Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients’ Body Composition and Quality of Life
Abstract
:1. Introduction
2. Results
Evolution of SIBDQ Score
3. Discussion
4. Materials and Methods
4.1. Patients’ Selection
4.2. Study Design
4.3. Body Composition Measurement
4.4. Short Inflammatory Bowel Disease Questionnaire (SIBDQ)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, G.G.; Ng, S.C. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 2017, 152, 313–321.e2. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.V.; Schultz, C.G.; Ooi, S.; Goess, C.; Costello, S.P.; Vincent, A.D.; Schoeman, S.N.; Lim, A.; Bartholomeusz, F.D.; Travis, S.P.L.; et al. Obesity in Inflammatory Bowel Disease: Gains in Adiposity despite High Prevalence of Myopenia and Osteopenia. Nutrients 2018, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.H.; Zhu, C.X.; Quan, Y.S.; Yang, Z.Y.; Wu, S.; Luo, W.W.; Tan, B.; Wang, X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018, 24, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Pravda, J. Can ulcerative colitis be cured? Discov. Med. 2019, 27, 197–200. [Google Scholar] [PubMed]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.-F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother. 2023, 164, 115015. [Google Scholar] [CrossRef]
- Kemp, K.; Griffiths, J.; Lovell, K. Understanding the health and social care needs of people living with IBD: A meta-synthesis of the evidence. World J. Gastroenterol. 2012, 18, 6240–6249. [Google Scholar] [CrossRef]
- Nistor-Cseppento, C.D.; Moga, T.D.; Bungau, A.F.; Tit, D.M.; Negrut, N.; Pasca, B.; Bochis, C.F.; Ghitea, T.C.; Jurcau, A.; Purza, A.L.; et al. The Contribution of Diet Therapy and Probiotics in the Treatment of Sarcopenia Induced by Prolonged Immobilization Caused by the COVID-19 Pandemic. Nutrients 2022, 14, 4701. [Google Scholar] [CrossRef]
- Gonçalves, P.; Magro, F.; Martel, F. Metabolic inflammation in inflammatory bowel disease: Crosstalk between adipose tissue and bowel. Inflamm. Bowel Dis. 2015, 21, 453–467. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Gao, X.; Dai, C.; Huang, Y.; Wu, Y.; Zhou, W.; Cao, Q.; Jing, X.; Jiang, H.; et al. Impact of malnutrition and sarcopenia on quality of life in patients with inflammatory bowel disease: A multicentre study. J. Cachexia Sarcopenia Muscle 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, L. Research progress on the predictive role of sarcopenia in the course and prognosis of inflammatory bowel disease. PeerJ 2023, 11, e16421. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, Y.S.; Lee, S.H.; Lee, H.M.; Yoon, W.E.; Kim, S.H.; Myung, H.J.; Moon, J.S. Evaluation of nutritional status using bioelectrical impedance analysis in patients with inflammatory bowel disease. Intest. Res. 2022, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Ruggiero, A.; Maurizi, P.; Triarico, S.; Cintoni, M.; Mele, M.C. Clinical tools to assess nutritional risk and malnutrition in hospitalized children and adolescents. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2690–2701. [Google Scholar] [PubMed]
- Vermeulen, K.M.; Lopes, M.; Grilo, E.C.; Alves, C.X.; Machado, R.J.A.; Lais, L.L.; Brandão-Neto, J.; Vale, S.H.L. Bioelectrical impedance vector analysis and phase angle in boys with Duchenne muscular dystrophy. Food Nutr. Res. 2019, 63, 1615. [Google Scholar] [CrossRef] [PubMed]
- Sukackiene, D.; Laucyte-Cibulskiene, A.; Vickiene, A.; Rimsevicius, L.; Miglinas, M. Risk stratification for patients awaiting kidney transplantation: Role of bioimpedance derived edema index and nutrition status. Clin. Nutr. 2020, 39, 2759–2763. [Google Scholar] [CrossRef] [PubMed]
- Malczyk, E.; Dzięgielewska-Gęsiak, S.; Fatyga, E.; Ziółko, E.; Kokot, T.; Muc-Wierzgon, M. Body composition in healthy older persons: Role of the ratio of extracellular/total body water. J. Biol. Regul. Homeost. Agents 2016, 30, 767–772. [Google Scholar]
- Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin. Nutr. Res. 2015, 4, 32–40. [Google Scholar] [CrossRef]
- Harbord, M.; Eliakim, R.; Bettenworth, D.; Karmiris, K.; Katsanos, K.; Kopylov, U.; Kucharzik, T.; Molnár, T.; Raine, T.; Sebastian, S.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J. Crohns Colitis 2017, 11, 769–784. [Google Scholar] [CrossRef]
- Adams, S.M.; Close, E.D.; Shreenath, A.P. Ulcerative Colitis: Rapid Evidence Review. Am. Fam. Physician 2022, 105, 406–411. [Google Scholar] [PubMed]
- Iheozor-Ejiofor, Z.; Kaur, L.; Gordon, M.; Baines, P.A.; Sinopoulou, V.; Akobeng, A.K. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2020, 3, Cd007443. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef] [PubMed]
- Corb Aron, R.A.; Abid, A.; Vesa, C.M.; Nechifor, A.C.; Behl, T.; Ghitea, T.C.; Munteanu, M.A.; Fratila, O.; Andronie-Cioara, F.L.; Toma, M.M. Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms 2021, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Pavel, F.M.; Vesa, C.M.; Gheorghe, G.; Diaconu, C.C.; Stoicescu, M.; Munteanu, M.A.; Babes, E.E.; Tit, D.M.; Toma, M.M.; Bungau, S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics 2021, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed]
- Pavel, F.M.; Tit, D.M.; Bungau, A.F.; Behl, T.; Tarce, A.G.; Bungau, S. Effect of dietary probiotics on intestinal microbiota in patients with Crohn’s disease. Arch. Balk. Med. Union 2021, 57, 54–62. [Google Scholar] [CrossRef]
- Severo, J.S.; da Silva Barros, V.J.; Alves da Silva, A.C.; Luz Parente, J.M.; Lima, M.M.; Moreira Lima, A.; Dos Santos, A.A.; Matos Neto, E.M.; Tolentino, M. Effects of glutamine supplementation on inflammatory bowel disease: A systematic review of clinical trials. Clin. Nutr. ESPEN 2021, 42, 53–60. [Google Scholar] [CrossRef]
- Yang, J.C.; Jacobs, J.P.; Hwang, M.; Sabui, S.; Liang, F.; Said, H.M.; Skupsky, J. Biotin Deficiency Induces Intestinal Dysbiosis Associated with an Inflammatory Bowel Disease-like Phenotype. Nutrients 2023, 15, 264. [Google Scholar] [CrossRef]
- Kuroishi, T. Regulation of immunological and inflammatory functions by biotin. Can. J. Physiol. Pharmacol. 2015, 93, 1091–1096. [Google Scholar] [CrossRef]
- Agrawal, S.; Agrawal, A.; Said, H.M. Biotin deficiency enhances the inflammatory response of human dendritic cells. Am. J. Physiol. Cell Physiol. 2016, 311, C386–C391. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.T.; Sylvestersen, K.B.; Young, C.; Larsen, S.C.; Poulsen, J.W.; Andersen, M.A.; Palmqvist, E.A.; Hey-Mogensen, M.; Jensen, P.B.; Treebak, J.T.; et al. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nat. Commun. 2015, 6, 7726. [Google Scholar] [CrossRef]
- Prokopidis, K.; Giannos, P.; Kirwan, R.; Ispoglou, T.; Galli, F.; Witard, O.C.; Triantafyllidis, K.K.; Kechagias, K.S.; Morwani-Mangnani, J.; Ticinesi, A. Impact of probiotics on muscle mass, muscle strength and lean mass: A systematic review and meta-analysis of randomized controlled trials. J. Cachexia Sarcopenia Muscle 2023, 14, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Yang, H.-L.; Hu, L.-H.; Yang, W.; Ai, C.-X.; Sun, Y.-Z. Autochthonous Probiotics Alleviate the Adverse Effects of Dietary Histamine in Juvenile Grouper (Epinephelus coioides). Front. Microbiol. 2021, 12, 792718. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-C.; Lee, M.-C.; Lee, C.-C.; Ng, K.-S.; Hsu, Y.-J.; Tsai, T.-Y.; Young, S.-L.; Lin, J.-S.; Huang, C.-C. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. Nutrients 2019, 11, 2836. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Feng, C.; Chen, H.; Feng, Y.; Li, J. Trends in Worldwide Research in Inflammatory Bowel Disease Over the Period 2012–2021: A Bibliometric Study. Front. Med. 2022, 9, 880553. [Google Scholar] [CrossRef] [PubMed]
- Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. IBD: In food we trust. J. Crohn’s Colitis 2016, 10, 1351–1361. [Google Scholar] [CrossRef]
- Radziszewska, M.; Smarkusz-Zarzecka, J.; Ostrowska, L.; Pogodziński, D. Nutrition and Supplementation in Ulcerative Colitis. Nutrients 2022, 14, 2469. [Google Scholar] [CrossRef]
- Holt, D.; Strauss, B.; Moore, G. Patients with inflammatory bowel disease and their treating clinicians have different views regarding diet. J. Human Nutr. Diet. 2017, 30, 66–72. [Google Scholar] [CrossRef]
- Fiorindi, C.; Dragoni, G.; Alpigiano, G.; Piemonte, G.; Scaringi, S.; Staderini, F.; Nannoni, A.; Ficari, F.; Giudici, F. Nutritional adequacy in surgical IBD patients. Clin. Nutr. ESPEN 2021, 41, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Gerasimidis, K.; McGrogan, P.; Edwards, C.A. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J. Hum. Nutr. Diet. 2011, 24, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Back, I.R.; Marcon, S.S.; Gaino, N.M.; Vulcano, D.S.B.; Dorna, M.S.; Sassaki, L.Y. Body composition in patients with Crohn’s disease and ulcerative colitis. Arq. Gastroenterol. 2017, 54, 109–114. [Google Scholar] [CrossRef] [PubMed]
- DeClercq, V.; Langille, M.G.I.; Van Limbergen, J. Differences in adiposity and diet quality among individuals with inflammatory bowel disease in Eastern Canada. PLoS ONE 2018, 13, e0200580. [Google Scholar] [CrossRef] [PubMed]
- Urbano, A.P.; Sassaki, L.Y.; Dorna, M.S.; Carvalhaes, M.A.; Martini, L.A.; Ferreira, A.L. Nutritional intake according to injury extent in ulcerative colitis patients. J. Hum. Nutr. Diet. 2013, 26, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ding, X.; Tian, Z.; Jing, X. Body Composition Changes and Related Factors in Patients with Ulcerative Colitis: A Retrospective Single-Center Study in China. Med. Sci. Monit. 2022, 28, e933942. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhou, M.; Shen, J.; Ran, Z. Bioelectrical Impedance Analysis for Body Composition and Nutritional Status in Hospitalized Patients with Inflammatory Bowel Disease. Chin. J. Gastroenterol. 2019, 24, 5–9. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Y.; Yu, X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int. J. Gen. Med. 2021, 14, 1263–1273. [Google Scholar] [CrossRef]
- Jakubczyk, D.; Leszczyńska, K.; Górska, S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)—A Critical Review. Nutrients 2020, 12, 1973. [Google Scholar] [CrossRef]
- Bibiloni, R.; Fedorak, R.N.; Tannock, G.W.; Madsen, K.L.; Gionchetti, P.; Campieri, M.; De Simone, C.; Sartor, R.B. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol. 2005, 100, 1539–1546. [Google Scholar] [CrossRef]
- Leccese, G.; Bibi, A.; Mazza, S.; Facciotti, F.; Caprioli, F.; Landini, P.; Paroni, M. Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn’s Disease. Cells 2020, 9, 1824. [Google Scholar] [CrossRef] [PubMed]
- Ghitea, T.C.; Vlad, S.; Birle, D.; Tit, D.M.; Lazar, L.; Nistor-Cseppento, C.; Behl, T.; Bungau, S. The influence of diet therapeutic intervention on the sarcopenic index of patients with metabolic syndrome. Acta Endocrinol. 2020, 16, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Deng, J.P.; Zhang, L.; Zhang, W.W.; Sun, J.Y.; Chi, F.; Zhang, J.; Wu, S.G.; He, Z.Y. Prognostic significance of the skeletal muscle index and systemic inflammatory index in patients with lymph node-positive breast cancer after radical mastectomy. BMC Cancer 2022, 22, 234. [Google Scholar] [CrossRef] [PubMed]
- Chumlea, W.C.; Schubert, C.M.; Sun, S.S.; Demerath, E.; Towne, B.; Siervogel, R.M. A review of body water status and the effects of age and body fatness in children and adults. J. Nutr. Health Aging 2007, 11, 111–118. [Google Scholar] [PubMed]
- Hioka, A.; Akazawa, N.; Okawa, N.; Nagahiro, S. Extracellular water-to-total body water ratio is an essential confounding factor in bioelectrical impedance analysis for sarcopenia diagnosis in women. Eur. Geriatr. Med. 2022, 13, 789–794. [Google Scholar] [CrossRef]
- Bryant, R.V.; Trott, M.J.; Bartholomeusz, F.D.; Andrews, J.M. Systematic review: Body composition in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index with Body Mass Index and Association with Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef]
- Dai, H.; Xiang, J.; Hou, Y.; Xuan, L.; Wang, T.; Li, M.; Zhao, Z.; Xu, Y.; Lu, J.; Chen, Y.; et al. Fat mass to fat-free mass ratio and the risk of non-alcoholic fatty liver disease and fibrosis in non-obese and obese individuals. Nutr. Metab. 2021, 18, 21. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Fang, W.H.; Wang, C.C.; Kao, T.W.; Yang, H.F.; Wu, C.J.; Sun, Y.S.; Wang, Y.C.; Chen, W.L. Fat-to-muscle ratio is a useful index for cardiometabolic risks: A population-based observational study. PLoS ONE 2019, 14, e0214994. [Google Scholar] [CrossRef]
- Głąbska, D.; Guzek, D.; Lech, G. Nutritional Status of Men with Ulcerative Colitis in Remission in a Pair–Matched Case–Control Study. J. Clin. Med. 2018, 7, 438. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.A.; Rossoni, C.; Koch, V.W.; Imbrizi, M.; Evangelista-Poderoso, R.; Pinto, L.P.; Magro, D.O. Phase angle through electrical bioimpedance as a predictor of cellularity in inflammatory bowel disease. Artif. Intell. Gastroenterol. 2021, 2, 111–123. [Google Scholar] [CrossRef]
- Burisch, J.; Munkholm, P. The epidemiology of inflammatory bowel disease. Scand. J. Gastroenterol. 2015, 50, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, C.; Pascu, O.; Gheorghe, L.; Iacob, R.; Dumitru, E.; Tantau, M.; Vadan, R.; Goldis, A.; Balan, G.; Iacob, S.; et al. Epidemiology of inflammatory bowel disease in adults who refer to gastroenterology care in Romania: A multicentre study. Eur. J. Gastroenterol. Hepatol. 2004, 16, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, G.; Lin, J.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Serum Biomarkers for Inflammatory Bowel Disease. Front. Med. 2020, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Ishida, N.; Higuchi, T.; Miyazu, T.; Tamura, S.; Tani, S.; Yamade, M.; Iwaizumi, M.; Hamaya, Y.; Osawa, S.; Furuta, T.; et al. C-reactive protein is superior to fecal biomarkers for evaluating colon-wide active inflammation in ulcerative colitis. Sci. Rep. 2021, 11, 12431. [Google Scholar] [CrossRef]
- Van der Have, M.; van der Aalst, K.S.; Kaptein, A.A.; Leenders, M.; Siersema, P.D.; Oldenburg, B.; Fidder, H.H. Determinants of health-related quality of life in Crohn’s disease: A systematic review and meta-analysis. J. Crohns Colitis 2014, 8, 93–106. [Google Scholar] [CrossRef]
- Lactobact Forte, HLH-Biopharma. Available online: https://www.hlh-biopharma.de/products/lactobact-r-forte (accessed on 11 February 2023).
- Sachar, D.B. Role of biomarkers in the study and management of inflammatory bowel disease: A “nonsystematic” review. Inflamm. Bowel Dis. 2014, 20, 2511–2518. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Im, Y.N.; Youm, J.Y.; Lee, H.K.; Im, S.Y. l-Glutamine Attenuates DSS-Induced Colitis via Induction of MAPK Phosphatase-1. Nutrients 2018, 10, 288. [Google Scholar] [CrossRef]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland; Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 10 February 2023).
- Irvine, E.J.; Zhou, Q.; Thompson, A.K. The Short Inflammatory Bowel Disease Questionnaire: A quality of life instrument for community physicians managing inflammatory bowel disease. CCRPT Investigators. Canadian Crohn’s Relapse Prevention Trial. Am. J. Gastroenterol. 1996, 91, 1571–1578. [Google Scholar]
- Han, S.W.; Gregory, W.; Nylander, D.; Tanner, A.; Trewby, P.; Barton, R.; Welfare, M. The SIBDQ: Further validation in ulcerative colitis patients. Am. J. Gastroenterol. 2000, 95, 145–151. [Google Scholar] [CrossRef]
- Jowett, S.L.; Seal, C.J.; Barton, J.R.; Welfare, M.R. The short inflammatory bowel disease questionnaire is reliable and responsive to clinically important change in ulcerative colitis. Am. J. Gastroenterol. 2001, 96, 2921–2928. [Google Scholar] [CrossRef]
- Williet, N.; Sarter, H.; Gower-Rousseau, C.; Adrianjafy, C.; Olympie, A.; Buisson, A.; Beaugerie, L.; Peyrin-Biroulet, L. Patient-reported Outcomes in a French Nationwide Survey of Inflammatory Bowel Disease Patients. J. Crohns Colitis 2017, 11, 165–174. [Google Scholar] [CrossRef]
- Daniel, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
Parameter | UC-NP | UC-P | p 1,2 |
---|---|---|---|
N | 49 | 44 | 0.322 1 |
Age, M, SD | 44.20 ± 14.86 | 45.53 ± 12.49 | 0.647 2 |
Range of age (min–max) | 58 (18–76) | 59 (20–79) | - |
Female, N (%) | 22 (45.1) | 27 (61.4) | 0.731 1 |
Urban area, N (%) | 31(63.2) | 21 (44.7) | 0.430 1 |
BMI, M, SD | 25.45 ± 2.54 | 26.28 ± 2.56 | 0.122 2 |
Smoker, N (%) | 14 (28.6) | 12 (27.3) | 0.319 1 |
Alcohol user, N (%) | 9 (18.4) | 5 (11.4) | 0.220 1 |
FH IBD, N (%) | 17 (34.7) | 8 (18.2) | 0.928 1 |
CPR < 10 (mg/L), N (%) | 30 (61) | 22 (50.0) | 0.854 1 |
Parameters | UC-NP | UC-P | p 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
95% CE Mean ± 2 × SD | Median | Min. | Max. | 95% CE Mean ± 2 × SD | Median | Min. | Max. | ||
Baseline | |||||||||
BMI (kg/m2) | 25.45 ± 5.08 | 25.50 | 19.36 | 30.62 | 26.28 ± 5.12 | 26.10 | 19.32 | 31.74 | 0.122 |
SMI (kg/m2) | 7.15 ± 1.74 | 7.62 | 6.03 | 8.81 | 7.50 ± 1.76 | 9.50 | 6.04 | 9.98 | 0.059 |
FFM (kg) | 54.08 ± 14.28 | 51.60 | 45.10 | 74.20 | 54.65 ± 17.08 | 51.60 | 45.10 | 74.20 | 0.730 |
MM (kg) | 48.90 ± 16.64 | 46.30 | 42.10 | 70.50 | 50.16 ± 18.74 | 46.30 | 42.10 | 70.50 | 0.494 |
SMM (kg) | 28.73 ± 10.06 | 29.20 | 21.20 | 39.80 | 28.85 ± 11.56 | 29.60 | 21.20 | 39.80 | 0.912 |
FM (%) | 32.40 ± 9.34 | 32.10 | 27.90 | 43.50 | 30.92 ± 8.44 | 27.90 | 27.90 | 48.70 | 0.116 |
PA (0) | 5.44 ± 0.54 | 5.30 | 5.00 | 6.10 | 5.40 ± 0.52 | 5.30 | 4.90 | 5.90 | 0.433 |
ECW/TBW (%) | 45.09 ± 6.30 | 43.00 * | 42.90 | 55.50 | 45.17 ± 5.88 | 43.30 | 43.00 | 55.50 | 0.084 |
Follow-up | |||||||||
BMI (kg/m2) | 24.39 ± 4.76 | 23.68 | 19.99 | 30.30 | 24.78 ± 4.34 | 24.55 | 18.11 | 29.97 | 0.421 |
SMI (kg/m2) | 7.32 ± 1.21 | 6.98 | 5.97 | 9.98 | 8.37 ± 1.28 | 8.93 | 6.04 | 9.96 | 0.001 * |
FFM (kg) | 55.52 ± 17.9 | 51.60 | 44.00 | 74.20 | 58.76 ± 21.34 | 55.80 | 45.10 | 76.00 | 0.113 |
MM (kg) | 58.00 ± 13.7 | 55.90 | 48.70 | 74.20 | 60.82 ± 15.50 | 57.00 | 48.70 | 74.20 | 0.043 * |
SMM (kg) | 34.51 ± 11.02 | 34.60 | 22.50 | 40.60 | 33.43 ± 12.12 | 32.60 | 20.80 | 40.40 | 0.371 |
FM (%) | 29.94 ± 9.82 | 28.20 | 25.20 | 43.30 | 28.51 ± 9.38 | 25.20 | 25.20 | 45.20 | 0.156 |
PA (0) | 5.59 ± 0.56 | 5.50 | 5.10 | 6.50 | 5.55 ± 0.48 | 5.50 | 5.00 | 6.00 | 0.529 |
ECW/TBW (%) | 44.71 ± 5.84 | 42.90 | 42.30 | 52.70 | 43.50 ± 3.78 | 42.40 | 42.40 | 48.60 | 0.022 * |
Parameters | UC-NP | UC-P | ||||
---|---|---|---|---|---|---|
Statistic | z-Score | p 1 Value | Statistic | z-Score | p 1 Value | |
BMI (kg/m2)—B vs. F | 959.00 | 3.805 | <0.001 * | 816.00 | 4.995 | <0.001 * |
SMI (kg/m2)—B vs. F | 517.5 | −0.251 | 0.806 | 214.00 | −3.279 | 0.001 * |
FFM (kg)—B vs. F | 229.5 | −1.841 | 0.067 | 0.00 | −4.197 | <0.001 * |
MM (kg)—B vs. F | 6.00 | −5.969 | <0.001 * | 1.00 | −5.765 | <0.001 * |
SMM (kg)—B vs. F | 0.00 | −6.093 | <0.001 * | 22.00 | −5.37 | <0.001 * |
FM (%)– B vs. F | 1225.00 | 6.023 | <0.001 * | 990.00 | 5.777 | <0.001 * |
PA (0)—B vs. F | 32.00 | −5.774 | <0.001 * | 114.00 | −4.446 | <0.001 * |
ECW/TBW (%)—B vs. F | 519.00 | 0.280 | 0.783 | 335.00 | −2.423 | 0.015 * |
References Values/ Time Moments | UC-NP (N = 49) | UC-P (N = 44) | ||||
---|---|---|---|---|---|---|
N | % | N | % | p 1 | ||
BMI (kg/m2) | ||||||
Normal weight | B | 21 | 42.8 | 14 | 31.8 | 0.001 * |
F | 31 | 63.3 | 29 | 65.9 | 0.001 * | |
Overweight | B | 26 | 53.1 | 27 | 61.4 | 0.001 * |
F | 17 | 34.7 | 15 | 31.8 | 0.001 * | |
Obese | B | 2 | 4.1 | 3 | 6.8 | 0.510 |
F | 1 | 2.04 | - | - | ||
SMI (kg/m2) | ||||||
Low | B | 12 | 24.5 | 6 | 13.6 | 0.157 |
F | 16 | 32.7 | 2 | 4.5 | 0.163 | |
Normal | B | 37 | 75.5 | 38 | 86.4 | 0.908 |
F | 33 | 67.3 | 42 | 95.5 | 0.001 * | |
FM (%) | ||||||
Normal | B | 28 | 57.1 | 28 | 63.6 | 0.101 |
F | 32 | 65.3 | 33 | 75.0 | 0.010 * | |
Over | B | 21 | 42.9 | 16 | 36.4 | 0.386 |
F | 17 | 38.7 | 11 | 25.0 | 0.001 * | |
PA (0) | ||||||
Under | B | 47 | 95.9 | 44 | 100 | 0.346 |
F | 14 | 28.6 | 8 | 18.2 | 0.002 * | |
Normal | B | 2 | 4.1 | - | - | 0.749 |
F | 35 | 71.4 | 36 | 81.8 | 0.001 * | |
CRP (mg/L) | ||||||
<10 mg/L | B | 30 | 61.2 | 22 | 50.0 | 0.116 |
F | 37 | 75.5 | 40 | 90.9 | 1.000 | |
>10 mg/L | B | 19 | 38.8 | 22 | 50.0 | 0.001 * |
F | 12 | 24.5 | 4 | 81.8 | 0.001 * |
SIBDQ Domains | UC-NP (N = 49) | UC-P (N = 44) | |||
---|---|---|---|---|---|
95% CE Mean ± 2 × SD | 95% CE Mean ± 2 × SD | t | p 1 | ||
Bowel symptoms | B | 13.11 ± 3.94 | 13.39 ± 2.78 | 0.625 | 0.431 |
F | 15.38 ± 4.74 | 17.05 ± 3.44 | 14.771 | <0.001 * | |
Systemic symptoms | B | 9.24 ± 2.88 | 9.33 ± 2.80 | 0.086 | 0.770 |
F | 10.03 ± 3.04 | 12.14 ± 6.80 | 15.498 | <0.001 * | |
Emotional function | B | 13.50 ± 2.94 | 14.03 ± 3.34 | 2.574 | 0.112 |
F | 15.62 ± 2.62 | 18.85 ± 2.62 | 104.076 | <0.001 * | |
Social function | B | 9.08 ± 2.98 | 9.83 ± 2.98 | 3.738 | 0.056 |
F | 10.02 ± 3.68 | 12.43 ± 3.68 | 36.330 | <0.001 * | |
Total score | B | 45.21 ± 5.64 | 45.58 ± 5.64 | 3.524 | 0.061 |
F | 51.05 ± 6.54 | 60.47 ± 6.54 | 155.871 | <0.001 * |
Parameters | UC-NP | UC-P | ||||
---|---|---|---|---|---|---|
Statistic | z-Score | p 1 Value | Statistic | z-Score | p 1 Value | |
Bowel symptoms—B vs. F | 117.00 | −4.730 | <0.001 * | 17.00 | −5.578 | <0.001 * |
Systemic symptoms—B vs. F | 0.00 | −3.516 | <0.001 * | 0.00 | −3.920 | <0.001 * |
Emotional function—B vs. F | 0.00 | −6.093 | <0.001 * | 1.00 | −5.765 | <0.001 * |
Social function—B vs. F | 330.5 | −2.641 | 0.008 * | 109.5 | −4.389 | <0.001 * |
Total score—B vs. F | 3.00 | −6.063 | <0.001 * | 0.00 | −5.777 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavel, F.M.; Bungau, S.G.; Tit, D.M.; Ghitea, T.C.; Marin, R.C.; Radu, A.-F.; Moleriu, R.D.; Ilias, T.; Bustea, C.; Vesa, C.M. Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients’ Body Composition and Quality of Life. Nutrients 2023, 15, 5049. https://doi.org/10.3390/nu15245049
Pavel FM, Bungau SG, Tit DM, Ghitea TC, Marin RC, Radu A-F, Moleriu RD, Ilias T, Bustea C, Vesa CM. Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients’ Body Composition and Quality of Life. Nutrients. 2023; 15(24):5049. https://doi.org/10.3390/nu15245049
Chicago/Turabian StylePavel, Flavia Maria, Simona Gabriela Bungau, Delia Mirela Tit, Timea Claudia Ghitea, Ruxandra Cristina Marin, Andrei-Flavius Radu, Radu Dumitru Moleriu, Tiberia Ilias, Cristian Bustea, and Cosmin Mihai Vesa. 2023. "Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients’ Body Composition and Quality of Life" Nutrients 15, no. 24: 5049. https://doi.org/10.3390/nu15245049
APA StylePavel, F. M., Bungau, S. G., Tit, D. M., Ghitea, T. C., Marin, R. C., Radu, A. -F., Moleriu, R. D., Ilias, T., Bustea, C., & Vesa, C. M. (2023). Clinical Implications of Dietary Probiotic Supplement (Associated with L-Glutamine and Biotin) in Ulcerative Colitis Patients’ Body Composition and Quality of Life. Nutrients, 15(24), 5049. https://doi.org/10.3390/nu15245049