Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis and Analysis
3. Results
3.1. Literature Search
3.2. Birth Weight Outcomes
3.3. Standardised Birth Weight Outcomes
3.4. Birth Length and Head Circumference
3.5. Pregnancy Outcomes
3.6. Subgroup Analyses and Small-Study Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Scientific Advisory Committee on Nutrition. SACN Statement on Iodine and Health—2014. Available online: https://www.gov.uk/government/publications/sacn-statement-on-iodine-and-health-2014 (accessed on 8 January 2023).
- Zimmermann, M.B. The importance of adequate iodine during pregnancy and infancy. World Rev. Nutr. Diet. 2016, 115, 118–124. [Google Scholar]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Zimmermann, M.B. Iodine deficiency in pregnancy and the effects of maternal iodine supplementation on the offspring: A review. Am. J. Clin. Nutr. 2009, 89, 668S–672S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, M.; Takkouche, B.; Egli, I.; Benoist, B.d. The WHO Global Database on iodine deficiency disorders: The importance of monitoring iodine nutrition. Scand. J. Nutr. 2003, 47, 162–166. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Gizak, M.é.; Abbott, K.; Andersson, M.; Lazarus, J.H. Iodine deficiency in pregnant women in Europe. Lancet Diabetes Endocrinol. 2015, 3, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.; Irdam, D.; Bulceag, I.; Barber, T.; Draper, A. The Food and You Survey Wave 5 Secondary Analysis: The Current Food Landscape across England, Wales and Northern Ireland. 2019. Available online: https://www.food.gov.uk/sites/default/files/media/document/food-and-you-wave-5-secondary-analysis-current-food-landscape.pdf (accessed on 8 January 2023).
- Public Health England. NDNS: Results from Years 9 to 11 (2016 to 2017 and 2018 to 2019). Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 24 March 2022).
- Nazarpour, S.; Ramezani Tehrani, F.; Behboudi-Gandevani, S.; Bidhendi Yarandi, R.; Azizi, F. Maternal Urinary Iodine Concentration and Pregnancy Outcomes in Euthyroid Pregnant Women: A Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2020, 197, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, P.; Shab-Bidar, S.; Pearce, E.N.; Shariat, M. Do maternal urinary iodine concentration or thyroid hormones within the normal range during pregnancy affect growth parameters at birth? A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.H.; Caspersen, I.H.; Sengpiel, V.; Jacobsson, B.; Meltzer, H.M.; Magnus, P.; Alexander, J.; Brantsaeter, A.L. Insufficient maternal iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian Mother, Father and Child Cohort Study. BMC Med. 2020, 18, 211. [Google Scholar] [CrossRef] [PubMed]
- Snart, C.J.P.; Keeble, C.; Taylor, E.; Cade, J.E.; Stewart, P.M.; Zimmermann, M.; Reid, S.; Threapleton, D.E.; Poston, L.; Myers, J.E.; et al. Maternal iodine status and associations with birth outcomes in three major cities in the United Kingdom. Nutrients 2019, 11, 441. [Google Scholar] [CrossRef] [Green Version]
- Snart, C.J.P.; Threapleton, D.E.; Keeble, C.; Taylor, E.; Waiblinger, D.; Reid, S.; Alwan, N.A.; Mason, D.; Azad, R.; Cade, J.E.; et al. Maternal iodine status, intrauterine growth, birth outcomes and congenital anomalies in a UK birth cohort. BMC Med. 2020, 18, 132. [Google Scholar] [CrossRef]
- Cui, X.; Yu, H.; Wang, Z.; Wang, H.; Shi, Z.; Jin, W.; Song, Q.; Guo, C.; Tang, H.; Zang, J. No Association Was Found Between Mild Iodine Deficiency During Pregnancy and Pregnancy Outcomes: A Follow-up Study Based on a Birth Registry. Biol. Trace Elem. Res. 2022, 200, 4267–4277. [Google Scholar] [CrossRef]
- Clark, J.; Glasziou, P.; Del Mar, C.; Bannach-Brown, A.; Stehlik, P.; Scott, A.M. A full systematic review was completed in 2 weeks using automation tools: A case study. J. Clin. Epidemiol. 2020, 121, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Waiblinger, D.; Snart, C.J.P.; Taylor, E.; Keeble, C.; Ashraf, S.; Bi, S.; Ajjan, R.; Azad, R.; Hancock, N.; et al. Prenatal and Postpartum Maternal Iodide Intake from Diet and Supplements, Urinary Iodine and Thyroid Hormone Concentrations in a Region of the United Kingdom with Mild-to-Moderate Iodine Deficiency. Nutrients 2021, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 21 January 2014).
- Greenland, S.; Longnecker, M.P. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am. J. Epidemiol. 1992, 135, 1301–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsini, N.; Bellocco, R.; Greenland, S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006, 6, 40–57. [Google Scholar] [CrossRef] [Green Version]
- Orsini, N.; Li, R.; Wolk, A.; Khudyakov, P.; Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software. Am. J. Epidemiol. 2012, 175, 66–73. [Google Scholar] [CrossRef] [Green Version]
- White, I.R. Multivariate random-effects meta-analysis. Stata J. 2009, 9, 40–56. [Google Scholar] [CrossRef] [Green Version]
- White, I.R. Multivariate random-effects meta-regression: Updates to mvmeta. Stata J. 2011, 11, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E., Jr.; Lee, K.L.; Pollock, B.G. Regression models in clinical studies: Determining relationships between predictors and response. J. Natl. Cancer Inst. 1988, 80, 1198–1202. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Borenstein, M.; Higgins, J.P.T.; Hedges, L.V.; Rothstein, H.R. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res. Synth. Methods 2017, 8, 5–18. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
- Bienertova-Vasku, J.; Grulichova, M.; Mikes, O.; Zlamal, F.; Prusa, T.; Pohorala, A.; Andryskova, L.; Pikhart, H. Estimated dietary iodine intake as a predictor of placental size: Evidence from the ELSPAC study. Nutr. Metab. 2018, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Charoenratana, C.; Leelapat, P.; Traisrisilp, K.; Tongsong, T. Maternal iodine insufficiency and adverse pregnancy outcomes. Matern. Child Nutr. 2016, 12, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Q.; Cui, W.; Wang, X.; Gao, Q.; Zhong, C.; Sun, G.; Chen, X.; Xiong, G.; Yang, X.; et al. Maternal Iodine Insufficiency and Excess Are Associated with Adverse Effects on Fetal Growth: A Prospective Cohort Study in Wuhan, China. J. Nutr. 2018, 148, 1814–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, J.C.; Milliez, J. Reproductive failure in women living in iodine deficient areas of West Africa. Br. J. Obstet. Gynaecol. 2000, 107, 631–636. [Google Scholar] [CrossRef]
- Dong, J.; Liu, S.; Wang, L.; Zhou, X.; Zhou, Q.; Liu, C.; Zhu, J.; Yuan, W.; Xu, W.Y.; Deng, J. Iodine monitoring models contribute to avoid adverse birth outcomes related more than adequate iodine intake. BMC Pregnancy Childbirth 2021, 21, 454. [Google Scholar] [CrossRef] [PubMed]
- Farebrother, J.; Dalrymple, K.V.; White, S.L.; Gill, C.; Brockbank, A.; Lazarus, J.H.; Godfrey, K.M.; Poston, L.; Flynn, A.C. Iodine status of pregnant women with obesity from inner city populations in the United Kingdom. Eur. J. Clin. Nutr. 2021, 75, 801–808. [Google Scholar] [CrossRef]
- Ghassabian, A.; Steenweg-de Graaff, J.; Peeters, R.P.; Ross, H.A.; Jaddoe, V.W.; Hofman, A.; Verhulst, F.C.; White, T.; Tiemeier, H. Maternal urinary iodine concentration in pregnancy and children’s cognition: Results from a population-based birth cohort in an iodine-sufficient area. BMJ Open 2014, 4, e005520. [Google Scholar] [CrossRef] [Green Version]
- Hynes, L.K.; Otahal, P.; Burgess, R.J.; Oddy, H.W.; Hay, I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory Processing Speed and Working Memory. Nutrients 2017, 9, 1354. [Google Scholar] [CrossRef] [Green Version]
- Kianpour, M.; Aminorroaya, A.; Amini, M.; Feizi, A.; Aminorroaya Yamini, S.; Janghorbani, M. Thyroid-stimulating hormone (TSH) serum levels and risk of spontaneous abortion: A prospective population-based cohort study. Clin. Endocrinol. 2019, 91, 163–169. [Google Scholar] [CrossRef]
- Leon, G.; Murcia, M.; Rebagliato, M.; Alvarez-Pedrerol, M.; Castilla, A.M.; Basterrechea, M.; Iniguez, C.; Fernandez-Somoano, A.; Blarduni, E.; Foradada, C.M.; et al. Maternal thyroid dysfunction during gestation, preterm delivery, and birthweight. The infancia y medio ambiente cohort, Spain. Paediatr. Perinat. Epidemiol. 2015, 29, 113–122. [Google Scholar] [CrossRef]
- Nazarpour, S.; Ramezani Tehrani, F.; Amiri, M.; Simbar, M.; Tohidi, M.; Bidhendi Yarandi, R.; Azizi, F. Maternal Urinary Iodine Concentration and Pregnancy Outcomes: Tehran Thyroid and Pregnancy Study. Biol. Trace Elem. Res. 2020, 194, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Ovadia, Y.S.; Zangen, S.; Rosen, S.R.; Gefel, D.; Almashanu, S.; Benbassat, C.; Fytlovich, S.; Aharoni, D.; Anteby, E.Y.; Shenhav, S. Maternal iodine deficiency: A newborns’ overweight risk factor? A prospective study. Arch. Gynecol. Obstet. 2022, 305, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Rydbeck, F.; Rahman, A.; Grander, M.; Ekstrom, E.C.; Vahter, M.; Kippler, M. Maternal urinary iodine concentration up to 1.0 mg/L is positively associated with birth weight, length, and head circumference of male offspring. J. Nutr. 2014, 144, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Torlinska, B.; Bath, S.C.; Janjua, A.; Boelaert, K.; Chan, S.Y. Iodine status during pregnancy in a region of mild-to-moderate iodine deficiency is not associated with adverse obstetric outcomes; Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Sun, H.; Li, C.; Li, Y.; Peng, S.; Fan, C.; Teng, W.; Shan, Z. Effect of Iodine Nutrition on Pregnancy Outcomes in an Iodine-Sufficient Area in China. Biol. Trace Elem. Res. 2018, 182, 231–237. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Liu, H.; Zheng, H.; Li, X.; Zhu, L.; Wang, Z. Associations of maternal iodine status and thyroid function with adverse pregnancy outcomes in Henan Province of China. J. Trace Elem. Med. Biol. 2018, 47, 104–110. [Google Scholar] [CrossRef]
- Yoganathan, T.; Hettiarachchi, M.; Arasaratnam, V.; Liyanage, C. Maternal iodine status and the thyroid function of pregnant mothers and their neonates in Jaffna District of Sri Lanka. Indian J. Endocrinol. Metab. 2015, 19, 817–823. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, N.; Sun, J.; Zhao, X.; Du, J.; Nan, M.; Zhang, Q.L.; Ji, L. Association Between Iodine Nutritional Status and Adverse Pregnancy Outcomes in Beijing, China: A Single-Center Cohort Study. Biol. Trace Elem. Res. 2022, 200, 2620–2628. [Google Scholar] [CrossRef]
- Lean, M.I.; Lean, M.E.; Yajnik, C.S.; Bhat, D.S.; Joshi, S.M.; Raut, D.A.; Lubree, H.G.; Combet, E. Iodine status during pregnancy in India and related neonatal and infant outcomes. Public Health Nutr. 2014, 17, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Di, H.-K.; Gan, Y.; Lu, K.; Wang, C.; Zhu, Y.; Meng, X.; Xia, W.-Q.; Xu, M.-Z.; Feng, J.; Tian, Q.-F.; et al. Maternal smoking status during pregnancy and low birth weight in offspring: Systematic review and meta-analysis of 55 cohort studies published from 1986 to 2020. World J. Pediatr. 2022, 18, 176–185. [Google Scholar] [CrossRef]
- Rumrich, I.; Vähäkangas, K.; Viluksela, M.; Gissler, M.; de Ruyter, H.; Hänninen, O. Effects of maternal smoking on body size and proportions at birth: A register-based cohort study of 1.4 million births. BMJ Open 2020, 10, e033465. [Google Scholar] [CrossRef] [PubMed]
- Wojtyła, C.; Wojtyła-Buciora, P.; Ciebiera, M.; Orzechowski, S.; Wojtyła, A. The effect of active and passive maternal smoking before and during pregnancy on neonatal weight at birth. Arch. Med. Sci. 2021, 17, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.; Bakker, R.; Irving, H.; Jaddoe, V.W.V.; Malini, S.; Rehm, J. Dose–response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA)—A systematic review and meta-analyses. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1411–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamluk, L.; Edwards, H.B.; Savović, J.; Leach, V.; Jones, T.; Moore, T.H.M.; Ijaz, S.; Lewis, S.J.; Donovan, J.L.; Lawlor, D.; et al. Low alcohol consumption and pregnancy and childhood outcomes: Time to change guidelines indicating apparently ‘safe’ levels of alcohol during pregnancy? A systematic review and meta-analyses. BMJ Open 2017, 7, e015410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boylan, S.; Cade, J.E.; Dolby, V.A.; Greenwood, D.C.; Hay, A.W.M.; Kirk, S.F.L.; Shires, S.; Simpson, N.; Thomas, J.D.; Walker, J.; et al. Maternal caffeine intake during pregnancy and risk of fetal growth restriction: A large prospective observational study. BMJ 2008, 337, a2332. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, D.C.; Thatcher, N.J.; Ye, J.; Garrard, L.; Keogh, G.; King, L.G.; Cade, J.E. Caffeine intake during pregnancy and adverse birth outcomes: A systematic review and dose–response meta-analysis. Eur. J. Epidemiol. 2014, 29, 725–734. [Google Scholar] [CrossRef]
- Chen, L.-W.; Wu, Y.; Neelakantan, N.; Chong, M.F.-F.; Pan, A.; van Dam, R.M. Maternal caffeine intake during pregnancy is associated with risk of low birth weight: A systematic review and dose-response meta-analysis. BMC Med. 2014, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Purdue-Smithe, A.C.; Mannisto, T.; Bell, G.A.; Mumford, S.L.; Liu, A.; Kannan, K.; Kim, U.J.; Suvanto, E.; Surcel, H.M.; Gissler, M.; et al. The joint role of thyroid function and iodine status on risk of preterm birth and small for gestational age: A population-based nested case-control study of Finnish women. Nutrients 2019, 11, 2573. [Google Scholar] [CrossRef] [Green Version]
- Melero, V.; Runkle, I.; de la Torre, N.G.; De Miguel, P.; Valerio, J.; Del Valle, L.; Barabash, A.; Sanabria, C.; Moraga, I.; Familiar, C.; et al. The consumption of food-based iodine in the immediate pre-pregnancy period in madrid is insufficient. San carlos and pregnancy cohort study. Nutrients 2021, 13, 4458. [Google Scholar] [CrossRef]
- Mills, J.L.; Mehnaz, A.; Louis, G.M.B.; Kannan, K.; Weck, J.; Wan, Y.; Maisog, J.; Giannakou, A.; Sundaram, R. Pregnancy loss and iodine status: The LIFE prospective cohort study. Nutrients 2019, 11, 534. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, P.; Shariat, M.; Azizi, F. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: A systematic review and meta-analysis of trials over the past 3 decades. Eur. J. Endocrinol. 2021, 184, 91–106. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Cohort | Country | Study Size | Trimester | Mean Gestational Age (Weeks) | Median UIC (μg/L) | Exposure Measures | Outcome Measures |
---|---|---|---|---|---|---|---|---|
Abel, 2020 [11] | MoBa | Norway | 2795 | 2 | 18.5 | 69 | UIC, dietary intake | birth weight, birth weight centile, SGA, LGA, preterm |
Bienertová-Vašků, 2018 [27] | ELSPEC | Czech Republic | 4711 | 3 | 32 | 151 | dietary intake | birth weight, birth length, |
Charoenratana, 2015 [28] | Chiang Mai University cohort | Thailand | 399 | 1–3 | 19 | 151 | UIC | birth weight, low birth weight, SGA, preterm |
Chen, 2018 [29] | Tongji Maternal and Child Health Cohort | China | 2087 | 1–2 | 13.8 | 178 | I:Cr | birth weight, birth length, head circumference |
Cui, 2022 [14] | Shanghai birth registry | China | 7435 | 1–3 | 18 | 138 | UIC | birth weight, low birth weight, macrosomia, birth length, preterm |
Dillon, 2000 [30] | Casamance and Senegal Oriental cohorts | Senegal | 462 | 1–3 | 19 | 43 | UIC | miscarriage, stillbirth |
Dong, 2021 [31] | Xiangyang and Pingdingshan cohorts | China | 870 | 1–3 | 18 | 172 | UIC | birth weight, macrosomia, birth length, head circumference, |
Farebrother, 2020 [32] | UPBEAT | UK | 954 | 2 | 17 | 147 | I:Cr | birth weight, low birth weight, SGA, |
Ghassabian, 2014 [33] | Generation R | The Netherlands | 1525 | 1–2 | 13.3 | 119 | I:Cr | birth weight |
Hynes, 2017 [34] | Gestational Iodine Cohort | Australia | 266 | 2 | 23.7 | 83 | UIC | birth weight, low birth weight, preterm |
Kianpour, 2019 [35] | Isfahan University study | Iran | 418 | 1 | 9.7 | 172 | UIC | miscarriage |
Lean, 2013 [45] | Maharashtra study | India | 234 | 2,3 | 17, 34 | 203, 211 | UIC | birth weight, birth length |
Leon, 2015 [36] | INMA | Spain | 2170 | 1–2 | 13.4 | 128 | UIC | birth weight, SGA, LGA, preterm |
Nazarpour, 2020 [37] | Tehran Thyroid & Pregnancy Study | Iran | 1054 | 1 | 11 | 142 | UIC | birth weight, low birth weight, birth length, head circumference, preterm |
Ovadia, 2022 [38] | Ashkelon study | Israel | 134 | 3 | 31 | 61 | dietary intake | birth weight, low birth weight, macrosomia, birth weight centile, SGA, LGA, birth length, head circumference, stillbirth, preterm |
Rydbeck, 2014 [39] | MINIMat | Bangladesh | 1617 | 1 | 8 | 300 | UIC | birth weight, birth length, head circumference |
Snart, 2019 [12] | SCOPE | UK | 541 | 2 | 15, 20 | 134 | UIC, I:Cr | birth weight, birth weight centile, SGA, birth length, head circumference, preterm |
Snart, 2020 [13] | BiB | UK | 6971 | 2 | 26 | 76 | UIC, I:Cr | birth weight, birth weight centile, SGA, head circumference, preterm |
Threapleton, 2021 [16] | Hiba | UK | 246 | 1, 2, 3 | 14, 26, 36 | 122 | UIC, I:Cr, dietary intake, total intake | birth weight, low birth weight, birth weight centile, SGA, preterm |
Torlinska, 2018 [40] | ALSPAC | UK | 1954 | 1–2 | 13 | 95 | I:Cr | birth weight, birth weight centile, SGA, LGA, preterm |
Xiao, 2018 [41] | Liaoning Province | China | 1569 | 1 | 7 | 160 | UIC | birth weight, low birth weight, macrosomia, miscarriage, preterm |
Yang, 2018 [42] | Henan Province cohort | China | 2347 | 2 | 27.1 | 204 | UIC | birth weight, low birth weight, macrosomia, SGA, birth length, head circumference, preterm |
Yoganathan, 2015 [43] | University of Jaffna study | Sri Lanka | 477 | 3 | 39.3 | 140 | UIC | preterm |
Zhang, 2022 [44] | Peking University International Hospital | China | 726 | 1 | 6 | 159 | UIC | birth weight, low birth weight, macrosomia, SGA, birth length, preterm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenwood, D.C.; Webster, J.; Keeble, C.; Taylor, E.; Hardie, L.J. Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis. Nutrients 2023, 15, 387. https://doi.org/10.3390/nu15020387
Greenwood DC, Webster J, Keeble C, Taylor E, Hardie LJ. Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis. Nutrients. 2023; 15(2):387. https://doi.org/10.3390/nu15020387
Chicago/Turabian StyleGreenwood, Darren C., James Webster, Claire Keeble, Elizabeth Taylor, and Laura J. Hardie. 2023. "Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis" Nutrients 15, no. 2: 387. https://doi.org/10.3390/nu15020387
APA StyleGreenwood, D. C., Webster, J., Keeble, C., Taylor, E., & Hardie, L. J. (2023). Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis. Nutrients, 15(2), 387. https://doi.org/10.3390/nu15020387