Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. ECG Examinations and Definition of AF
2.3. Assessment of Nutritional Status
2.4. Sleep Study
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Prevalence of AF in Patients with OSA (Figure 2)
3.3. Sleep Study
3.4. Factors Associated with the Presence of AF in OSA Patients
4. Discussion
4.1. The Prevalence of AF in Patients with OSA
4.2. Nutritional Status and AF in OSA Patients
4.3. Sleep Quality and AF in OSA Patients
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gami, A.S.; Pressman, G.; Caples, S.M.; Kanagala, R.; Gard, J.J.; Davison, D.E.; Malouf, J.F.; Ammash, N.M.; Friedman, P.A.; Somers, V.K. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004, 110, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Hodge, D.O.; Herges, R.M.; Olson, E.J.; Nykodym, J.; Kara, T.; Somers, V.K. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J. Am. Coll. Cardiol. 2007, 49, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Cadby, G.; McArdle, N.; Briffa, T.; Hillman, D.R.; Simpson, L.; Knuiman, M.; Hung, J. Severity of OSA is an independent predictor of incident atrial fibrillation hospitalization in a large sleep-clinic cohort. Chest 2015, 148, 945–952. [Google Scholar] [CrossRef]
- Dimitri, H.; Ng, M.; Brooks, A.G.; Kuklik, P.; Stiles, M.K.; Lau, D.H.; Antic, N.; Thornton, A.; Saint, D.A.; McEvoy, D.; et al. Atrial remodeling in obstructive sleep apnea: Implications for atrial fibrillation. Heart Rhythm 2012, 9, 321–327. [Google Scholar] [CrossRef]
- Anter, E.; Di Biase, L.; Contreras-Valdes, F.M.; Gianni, C.; Mohanty, S.; Tschabrunn, C.M.; Viles-Gonzalez, J.F.; Leshem, E.; Buxton, A.E.; Kulbak, G.; et al. Atrial Substrate and Triggers of Paroxysmal Atrial Fibrillation in Patients With Obstructive Sleep Apnea. Circ. Arrhythm. Electrophysiol. 2017, 10, e005407. [Google Scholar] [CrossRef] [PubMed]
- Kanagala, R.; Murali, N.S.; Friedman, P.A.; Ammash, N.M.; Gersh, B.J.; Ballman, K.V.; Shamsuzzaman, A.S.; Somers, V.K. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 2003, 107, 2589–2594. [Google Scholar] [CrossRef]
- Monahan, K.; Brewster, J.; Wang, L.; Parvez, B.; Goyal, S.; Roden, D.M.; Darbar, D. Relation of the severity of obstructive sleep apnea in response to anti-arrhythmic drugs in patients with atrial fibrillation or atrial flutter. Am. J. Cardiol. 2012, 110, 369–372. [Google Scholar] [CrossRef]
- Naruse, Y.; Tada, H.; Satoh, M.; Yanagihara, M.; Tsuneoka, H.; Hirata, Y.; Ito, Y.; Kuroki, K.; Machino, T.; Yamasaki, H.; et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: Clinical impact of continuous positive airway pressure therapy. Heart Rhythm 2013, 10, 331–337. [Google Scholar] [CrossRef]
- Ng, C.Y.; Liu, T.; Shehata, M.; Stevens, S.; Chugh, S.S.; Wang, X. Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am. J. Cardiol. 2011, 108, 47–51. [Google Scholar] [CrossRef]
- Linz, D.; McEvoy, R.D.; Cowie, M.R.; Somers, V.K.; Nattel, S.; Lévy, P.; Kalman, J.M.; Sanders, P. Associations of Obstructive Sleep Apnea With Atrial Fibrillation and Continuous Positive Airway Pressure Treatment: A Review. JAMA Cardiol. 2018, 3, 532–540. [Google Scholar] [CrossRef]
- Stevenson, I.H.; Teichtahl, H.; Cunnington, D.; Ciavarella, S.; Gordon, I.; Kalman, J.M. Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur. Heart J. 2008, 29, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Bitter, T.; Langer, C.; Vogt, J.; Lange, M.; Horstkotte, D.; Oldenburg, O. Sleep-disordered breathing in patients with atrial fibrillation and normal systolic left ventricular function. Dtsch. Arztebl. Int. 2009, 106, 164–170. [Google Scholar]
- Tanaka, N.; Tanaka, K.; Hirao, Y.; Okada, M.; Ninomiya, Y.; Yoshimoto, I.; Onishi, T.; Koyama, Y.; Okamura, A.; Iwakura, K.; et al. Home Sleep Apnea Test to Screen Patients With Atrial Fibrillation for Sleep Apnea Prior to Catheter Ablation. Circ. J. 2021, 85, 252–260. [Google Scholar] [CrossRef]
- Mehra, R.; Stone, K.L.; Varosy, P.D.; Hoffman, A.R.; Marcus, G.M.; Blackwell, T.; Ibrahim, O.A.; Salem, R.; Redline, S. Nocturnal arrhythmias across a spectrum of obstructive and central sleep-disordered breathing in older men: Outcomes of sleep disorders in older men (MrOS sleep) study. Arch. Intern. Med. 2009, 169, 1147–1155. [Google Scholar] [CrossRef]
- Mehra, R.; Benjamin, E.J.; Shahar, E.; Gottlieb, D.J.; Nawabit, R.; Kirchner, H.L.; Sahadevan, J.; Redline, S.; Sleep Heart Health Study. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2006, 173, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, T.; Sundqvist, M.; Sandström, H.; Sahlin, C.; Rohani, M.; Al-Khalili, F.; Hörnsten, R.; Blomberg, A.; Wester, P.; Rosenqvist, M.; et al. Atrial fbrillation among patients under investigation for suspected obstructive sleep apnea. PLoS ONE 2017, 12, e0171575. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [Google Scholar] [CrossRef]
- Shiina, K.; Tomiyama, H.; Takata, Y.; Usui, Y.; Asano, K.; Hirayama, Y.; Nakamura, T.; Yamashina, A. Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: A sleep clinic cohort study. Hypertens. Res. 2006, 29, 433–441. [Google Scholar] [CrossRef]
- Anaszewicz, M.; Budzyński, J. Clinical significance of nutritional status in patients with atrial fibrillation: An overview of current evidence. J. Cardiol. 2017, 69, 719–730. [Google Scholar] [CrossRef]
- Wang, T.J.; Parise, H.; Levy, D.; D’Agostino, R.B., Sr.; Wolf, P.A.; Vasan, R.S.; Benjamin, E.J. Obesity and the risk of new-onset atrial ibrillation. JAMA 2004, 292, 2471–2477. [Google Scholar] [CrossRef]
- Tedrow, U.B.; Conen, D.; Ridker, P.M.; Cook, N.R.; Koplan, B.A.; Manson, J.E.; Buring, J.E.; Albert, C.M. The Long- and Short-Term Impact of Elevated Body Mass Index on the Risk of New Atrial Fibrillation: The WHS (Women's Health Study). J. Am. Coll. Cardiol. 2010, 55, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Azarbal, F.; Stefanick, M.L.; Assimes, T.L.; Manson, J.E.; Bea, J.W.; Li, W.; Hlatky, M.A.; Larson, J.C.; LeBlanc, E.S.; Albert, C.M.; et al. Lean body mass and risk of incident atrial fibrillation in post-menopausal women. Eur. Heart J. 2016, 37, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, W.; Gui, Y.; Yan, Q.; Peng, G.; Zhang, X.; Ye, L.; Wang, L. Nutritional Status as a Risk Factor for New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Clin. Interv. Aging. 2023, 18, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Shiina, K.; Takata, Y.; Nakano, H.; Fujii, M.; Iwasaki, Y.; Kumai, K.; Matsumoto, C.; Chikamori, T.; Tomiyama, H. Moderate to severe obstructive sleep apnea is independently associated with inter-arm systolic blood pressure difference: Tokyo Sleep Heart Study. J. Hypertens. 2022, 40, 318–326. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Takada, T.; Jujo, K.; Inagaki, K.; Abe, T.; Kishihara, M.; Shirotani, S.; Endo, N.; Watanabe, S.; Suzuki, K.; Minami, Y.; et al. Nutritional status during hospitalization is associated with the long-term prognosis of patients with heart failure. ESC Heart Fail. 2021, 8, 5372–5382. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef]
- Pathak, R.K.; Middeldorp, M.E.; Meredith, M.; Mehta, A.B.; Mahajan, R.; Wong, C.X.; Twomey, D.; Elliott, A.D.; Kalman, J.M.; Abhayaratna, W.P.; et al. Long-Term Effect of Goal-Directed Weight Management in an Atrial Fibrillation Cohort: A Long-Term Follow-Up Study (LEGACY). J. Am. Coll. Cardiol. 2015, 65, 2159–2169. [Google Scholar] [CrossRef]
- Furui, K.; Morishima, I.; Morita, Y.; Kanzaki, Y.; Takagi, K.; Nagai, H.; Watanabe, N.; Yoshioka, N.; Yamauchi, R.; Miyazawa, H.; et al. Impact of Preoperative Nutritional Status on the Outcome of Catheter Ablation for Atrial Fibrillation. Circ. J. 2022, 86, 268–276. [Google Scholar] [CrossRef]
- Sun, X.; Boyce, S.W.; Hill, P.C.; Bafi, A.S.; Xue, Z.; Lindsay, J.; Corso, P.J. Association of body mass index with new-onset atrial fibrillation after coronary artery bypass grafting operations. Ann. Thorac. Surg. 2011, 91, 1852–1858. [Google Scholar] [CrossRef]
- Czapla, M.; Uchmanowicz, I.; Juárez-Vela, R.; Durante, A.; Kałużna-Oleksy, M.; Łokieć, K.; Baeza-Trinidad, R.; Smereka, J. Relationship between nutritional status and length of hospital stay among patients with atrial fibrillation–A result of the nutritional status heart study. Front. Nutr. 2022, 9, 1086715. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Isono, S.; Tanaka, A.; Tanzawa, H.; Nishino, T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2002, 165, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 2569) | Non-AF Group (n = 2400) | AF Group (n = 169) | p-Value |
---|---|---|---|---|
Age (y) | 56 ± 13 | 56 ± 13 | 64 ± 9 | <0.001 |
Male, n (%) | 2173 (85) | 2016 (84) | 157 (93) | <0.001 |
BMI (kg/m2) | 26.8 ± 4.7 | 26.8 ± 4.7 | 26.4 ± 3.9 | 0.306 |
History of smoking, n (%) | 628 (25) | 576 (24) | 52 (31) | 0.051 |
History of alcohol consumption, n (%) | 1259 (49) | 1152 (48) | 107 (63) | <0.001 |
SBP (mmHg) | 127 ± 16 | 128 ± 16 | 125 ± 17 | 0.017 |
DBP (mmHg) | 76 ± 11 | 76 ± 11 | 74 ± 11 | 0.004 |
Heart rate (per min) | 72 ± 13 | 71 ± 12 | 73 ± 14 | 0.057 |
Total protein (mg/dL) | 7.1 ± 0.5 | 7.1 ± 0.5 | 6.9 ± 0.5 | <0.001 |
Albumin (g/dL) | 4.2 ± 0.4 | 4.3 ± 0.4 | 4.0 ± 0.4 | <0.001 |
Lymphocyte count (per mm3) | 1974.0 ± 855.2 | 2110.5 ± 939.7 | 1778.6 ± 673.6 | <0.001 |
T-cho (mg/dL) | 198 ± 37 | 199 ± 37 | 189 ± 33 | <0.001 |
CONUT score | 0.9 ± 1.3 | 0.6 ± 1.0 | 1.4 ± 1.6 | <0.001 |
HDL-cho (mg/dL) | 48 ± 13 | 48 ± 14 | 47 ± 11 | 0.411 |
LDL-cho (mg/dL) | 116 ± 30 | 117 ± 31 | 109 ± 26 | 0.003 |
Triglyceride (mg/dL) | 162 ± 94 | 162 ± 96 | 157 ± 94 | 0.467 |
Fasting plasma glucose (mg/dL) | 98 ± 28 | 98 ± 27 | 101 ± 29 | 0.196 |
HbA1c (%) | 6.1 ± 1.0 | 6.1 ± 1.0 | 6.2 ± 0.9 | 0.299 |
Uric acid (mg/dL) | 6.2 ± 2.4 | 6.2 ± 2.4 | 6.3 ± 1.4 | 0.654 |
Cr (mg/dL) | 0.95 ± 1.08 | 0.94 ± 1.04 | 1.14 ± 1.50 | 0.041 |
eGFR (mL/min/1.73 m2) | 107.7 ± 41.8 | 109.1 ± 42.0 | 88.5 ± 31.9 | <0.001 |
Hypertension, n (%) | 1514 (59) | 1392 (58) | 122 (72) | <0.001 |
Dyslipidemia, n (%) | 1740 (68) | 1632 (68) | 108 (64) | 0.215 |
Diabetes mellitus, n (%) | 572 (22) | 528 (22) | 44 (26) | 0.205 |
CKD, n (%) | 269 (11) | 240 (10) | 29 (17) | 0.018 |
Coronary heart disease, n (%) | 963 (37) | 912 (38) | 51 (30) | 0.627 |
Ejection fraction (%) | 65 ± 6 | 66 ± 6 | 62 ± 6 | <0.001 |
Medication | ||||
Antihypertensive, n (%) | 1297 (50) | 1152 (48) | 145 (86) | <0.001 |
Antidiabetic, n (%) | 284 (11) | 264 (11) | 20 (12) | 0.629 |
Lipid-lowering, n (%) | 709 (28) | 648 (27) | 61 (36) | 0.013 |
Variables | All (n = 2569) | Non-AF Group (n = 2400) | AF Group (n = 169) | p-Value |
---|---|---|---|---|
Total sleep time (min) | 423 ± 64 | 425 ± 63 | 397 ± 66 | <0.001 |
% of slow-wave sleep, % of TST | 5.0 ± 5.6 | 5.1 ± 5.6 | 3.0 ± 3.9 | <0.001 |
% of REM sleep, % of TST | 17.7 ± 6.2 | 17.8 ± 6.2 | 16.9 ± 6.2 | 0.092 |
Sleep efficiency (%) | 80 ± 11 | 80 ± 10 | 76 ± 12 | <0.001 |
Arousal index (event/h of sleep) | 45 ± 20 | 45 ± 20 | 46 ± 18 | 0.641 |
AHI (event/h) | 40.4 ± 22.7 | 40.4 ± 22.9 | 40.9 ± 19.6 | 0.772 |
3% ODI (event/h) | 31.5 ± 22.7 | 31.6 ± 23.0 | 30.6 ± 18.6 | 0.587 |
Lowest SpO2 (%) | 77.4 ± 12.0 | 77.3 ± 12.0 | 78.1 ± 11.9 | 0.405 |
Sleep time with SpO2 < 90% (%) | 6.4 ± 11.8 | 6.5 ± 12.0 | 4.7 ±8.0 | 0.058 |
PLM index (event/h) | 11.3 ± 23.7 | 10.6 ± 22.5 | 20.7 ± 35.8 | <0.001 |
Factors | Univariate | Multivariate | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | |
Age ≥ 65 | 2.924 (2.134–4.007) | <0.001 | 4.020 (1.895–8.527) | <0.001 |
Male | 2.578 (1.419–4.682) | 0.002 | 2.938 (0.946–9.127) | 0.062 |
BMI ≥ 25 (kg/m2) | 0.982 (0.949–1.017) | 0.306 | ||
History of smoking | 1.401 (0.997–1.968) | 0.052 | ||
History of alcohol consumption | 1.811 (1.302–2.519) | <0.001 | 2.718 (1.461–5.057) | 0.002 |
Hypertension | 1.801 (1.273–2.550) | <0.001 | 1.374 (0.927–2.035) | 0.113 |
Dyslipidemia | 0.813 (0.585–1.129) | 0.216 | ||
Diabetes mellitus | 1.265 (0.879–1.822) | 0.206 | ||
CKD | 1.943 (1.244–3.036) | 0.004 | 1.016 (0.602–1.716) | 0.952 |
Coronary heart disease | 0.704 (0.173–2.872) | 0.625 | ||
Medication | ||||
Antihypertensive | 5.561 (3.657–8.456) | <0.001 | ||
Lipid-lowering | 1.007 (0.702–1.444) | 0.971 | ||
CONUT score ≥ 2 | 3.455 (2.101–5.681) | <0.001 | 2.129 (1.077–4.209) | 0.030 |
Ejection fraction < 50% | 1.377 (0.542–3.493) | 0.501 | ||
Sleep Study | ||||
% of slow-wave sleep < 10% | 3.272 (1.760–6.082) | <0.001 | 5.361 (1.505–19.104) | 0.010 |
Sleep efficiency < 75% | 1.892 (1.374–2.604) | <0.001 | 1.237 (0.848–1.803) | 0.270 |
Arousal index ≥ 30/h | 1.282 (0.870–1.890) | 0.209 | ||
AHI ≥ 30/h | 1.254 (0.902–1.743) | 0.178 | ||
3% ODI ≥ 30/h | 0.794 (0.700–1.314) | 0.794 | ||
Mean SpO2 < 90% | 0.159 (0.022–1.152) | 0.069 | ||
Lowest SpO2 < 80% | 0.750 (0.546–1.030) | 0.076 | ||
Sleep time with SpO2 < 90% ≥ 5% | 0.719 (0.499–1.036) | 0.077 | ||
PLM index ≥ 5/h | 1.664 (1.211–2.286) | 0.002 | 1.968 (0.968–4.004) | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiina, K.; Takata, Y.; Takahashi, T.; Kani, J.; Nakano, H.; Takada, Y.; Yazaki, Y.; Satomi, K.; Tomiyama, H. Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study. Nutrients 2023, 15, 3943. https://doi.org/10.3390/nu15183943
Shiina K, Takata Y, Takahashi T, Kani J, Nakano H, Takada Y, Yazaki Y, Satomi K, Tomiyama H. Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study. Nutrients. 2023; 15(18):3943. https://doi.org/10.3390/nu15183943
Chicago/Turabian StyleShiina, Kazuki, Yoshifumi Takata, Takamichi Takahashi, Junya Kani, Hiroki Nakano, Yasuyuki Takada, Yoshinao Yazaki, Kazuhiro Satomi, and Hirofumi Tomiyama. 2023. "Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study" Nutrients 15, no. 18: 3943. https://doi.org/10.3390/nu15183943
APA StyleShiina, K., Takata, Y., Takahashi, T., Kani, J., Nakano, H., Takada, Y., Yazaki, Y., Satomi, K., & Tomiyama, H. (2023). Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study. Nutrients, 15(18), 3943. https://doi.org/10.3390/nu15183943