Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Handgrip Strength Measurement
2.3. Dietary Assessment
2.4. Measurement of Covariates
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikawa, T.; Ulla, A.; Sakakibara, I. Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021, 26, 4887. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Falcieri, E. Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr. Res. 2020, 74, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Sun, X.; Lu, L.; Shan, L. Prevalence of sarcopenia in older Chinese adults: A systematic review and meta-analysis. BMJ Open 2021, 11, e041879. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, W.Y.; Ho, M.; Chau, P.H. The Prevalence of Sarcopenia in Chinese Older Adults: Meta-Analysis and Meta-Regression. Nutrients 2021, 13, 1441. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ Clin. Res. Ed. 2018, 361, k1651. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.; Granic, A.; Sayer, A.A. Nutrition and Muscle Strength, As the Key Component of Sarcopenia: An Overview of Current Evidence. Nutrients 2019, 11, 2942. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Li, X.; Zhang, Q.; Liu, L.; Meng, G.; Gu, Y.; Zhang, S.; Sun, S.; Zhou, M.; Jia, Q.; et al. Association between soft drink consumption and handgrip strength in middle aged and older adults: The TCLSIH cohort study. Int. J. Food Sci. Nutr. 2020, 71, 856–862. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Q.; Liu, L.; Meng, G.; Gu, Y.; Yao, Z.; Zhang, S.; Wang, Y.; Zhang, T.; Wang, X.; et al. Saltwater fish but not freshwater fish consumption is positively related to handgrip strength: The TCLSIH Cohort Study. Nutr. Res. 2021, 90, 46–54. [Google Scholar] [CrossRef]
- Hanach, N.I.; McCullough, F.; Avery, A. The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Haaf, D.S.M.; Nuijten, M.A.H.; Maessen, M.F.H.; Horstman, A.M.H.; Eijsvogels, T.M.H.; Hopman, M.T.E. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Hwang, J.K. Flavonoids: Nutraceutical potential for counteracting muscle atrophy. Food Sci. Biotechnol. 2020, 29, 1619–1640. [Google Scholar] [CrossRef]
- Marthandam Asokan, S.; Hung, T.H.; Chiang, W.D.; Lin, W.T. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles. J. Med. Food 2018, 21, 225–232. [Google Scholar] [CrossRef]
- Ma, W.J.; Li, H.; Zhang, W.; Zhai, J.; Li, J.; Liu, H.; Guo, X.F.; Li, D. Effect of n-3 polyunsaturated fatty acid supplementation on muscle mass and function with aging: A meta-analysis of randomized controlled trials(✰). Prostaglandins Leukot. Essent. Fat. Acids 2021, 165, 102249. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kohno, S.; Yama, T.; Ochi, A.; Suto, T.; Hirasaka, K.; Ohno, A.; Teshima-Kondo, S.; Okumura, Y.; Oarada, M.; et al. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b. Int. J. Endocrinol. 2013, 2013, 907565. [Google Scholar] [CrossRef] [Green Version]
- Tsou, M.J.; Kao, F.J.; Lu, H.C.; Kao, H.C.; Chiang, W.D. Purification and identification of lipolysis-stimulating peptides derived from enzymatic hydrolysis of soy protein. Food Chem. 2013, 138, 1454–1460. [Google Scholar] [CrossRef]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef]
- Orsatti, F.L.; Maesta, N.; de Oliveira, E.P.; Nahas Neto, J.; Burini, R.C.; Nunes, P.R.P.; Souza, A.P.; Martins, F.M.; Nahas, E.P. Adding Soy Protein to Milk Enhances the Effect of Resistance Training on Muscle Strength in Postmenopausal Women. J. Diet. Suppl. 2018, 15, 140–152. [Google Scholar] [CrossRef]
- Li, C.; Meng, H.; Wu, S.; Fang, A.; Liao, G.; Tan, X.; Chen, P.; Wang, X.; Chen, S.; Zhu, H. Daily Supplementation With Whey, Soy, or Whey-Soy Blended Protein for 6 Months Maintained Lean Muscle Mass and Physical Performance in Older Adults With Low Lean Mass. J. Acad. Nutr. Diet. 2021, 121, 1035–1048.e6. [Google Scholar] [CrossRef] [PubMed]
- Munguia, L.; Ortiz, M.; Gonzalez, C.; Portilla, A.; Meaney, E.; Villarreal, F.; Najera, N.; Ceballos, G. Beneficial Effects of Flavonoids on Skeletal Muscle Health: A Systematic Review and Meta-Analysis. J. Med. Food 2022, 25, 465–486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gu, Y.; Bian, S.; Lu, Z.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Wu, H.; Wang, Y.; et al. Soft drink consumption and risk of nonalcoholic fatty liver disease: Results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Am. J. Clin. Nutr. 2021, 113, 1265–1274. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, S.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Wu, H.; Gu, Y.; Wang, Y.; Zhang, T.; et al. Ultra-processed food consumption and the risk of non-alcoholic fatty liver disease in the Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study. Int. J. Epidemiol. 2022, 51, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, M.; Zhang, Q.; Liu, L.; Meng, G.; Bao, X.; Gu, Y.; Zhang, S.; Sun, S.; Wang, X.; et al. Reference values for handgrip strength: Data from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Age Ageing 2020, 49, 233–238. [Google Scholar] [CrossRef]
- Zhang, S.; Kumari, S.; Gu, Y.; Wu, X.; Li, X.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Wang, Y.; et al. Soy Food Intake Is Inversely Associated with Newly Diagnosed Nonalcoholic Fatty Liver Disease in the TCLSIH Cohort Study. J. Nutr. 2020, 150, 3280–3287. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. China Food Composition Table; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Shu, X.O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy food intake and breast cancer survival. JAMA 2009, 302, 2437–2443. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, X.; Xiang, Y.B.; Yang, G.; Li, H.; Fazio, S.; Linton, M.; Cai, Q.; Zheng, W.; Gao, Y.T.; et al. Association of soy food intake with risk and biomarkers of coronary heart disease in Chinese men. Int. J. Cardiol. 2014, 172, e285–e287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurzer, M.S. Soy consumption for reduction of menopausal symptoms. Inflammopharmacology 2008, 16, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Aizawa, T.; Tokoro, M.; Miki, T.; Yamori, Y. Soy isoflavone tablets reduce osteoporosis risk factors and obesity in middle-aged Japanese women. Clin. Exp. Pharmacol. Physiol. 2004, 31 (Suppl. S2), S39–S41. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Kanzaki, K.; Watanabe, D.; Aibara, C.; Kawakami, Y.; Yamada, T.; Takahashi, Y.; Wada, M. Ingestion of soy protein isolate attenuates eccentric contraction-induced force depression and muscle proteolysis via inhibition of calpain-1 activation in rat fast-twitch skeletal muscle. Nutrition 2019, 58, 23–29. [Google Scholar] [CrossRef]
- Kayri, V.; Orhan, C.; Tuzcu, M.; Deeh Defo, P.B.; Telceken, H.; Irmak, M.; Sahin, N.; Tastan, H.; Komorowski, J.R.; Sahin, K. Combination of Soy Protein, Amylopectin, and Chromium Stimulates Muscle Protein Synthesis by Regulation of Ubiquitin-Proteasome Proteolysis Pathway after Exercise. Biol. Trace Elem. Res. 2019, 190, 140–149. [Google Scholar] [CrossRef]
- Lee, M.C.; Hsu, Y.J.; Yang, L.H.; Huang, C.C.; Ho, C.S. Ergogenic Effects of Green Tea Combined with Isolated Soy Protein on Increasing Muscle Mass and Exercise Performance in Resistance-Trained Mice. Nutrients 2021, 13, 4547. [Google Scholar] [CrossRef]
- Mobley, C.B.; Haun, C.T.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Kephart, W.C.; Anderson, R.G.; Vann, C.G.; Osburn, S.C.; Pledge, C.D.; et al. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients 2017, 9, 972. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Cope, M.B.; Mukherjea, R.; Jennings, K.; Volpi, E.; et al. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle. J. Appl. Physiol. 2014, 116, 1353–1364. [Google Scholar] [CrossRef]
- Messina, S.; Bitto, A.; Aguennouz, M.; Vita, G.L.; Polito, F.; Irrera, N.; Altavilla, D.; Marini, H.; Migliorato, A.; Squadrito, F.; et al. The soy isoflavone genistein blunts nuclear factor kappa-B, MAPKs and TNF-alpha activation and ameliorates muscle function and morphology in mdx mice. Neuromuscul. Disord. 2011, 21, 579–589. [Google Scholar] [CrossRef]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bueno, R.; Andersen, L.L.; Calatayud, J.; Casana, J.; Grabovac, I.; Oberndorfer, M.; Del Pozo Cruz, B. Associations of handgrip strength with all-cause and cancer mortality in older adults: A prospective cohort study in 28 countries. Age Ageing 2022, 51, afac117. [Google Scholar] [CrossRef] [PubMed]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Kuh, D.; Hardy, R. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, A.; Seino, S.; Abe, T.; Nofuji, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Taniguchi, Y.; Narita, M.; Fujiwara, Y.; et al. Sarcopenia: Prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 2021, 12, 30–38. [Google Scholar] [CrossRef]
- Dodds, R.M.; Sayer, A.A. Sarcopenia, frailty and mortality: The evidence is growing. Age Ageing 2016, 45, 570–571. [Google Scholar] [CrossRef]
Characteristics a | Frequency of Soy Food Consumption | p for Trend b | |||
---|---|---|---|---|---|
<1 Time/Week | 1 Time/Week | 2–3 Times/Week | ≥4 Times/Week | ||
No. of participants | (n = 5848) | (n = 7220) | (n = 10,354) | (n = 6103) | - |
Sex (men, %) | 51.0 | 53.5 | 53.7 | 50.9 | 0.91 |
Age (years) | 40.6 ± 11.4 | 40.0 ± 11.1 | 40.9 ± 11.7 | 42.1 ± 12.4 | 0.17 |
BMI (kg/m2) | 34.7 ± 10.9 | 35.4 ± 10.9 | 35.6 ± 10.8 | 35.0 ± 10.7 | 0.05 |
WC (cm) | 24.5 ± 3.75 | 24.5 ± 3.70 | 24.6 ± 3.80 | 24.6 ± 3.70 | 0.11 |
PA (METs × hour/week) | 82.9 ± 11.1 | 82.8 ± 11.1 | 83.2 ± 11.1 | 83.1 ± 11.1 | 0.05 |
Total energy intake (kcal/day) | 1817.1 (1394.9, 2226.8) | 1999.7 (1638.5, 2336.1) | 2168.1 (1851.3, 2446.7) | 2279.3 (2023.4, 2581.6) | <0.0001 |
“Healthy” dietary pattern score | −0.57 (−0.96, −0.05) | −0.40 (−0.78, 0.07) | −0.08 (−0.48, 0.42) | 0.47 (−0.05, 1.16) | <0.0001 |
“Fruits and sweet” dietary pattern score | −0.32 (−0.67, 0.10) | −0.19 (−0.54, 0.26) | −0.07 (−0.47, 0.41) | 0.06 (−0.45, 0.72) | <0.0001 |
“Animal foods” dietary pattern score | −0.24 (−0.52, 0.14) | −0.17 (−0.47, 0.28) | −0.20 (−0.52, 0.27) | −0.29 (−0.68, 0.27) | <0.0001 |
TC (mmol/L) | 4.77 ± 0.90 | 4.74 ± 0.89 | 4.74 ± 0.89 | 4.76 ± 0.92 | <0.05 |
TG (mmol/L) | 1.08 (0.76, 1.67) | 1.09 (0.76, 1.6) | 1.07 (0.76, 1.62) | 1.07 (0.75, 1.62) | 0.10 |
LDL-C (mmol/L) | 2.82 ± 0.80 | 2.79 ± 0.79 | 2.78 ± 0.79 | 2.78 ± 0.81 | 0.001 |
HDL-C (mmol/L) | 1.38 ± 0.38 | 1.38 ± 0.37 | 1.38 ± 0.38 | 1.40 ± 0.38 | 0.41 |
FBG (mmol/L) | 5.02 ± 0.47 | 4.99 ± 0.47 | 5.00 ± 0.48 | 5.01 ± 0.49 | 0.11 |
SBP (mmHg) | 120.4 ± 15.8 | 120.2 ± 15.8 | 121.1 ± 16.2 | 121.1 ± 16.4 | 0.08 |
DBP (mmHg) | 76.2 ± 11.4 | 76.1 ± 11.4 | 76.6 ± 11.5 | 76.5 ± 11.6 | 0.06 |
Smoking status (%) | |||||
Current smoker | 21.0 | 21.1 | 20.0 | 18.9 | <0.001 |
Ex-smoker | 4.82 | 4.81 | 5.49 | 5.73 | <0.001 |
Non-smoker | 74.2 | 74.1 | 74.5 | 75.4 | 0.12 |
Drinking status (%) | |||||
Everyday drinker | 4.67 | 4.37 | 4.76 | 4.98 | 0.25 |
Sometime drinker | 53.7 | 57.2 | 57.7 | 55.4 | 0.04 |
Ex-drinker | 10.6 | 8.56 | 9.29 | 8.94 | <0.05 |
Non-drinker | 31.0 | 29.9 | 28.3 | 30.7 | 0.21 |
Educational level (≥college grade, %) | 65.2 | 69.4 | 68.5 | 69.0 | <0.001 |
Employment status (%) | |||||
Managers | 40.6 | 42.5 | 43.1 | 46.0 | <0.0001 |
Professionals | 15.9 | 17.1 | 17.9 | 15.9 | 0.57 |
Other | 43.5 | 40.4 | 39.0 | 38.2 | <0.0001 |
Household income (≥10,000 Yuan, %) | 34.1 | 39.0 | 40.1 | 40.3 | <0.0001 |
Hypertension (%) | 21.4 | 20.7 | 22.6 | 23.0 | <0.001 |
Hyperlipidemia (%) | 44.9 | 43.3 | 43.5 | 43.6 | 0.47 |
Family history of diseases (%) | |||||
CVD | 28.3 | 28.2 | 29.3 | 32.0 | <0.0001 |
Hypertension | 48.7 | 48.8 | 50.4 | 50.6 | <0.01 |
Diabetes | 23.5 | 23.0 | 24.6 | 25.0 | <0.05 |
Frequency of Soy Food Consumption | p for Trend a | ||||
---|---|---|---|---|---|
<1 Time/Week | 1 Time/Week | 2–3 Times/Week | ≥4 Times/Week | ||
(n = 5848) | (n = 7220) | (n = 10,354) | (n = 6103) | ||
Crude | 34.5 (34.3, 34.8) b | 35.3 (35.1, 35.6) | 35.6 (35.4, 35.8) | 35.3 (35.0, 35.6) | <0.0001 |
Model 1 c | 34.4 (34.2, 34.5) | 34.7 (34.5, 34.8) | 34.9 (34.8, 35.0) | 35.2 (35.1, 35.4) | <0.0001 |
Model 2 d | 34.4 (34.3, 34.6) | 34.7 (34.6, 34.8) | 34.9 (34.8, 35.0) | 35.2 (35.1, 35.4) | <0.0001 |
Model 3 e | 35.5 (34.2, 37.1) | 36.1 (34.6, 37.6) | 36.3 (34.8, 37.8) | 36.6 (35.1, 38.0) | <0.0001 |
Frequency of Soy Food Consumption | p for Trend a | p for Interaction | ||||
---|---|---|---|---|---|---|
<1 Time/Week | 1 Time/Week | 2–3 Times/Week | ≥4 Times/Week | |||
Sex | ||||||
Men (n = 15,504) | 43.4 (43.2, 43.7) b | 43.7 (43.5, 43.9) | 43.8 (43.7, 44.0) | 44.1 (43.9, 44.4) | <0.01 | 0.10 |
Women (n = 14,021) | 25.4 (25.2, 25.5) | 25.6 (25.4, 25.8) | 25.9 (25.8, 26.1) | 26.3 (26.1, 26.5) | <0.0001 | |
Age (year) | ||||||
<60 (n = 27,248) | 35.1 (34.9, 35.3) | 35.4 (35.3, 35.5) | 35.6 (35.5, 35.8) | 36.0 (35.8, 36.1) | <0.001 | <0.0001 |
≥60 (n = 2277) | 31.7 (30.9, 32.0) | 31.8 (31.1, 32.2) | 31.8 (31.4, 32.1) | 31.9 (31.5, 32.4) | 0.19 | |
Body mass index (kg/m2) | ||||||
<24 (n = 13,610) | 30.8 (30.4, 31.0) | 30.9 (30.7, 31.1) | 31.0 (30.9, 31.2) | 31.2 (31.0, 31.4) | 0.35 | <0.001 |
≥24 (n = 15,915) | 38.5 (38.2, 38.7) | 38.7 (38.5, 38.9) | 39.0 (38.9, 39.2) | 39.3 (39.1, 39.5) | <0.001 | |
Physical activity (MET × hour/week) | ||||||
<23.0 (n = 20,941) | 34.8 (34.5, 35.0) | 34.8 (34.6, 35.0) | 34.9 (34.7, 35.0) | 35.1 (34.9, 35.2) | 0.13 | 0.22 |
≥23.0 (n = 8584) | 36.1 (35.8, 36.5) | 36.3 (36.0, 36.5) | 36.5 (36.3, 36.7) | 37.0 (36.8, 37.3) | <0.0001 |
Categories of Energy-Adjusted Soy Food Consumption (g/kcal/Day) | p for Trend a | ||||
---|---|---|---|---|---|
<5.81 | 5.81–13.1 | 13.1–20.2 | >20.2 | ||
Participants, n | (n = 7383) | (n = 7381) | (n = 7381) | (n = 7380) | |
Crude | 34.7 (34.5, 35.0) b | 35.4 (35.2, 35.7) | 35.6 (35.4, 35.8) | 35.0 (34.7, 35.3) | <0.0001 |
Model 1 c | 34.6 (34.4, 34.7) | 34.8 (34.6, 34.9) | 34.9 (34.8, 35.0) | 35.2 (34.8, 35.4) | <0.0001 |
Model 2 d | 34.6 (34.5, 34.8) | 34.8 (34.7, 34.9) | 34.9 (34.8, 35.0) | 35.2 (34.8, 35.4) | <0.001 |
Model 3 e | 35.6 (34.6, 37.5) | 36.0 (34.7, 37.7) | 36.3 (34.8, 37.8) | 36.3 (34.8, 37.7) | <0.001 |
Frequency of Soy Food Consumption | p for Trend a | ||||
---|---|---|---|---|---|
<1 Time/Week | 1 Time/Week | 2–3 Times/Week | ≥4 Times/Week | ||
Crude | 1.00 (reference) | 0.904 (0.736, 1.112) b | 0.765 (0.628, 0.932) | 0.668 (0.529, 0.842) | <0.01 |
Age, sex and body mass index-adjusted model | 1.00 (reference) | 0.954 (0.773, 1.177) | 0.762 (0.624, 0.932) | 0.601 (0.474, 0.761) | <0.0001 |
Multivariable model c | 1.00 (reference) | 0.944 (0.756, 1.178) | 0.819 (0.662, 1.015) | 0.638 (0.485, 0.836) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Quan, J.; Wang, X.; Gu, Y.; Zhang, S.; Meng, G.; Zhang, Q.; Liu, L.; Wang, X.; Sun, S.; et al. Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study. Nutrients 2023, 15, 391. https://doi.org/10.3390/nu15020391
Wu H, Quan J, Wang X, Gu Y, Zhang S, Meng G, Zhang Q, Liu L, Wang X, Sun S, et al. Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study. Nutrients. 2023; 15(2):391. https://doi.org/10.3390/nu15020391
Chicago/Turabian StyleWu, Hongmei, Jing Quan, Xuena Wang, Yeqing Gu, Shunming Zhang, Ge Meng, Qing Zhang, Li Liu, Xing Wang, Shaomei Sun, and et al. 2023. "Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study" Nutrients 15, no. 2: 391. https://doi.org/10.3390/nu15020391
APA StyleWu, H., Quan, J., Wang, X., Gu, Y., Zhang, S., Meng, G., Zhang, Q., Liu, L., Wang, X., Sun, S., Jia, Q., Song, K., Huang, J., Huo, J., Zhang, B., Ding, G., & Niu, K. (2023). Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study. Nutrients, 15(2), 391. https://doi.org/10.3390/nu15020391