effect (95% CI) |
---|---|---|---|
Exercise+Diet vs. Control BMI | 2049 (11 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: −0.67, CI: −1.09, −0.25 |
Exercise+Diet vs. Control Body weight | 3014 (23 studies/entries) | Low ⨁⨁◯◯ due to risk of bias and inconsistency of results | MD: −2.88, CI: −4.30, −1.25 |
Exercise+Diet vs. Control Fat mass | 697 (10 studies/entries) | Low ⨁⨁◯◯ due to risk of bias and inconsistency of results | MD: −2.85, CI: −4.45, −1.25 |
Exercise+Diet vs. Control Fat-Free mmass | 739 (12 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: −1.04, CI: −1.84, −0.23 |
Exercise+Diet vs. Control Insulin | 322 (6 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | SMD: −0.41, CI: −0.74, −0.08 |
Exercise+Diet vs. Control HOMA-IR | 238 (4 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: −0.55, CI: −0.77, −0.33 |
Exercise+Diet vs. Control C-reactive protein | 253 (5 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: −0.97, CI: −1.88, −0.06 |
Exercise+Diet vs. Control HDL | 360 (6 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | SMD: 0.34, CI: 0.07, 0.61 |
Exercise+Diet vs. Control Triglycerides | 297 (5 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | SMD: −0.38, CI: −0.62, −0.14 |
Exercise+Diet vs. Control QoL physical component summary score | 1358 (9 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | SMD: 0.20, CI: 0.09, 0.31 |
Exercise+Diet vs. Control QoL physical functioning | 1142 (5 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | SMD: 0.18, CI: 0.06, 0.29 |
Exercise+Diet vs. Control FACT general | 244 (3 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: 4.41, CI: 1.34, 7.48 |
Exercise+Diet vs. Control Depression | 391 (3 studies/entries) | Moderate ⨁⨁⨁◯ due risk of bias | MD: −0.99, CI: −1.92, −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinas, P.C.; on behalf of the Students of Module 5104 (Introduction to Systematic Reviews); Karaventza, M.; Liakou, C.; Georgakouli, K.; Bogdanos, D.; Metsios, G.S. Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1749. https://doi.org/10.3390/nu16111749
Dinas PC, on behalf of the Students of Module 5104 (Introduction to Systematic Reviews), Karaventza M, Liakou C, Georgakouli K, Bogdanos D, Metsios GS. Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(11):1749. https://doi.org/10.3390/nu16111749
Chicago/Turabian StyleDinas, Petros C., on behalf of the Students of Module 5104 (Introduction to Systematic Reviews), Marianthi Karaventza, Christina Liakou, Kalliopi Georgakouli, Dimitrios Bogdanos, and George S. Metsios. 2024. "Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis" Nutrients 16, no. 11: 1749. https://doi.org/10.3390/nu16111749
APA StyleDinas, P. C., on behalf of the Students of Module 5104 (Introduction to Systematic Reviews), Karaventza, M., Liakou, C., Georgakouli, K., Bogdanos, D., & Metsios, G. S. (2024). Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients, 16(11), 1749. https://doi.org/10.3390/nu16111749