The Impact of the COVID-19 Pandemic on Food Consumption Behavior: Based on the Perspective of Accounting Data of Chinese Food Enterprises and Economic Theory
Abstract
:1. Introduction
1.1. The Impact of the COVID-19 Pandemic on Food Consumption
1.2. Hypothesis Development
1.3. Research Goal and Contribution
2. Method
2.1. Corporate Sales and Food Consumption
2.2. Data and Variables
2.2.1. Data Source and Sample Period
2.2.2. Variable Definitions
3. Results
3.1. Descriptive Statistics and Correlation Matrix
3.2. Translog Model Estimates
3.2.1. Model Test
3.2.2. Food Consumption Behavior during the COVID-19 Pandemic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 12 December 2021).
- Borio, C. The COVID-19 economic crisis: Dangerously unique. Bus. Econ. 2020, 55, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Hens, L. COVID-19: Impact by and on the environment, health and economy. Environ. Dev. Sustain. 2020, 22, 4953–4954. [Google Scholar] [CrossRef]
- Adams-Prassl, A.; Cloyne, J.; Dias, M.C.; Parey, M.; Ziliak, J.P. The COVID-19 Economic Crisis. Fisc. Stud. 2020, 41, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Guzek, D.; Skolmowska, D.; Głąbska, D. Analysis of Gender-Dependent Personal Protective Behaviors in a National Sample: Polish Adolescents’ COVID-19 Experience (PLACE-19) Study. Int. J. Environ. Res. Public Health 2020, 17, 5770. [Google Scholar] [CrossRef] [PubMed]
- Skolmowska, D.; Głąbska, D.; Guzek, D. Hand Hygiene Behaviors in a Representative Sample of Polish Adolescents in Regions Stratified by COVID-19 Morbidity and by Confounding Variables (PLACE-19 Study): Is There Any Association? Pathogens 2020, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Sorić, T.; Brodić, I.; Mertens, E.; Sagastume, D.; Dolanc, I.; Jonjić, A.; Delale, E.A.; Mavar, M.; Missoni, S.; Peñalvo, J.L.; et al. Evaluation of the Food Choice Motives before and during the COVID-19 Pandemic: A Cross-Sectional Study of 1232 Adults from Croatia. Nutrients 2021, 13, 3165. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Skolmowska, D.; Guzek, D. Population-Based Study of the Changes in the Food Choice Determinants of Secondary School Students: Polish Adolescents’ COVID-19 Experience (PLACE-19) Study. Nutrients 2020, 12, 2640. [Google Scholar] [CrossRef]
- Martínez-Vázquez, S.E.; Ceballos-Rasgado, M.; Posada-Velázquez, R.; Hunot-Alexander, C.; Nava-González, E.J.; Ramírez-Silva, I.; Aguilar-López, D.K.; Quiroz-Olguín, G.; López-Jara, B.; Delgado-De-La-Cruz, C.; et al. Perceived Diet Quality, Eating Behaviour, and Lifestyle Changes in a Mexican Population with Internet Access during Confinement for the COVID-19 Pandemic: ESCAN-COVID19Mx Survey. Nutrients 2021, 13, 4256. [Google Scholar] [CrossRef] [PubMed]
- Skolmowska, D.; Głąbska, D.; Guzek, D. Differences in Adolescents’ Food Habits Checklist (AFHC) Scores before and during Pandemic in a Population-Based Sample: Polish Adolescents’ COVID-19 Experience (PLACE-19) Study. Nutrients 2021, 13, 1663. [Google Scholar] [CrossRef] [PubMed]
- Kołota, A.; Głąbska, D. Analysis of Food Habits during Pandemic in a Polish Population-Based Sample of Primary School Adolescents: Diet and Activity of Youth during COVID-19 (DAY-19) Study. Nutrients 2021, 13, 3711. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Skolmowska, D.; Guzek, D. Food Preferences and Food Choice Determinants in a Polish Adolescents’ COVID-19 Experience (PLACE-19) Study. Nutrients 2021, 13, 2491. [Google Scholar] [CrossRef] [PubMed]
- Guzek, D.; Skolmowska, D.; Głąbska, D. Appetitive Traits in a Population-Based Study of Polish Adolescents within the PLACE-19 Study: Validation of the Adult Eating Behavior Questionnaire. Nutrients 2020, 12, 3889. [Google Scholar] [CrossRef]
- Coakley, K.E.; Le, H.; Silva, S.R.; Wilks, A. Anxiety is associated with appetitive traits in university students during the COVID-19 pandemic. Nutr. J. 2021, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Roll, S.; Chun, Y.; Kondratjeva, O.; Despard, M.; Schwartz-Tayri, T.M.; Grinstein-Weiss, M. Household Spending Patterns and Hardships during COVID-19: A Comparative Study of the U.S. and Israel. J. Fam. Econ. Issues 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Martínez, U.J.; Morales-Mediano, J.; Leal-Rodríguez, A.L. The impact of the COVID-19 crisis on consumer purchasing motivation and behavior. Eur. Res. Manag. Bus. Econ. 2021, 27, 100166. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Feng, Y. Viewing of the strength of the national economy for fighting against crisis from the case of SRAS. Beijing Inst. Technol. 2004, 6, 13–15. (In Chinese) [Google Scholar]
- Wen, Z.; Huimin, G.; Kavanaugh, R.R. The Impacts of SARS on the Consumer Behaviour of Chinese Domestic Tourists. Curr. Issues Tour. 2005, 8, 22–38. [Google Scholar] [CrossRef]
- Su, C.-W.; Dai, K.; Ullah, S.; Andlib, Z. COVID-19 pandemic and unemployment dynamics in European economies. Econ.Res.-Ekonom. Istraž. 2021, 1–13. [Google Scholar] [CrossRef]
- Midões, C.; Seré, M. Living with Reduced Income: An Analysis of Household Financial Vulnerability Under COVID-19. Soc. Indic. Res. 2021, 8, 1–25. [Google Scholar] [CrossRef]
- Vaidheeswaran, S.; Karmugilan, M.K. Consumer buying behaviour on healthcare products and medical devices during COVID-19 pandemic period-a new spotlight. NVEO 2021, 8, 9861–9872. [Google Scholar]
- Immordino, G.; Jappelli, T.; Oliviero, T.; Zazzaro, A. Fear of COVID-19 contagion and consumption: Evidence from a survey of Italian households. Health Econ. 2021, 31, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.Y.-C.; Wu, P.-L.; Chiou, W.-B. Thoughts of social distancing experiences affect food intake and hypothetical binge eating: Implications for people in home quarantine during COVID-19. Soc. Sci. Med. 2021, 284, 114218. [Google Scholar] [CrossRef] [PubMed]
- Litton, M.; Beavers, A. Food Insecurity is Associated with Reducing Fruit and Vegetable Intake During COVID-19. J. Acad. Nutr. Diet. 2021, 121, A90. [Google Scholar] [CrossRef]
- Jia, P.; Liu, L.; Xie, X.; Yuan, C.; Chen, H.; Guo, B.; Zhou, J.; Yang, S. Changes in dietary patterns among youths in China during COVID-19 epidemic: The COVID-19 impact on lifestyle change survey (COINLICS). Appetite 2020, 158, 105015. [Google Scholar] [CrossRef] [PubMed]
- Maffoni, S.; Brazzo, S.; De Giuseppe, R.; Biino, G.; Vietti, I.; Pallavicini, C.; Cena, H. Lifestyle Changes and Body Mass Index during COVID-19 Pandemic Lockdown: An Italian Online-Survey. Nutrients 2021, 13, 1117. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.; Chua, H.C.; Vieta, E.; Fernandez, G. The anatomy of panic buying related to the current COVID-19 pandemic. Psychiatry Res. 2020, 288, 113015. [Google Scholar] [CrossRef] [PubMed]
- Razzoli, M.; Pearson, C.; Crow, S.; Bartolomucci, A. Stress, overeating, and obesity: Insights from human studies and preclinical models. Neurosci. Biobehav. Rev. 2017, 76, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhsh, M.A.; Khawandanah, J.; Naaman, R.K.; Alashmali, S. The impact of COVID-19 quarantine on dietary habits and physical activity in Saudi Arabia: A cross-sectional study. BMC Public Health 2021, 21, 1487. [Google Scholar] [CrossRef]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Scarmozzino, F.; Visioli, F. COVID-19 and the Subsequent Lockdown Modified Dietary Habits of Almost Half the Population in an Italian Sample. Foods 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Almughamis, N.; Alasfour, S.; Mehmood, S. Poor eating habits and predictors of weight gain during the COVID-19 quarantine measures in Kuwait: A cross sectional study. F1000Research 2020, 9, 914. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allès, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; et al. Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March–May 2020): Results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Gallo, T.F.; Young, S.L.; Moritz, K.M.; Akison, L.K. The Impact of Isolation Measures Due to COVID-19 on Energy Intake and Physical Activity Levels in Australian University Students. Nutrients 2020, 12, 1865. [Google Scholar] [CrossRef] [PubMed]
- Husain, W.; Ashkanani, F. Does COVID-19 change dietary habits and lifestyle behaviours in Kuwait: A community-based cross-sectional study. Environ. Health Prev. Med. 2020, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in Weight and Nutritional Habits in Adults with Obesity during the “Lockdown” Period Caused by the COVID-19 Virus Emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Zachary, Z.; Brianna, F.; Brianna, L.; Garrett, P.; Jade, W.; Alyssa, D.; Mikayla, K. Self-quarantine and weight gain related risk factors during the COVID-19 pandemic. Obes. Res. Clin. Pract. 2020, 14, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Marsola, C.D.M.; Cunha, L.M.; Carvalho-Ferreira, J.P.; da Cunha, D.T. A dataset of food choice motives among adults consumers in Brazil: The use of Food Choice Questionnaire. Data Brief 2021, 40, 107703. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Food and Nutrition Tips during Self-Quarantine. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/food-and-nutrition-tips-during-self-quarantine (accessed on 29 January 2022).
- Gehlich, K.H.; Beller, J.; Lange-Asschenfeldt, B.; Köcher, W.; Meinke, M.C.; Lademann, J. Consumption of fruits and vegetables: Improved physical health, mental health, physical functioning and cognitive health in older adults from 11 European countries. Aging Ment. Health 2019, 24, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. Int. Rev. J. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collese, T.S.; Nascimento-Ferreira, M.V.; De Moraes, A.C.F.; Rendo-Urteaga, T.; Bel-Serrat, S.; Moreno, L.A.; Carvalho, H.B. Role of fruits and vegetables in adolescent cardiovascular health: A systematic review. Nutr. Rev. 2017, 75, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookie, K.L.; Best, G.I.; Conner, T.S. Intake of Raw Fruits and Vegetables Is Associated with Better Mental Health Than Intake of Processed Fruits and Vegetables. Front. Psychol. 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and vegetables intake in adolescents and mental health: A systematic review. Rocz. Państw. Zakł. Hig. 2020, 71, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roso, M.B.; de Carvalho Padilha, P.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Peres, W.A.F.; Martorell, M.; Aires, M.T.; de Oliveira Cardoso, L.; et al. COVID-19 confinement and changes of adolescent’s dietary trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Allabadi, H.; Dabis, J.; Aghabekian, V.; Khader, A.; Khammash, U. Impact of COVID-19 lockdown on dietary and lifestyle behaviours among adolescents in Palestine. Dyn. Hum. Health 2020, 7, 2170. [Google Scholar]
- Bhutani, S.; Cooper, J.A.; Vandellen, M.R. Self-reported Changes in Energy Balance Behaviors during COVID-19-related Home Confinement: A Cross-sectional Study. Am. J. Health Behav. 2021, 45, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Bracale, R.; Vaccaro, C.M. Changes in food choice following restrictive measures due to COVID-19. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1423–1426. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Cooper, J.A. COVID-19-Related Home Confinement in Adults: Weight Gain Risks and Opportunities. Obesity 2020, 28, 1576–1577. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V. The Impact of COVID-19 on the Dietary Habits of Middle-Class Population in Mulund, Mumbai, India. Available online: https://preprints.aijr.org/index.php/ap/preprint/view/82 (accessed on 13 December 2021).
- Shang, D.; Wu, W. Understanding mobile shopping consumers’ continuance intention. Ind. Manag. Data Syst. 2017, 117, 213–227. [Google Scholar] [CrossRef]
- Dirsehan, T.; Cankat, E. Role of mobile food-ordering applications in developing restaurants’ brand satisfaction and loyalty in the pandemic period. J. Retail. Consum. Serv. 2021, 62, 102608. [Google Scholar] [CrossRef]
- Mortimer, G.; Hasan, S.F.E.; Andrews, L.; Martin, J. Online grocery shopping: The impact of shopping frequency on perceived risk. Int. Rev. Retail. Distrib. Consum. Res. 2016, 26, 202–223. [Google Scholar] [CrossRef]
- Driediger, F.; Bhatiasevi, V. Online grocery shopping in Thailand: Consumer acceptance and usage behavior. J. Retail. Consum. Serv. 2019, 48, 224–237. [Google Scholar] [CrossRef]
- Sreeram, A.; Kesharwani, A.; Desai, S. Factors affecting satisfaction and loyalty in online grocery shopping: An integrated model. J. Indian Bus. Res. 2017, 9, 107–132. [Google Scholar] [CrossRef]
- Huang, Y.; Oppewal, H. Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. Int. J. Retail Distrib. Manag. 2006, 34, 334–353. [Google Scholar] [CrossRef]
- Morganosky, M.A.; Cude, B.J. Consumer response to online grocery shopping. Int. J. Retail Distrib. Manag. 2000, 28, 17–26. [Google Scholar] [CrossRef]
- Shankar, V.; Smith, A.K.; Rangaswamy, A. Customer satisfaction and loyalty in online and offline environments. Int. J. Res. Mark. 2003, 20, 153–175. [Google Scholar] [CrossRef]
- Chu, J.; Arce-Urriza, M.; Cebollada-Calvo, J.-J.; Chintagunta, P.K. An Empirical Analysis of Shopping Behavior Across Online and Offline Channels for Grocery Products: The Moderating Effects of Household and Product Characteristics. J. Interact. Mark. 2010, 24, 251–268. [Google Scholar] [CrossRef]
- Statista. Online Food Delivery; Technical Report; Statista: New York, NY, USA, 2020. [Google Scholar]
- Long, N.N.; Khoi, B.H. An Empirical Study about the Intention to Hoard Food during COVID-19 Pandemic. Eurasia J. Math. Sci. Technol. Educ. 2020, 16, em1857. [Google Scholar] [CrossRef] [Green Version]
- Lyson, T.A.; Raymer, A.L. Stalking the wily multinational: Power and control in the US food system. Agric. Hum. Values 2000, 17, 199–208. [Google Scholar] [CrossRef]
- Alexander, E.; Yach, D.; Mensah, G.A. Major multinational food and beverage companies and informal sector contributions to global food consumption: Implications for nutrition policy. Glob. Health 2011, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfranca, O.; Rama, R.; Von Tunzelmann, N. Technological fields and concentration of innovation among food and beverage multinationals. Int. Food Agribus. Manag. Rev. 2003, 5, 1–14. [Google Scholar]
- Yu, J. Chinese Fresh Food Sales Boosted by COVID-19. Available online: https://www.kantar.com/north-america/inspiration/coronavirus/chinese-fresh-food-sales-boosted-by-covid-19 (accessed on 29 January 2022).
- Bloomberg News. Chinese Kids are Drinking More Milk to Boost Immune System after Covid. Available online: https://theprint.in/health/chinese-kids-are-drinking-more-milk-to-boost-immune-system-after-covid/467198/ (accessed on 29 January 2022).
- Xinhua. Eating Habit Changes among Chinese during COVID-19 Epidemic. Available online: https://www.chinadaily.com.cn/a/202008/20/WS5f3e3107a310834817261a8c.html (accessed on 29 January 2022).
- Carroll, N.; Sadowski, A.; Laila, A.; Hruska, V.; Nixon, M.; Ma, D.W.; Haines, J.J.; on behalf of the Guelph Family Health Study. The Impact of COVID-19 on Health Behavior, Stress, Financial and Food Security among Middle to High Income Canadian Families with Young Children. Nutrients 2020, 12, 2352. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, D.; Frøst, M.B.; Rodríguez-Pérez, C. Reported Changes in Dietary Habits During the COVID-19 Lockdown in the Danish Population: The Danish COVIDiet Study. Front. Nutrients 2020, 7, 2112. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Buckland, N.J.; Swinnerton, L.F.; Ng, K.; Price, M.; Wilkinson, L.L.; Myers, A.; Dalton, M. Susceptibility to increased high energy dense sweet and savoury food intake in response to the COVID-19 lockdown: The role of craving control and acceptance coping strategies. Appetite 2020, 158, 105017. [Google Scholar] [CrossRef] [PubMed]
- Poelman, M.P.; Gillebaart, M.; Schlinkert, C.; Dijkstra, S.C.; Derksen, E.; Mensink, F.; Hermans, R.C.; Aardening, P.; de Ridder, D.; de Vet, E. Eating behavior and food purchases during the COVID-19 lockdown: A cross-sectional study among adults in the Netherlands. Appetite 2021, 157, 105002. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, K.; de Brauw, A.; Abate, G.T. Food Consumption and Food Security during the COVID-19 Pandemic in Addis Ababa. Am. J. Agric. Econ. 2021, 103, 772–789. [Google Scholar] [CrossRef] [PubMed]
- United Nations in China. UN Helps China Reduce Food Waste to Meet SDGs. Available online: http://cn.un.org.cn/info/6/649.html (accessed on 29 January 2022).
- UN Environment Programme. SDG 12.3 Food Waste Index. Available online: https://www.unep.org/thinkeatsave/about/sdg-123-food-waste-index#:~:text=SDG%2012.3%3A%20%22By%202030%2C,including%20post%2Dharvest%20losses.%22&text=SDG%20Target%2012.3%20seeks%20to,loss%20during%20production%20and%20supply (accessed on 29 January 2022).
- Barclay, A.W.; Brand-Miller, J. The Australian Paradox: A Substantial Decline in Sugars Intake over the Same Timeframe That Overweight and Obesity Have Increased. Nutrients 2011, 3, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czoli, C.D.; Jones, A.C.; Hammond, D. Trends in sugary drinks in Canada, 2004 to 2015: A comparison of market sales and dietary intake data. Public Health Nutr. 2019, 22, 2723–2728. [Google Scholar] [CrossRef] [PubMed]
- Castaldelli-Maia, J.M.; Segura, L.E.; Martins, S.S. The concerning increasing trend of alcohol beverage sales in the U.S. during the COVID-19 pandemic. Alcohol 2021, 96, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Development and Reform System Price Monitoring Agency. Daily Monitoring of Major Food Prices in the Region during the Period of Pandemic Prevention and Control. Available online: http://fgw.nmg.gov.cn/sytpzs/202103/t20210326_1316773.html (accessed on 29 January 2022). (In Chinese)
- Chen, J.; Yang, C.C. The impact of the National Nutrition Program 2017–2030 on people’s food purchases: A revenue-based perspective. Nutrients 2021, 13, 3030. [Google Scholar] [CrossRef] [PubMed]
- He, L.J.; Chen, J. Does Mandatory Audit Partner Rotation Influence Auditor Selection Strategies? Sustainability 2021, 13, 2058. [Google Scholar] [CrossRef]
- Yang, C.C.; Chen, J.X.; Yang, W.C. The Impact of the Amendment of Taiwan’s Certified Public Accountant Act in 2007 on Large Accounting Firms. Sustainability 2020, 13, 1229. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.C. Competitive Revenue Strategies in the Medical Consumables Industry: Evidence from Human Resources, Research and Development Expenses and Industry Life Cycle. Int. J. Environ. Res. Public Health 2021, 18, 3180. [Google Scholar] [CrossRef] [PubMed]
- Belitski, M.; Guenther, C.; Kritikos, A.S.; Thurik, R. Economic effects of the COVID-19 pandemic on entrepreneurship and small businesses. Small Bus. Econ. 2021, 58, 593–609. [Google Scholar] [CrossRef]
- International Labour Organization (ILO). ILO Monitor: COVID-19 and the World of Work. Available online: https://www.ilo.org/wcmsp5/groups/public/@dgreports/@dcomm/documents/briefingnote/wcms_749399.pdf (accessed on 29 January 2022). (In Chinese).
- Tesfaye, A.; Habte, Y.; Minten, B. The Quest for Safer Foods: The COVID-19 Crisis and Dairy Value Chains in Ethiopia. Available online: https://essp.ifpri.info/2020/05/12/the-quest-for-safer-foods-the-covid-19-crisis-and-dairy-value-chains-in-ethiopia/ (accessed on 29 January 2022).
- Ceballos, F.; Hernandez, M.A.; Paz, C. Short-term impacts of COVID-19 on food security and nutrition in rural Guatemala: Phone-based farm household survey evidence. Agric. Econ. 2021, 52, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Di Crosta, A.; Ceccato, I.; Marchetti, D.; La Malva, P.; Maiella, R.; Cannito, L.; Cipi, M.; Mammarella, N.; Palumbo, R.; Verrocchio, M.C.; et al. Psychological factors and consumer behavior during the COVID-19 pandemic. PLoS ONE 2021, 16, e0256095. [Google Scholar] [CrossRef]
- Johnny, H.; Hui, D.; Kim, A.; Zhang, Y. Cautiously Optimistic: Chinese Consumer Behavior Post-COVID-19. Available online: https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/cautiously-optimistic-chinese-consumer-behavior-post-covid-19#:~:text=Chinese%20consumers%20are%20gradually%20regaining,latest%20survey%20of%20consumer%20attitudes (accessed on 29 January 2022). (In Chinese).
- European Commission. About Food Waste. Available online: https://ec.europa.eu/food/safety/food_waste_en (accessed on 22 January 2022).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Ganesan, T.B. Sedentarism and chronic disease risk in COVID 19 lockdown—A scoping review. Scott. Med. J. 2021, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Oriental Fortune, Zhongjing Foods: The Company’s “2021 Annual Report” Is Scheduled to Be Disclosed on April 23, 2022. Available online: http://finance.eastmoney.com/a/202201132246991381.html (accessed on 29 January 2022). (In Chinese).
- Daily Economic News, Joyvio Foods: The Company Will Disclose Its 2021 Annual Report on April 8, 2022. Available online: http://www.nbd.com.cn/articles/2022-02-10/2119986.html (accessed on 29 January 2022). (In Chinese).
- Oriental Fortune, Sanquan Food: The Annual Report Appointment Disclosure Time Is April 15. Available online: https://finance.eastmoney.com/a/202104011869088858.html (accessed on 29 January 2022). (In Chinese).
Variable | Definition | |
---|---|---|
Theoretical Variable | Proxy Variable | |
r | FOREVENUE | Total revenue of food enterprise |
MANAGERS | Total number of management personnel | |
RDS | Total number of research and development personnel | |
ORDINARYS | Total number of ordinary personnel | |
EMPLOYEES | Total number of employees | |
FASSETS | Net fixed assets | |
DEVEL | R&D investment amount | |
LARGE | If the food enterprise is not the top ten food enterprises, LARGE is equal to 0; otherwise, it is equal to 1 | |
COVID19 | If the year is 2015–2019, COVID19 is equal to 0; otherwise, it is equal to 1 |
2015 (n = 62) | 2016 (n = 69) | |||||||||||
Variables | Mean | Median | Max | Min | Std | Kurt | Mean | Median | Max | Min | Std | Kurt |
FOREVENUE | $1027.17 | $324.04 | $9673.95 | $23.75 | $1934.79 | 14.23 | $1028.74 | $349.21 | $9579.57 | $40.74 | $1934.79 | 14.23 |
MANAGERS | 14.98 | 15.00 | 21.00 | 10.00 | 2.44 | 2.85 | 14.36 | 14.00 | 20.00 | 10.00 | 2.27 | 2.68 |
RDS | 177.95 | 90.50 | 1596.00 | 3.00 | 254.98 | 18.12 | 179.65 | 91.00 | 1630.00 | 7.00 | 254.32 | 17.61 |
ORDINARYS | 5946.21 | 2424.00 | 57,606.00 | 269.00 | 11,773.47 | 15.74 | 5627.84 | 2325.00 | 60,145.00 | 286.00 | 11189.65 | 17.70 |
EMPLOYEES | 6139.15 | 2680.50 | 57,971.00 | 328.00 | 11,867.11 | 15.51 | 5821.86 | 2457.00 | 60,602.00 | 309.00 | 11282.64 | 17.39 |
FASSETS | $273.70 | $116.87 | $2296.58 | $7.57 | $438.87 | 12.97 | $283.14 | $132.92 | $2060.63 | $6.69 | $426.28 | 10.02 |
DEVEL | $9.83 | $4.17 | $79.28 | $0.06 | $15.73 | 10.93 | $10.55 | $4.87 | $82.58 | $0.07 | $16.36 | 9.81 |
2017 (n = 79) | 2018 (n = 81) | |||||||||||
Variables | Mean | Median | Max | Min | Std | Kurt | Mean | Median | Max | Min | Std | Kurt |
FOREVENUE | $1082.22 | $418.42 | $10,617.75 | $39.95 | $1950.52 | 14.91 | $1162.45 | $449.88 | $12,426.70 | $50.18 | $2139.28 | 16.71 |
MANAGERS | 14.24 | 14.00 | 20.00 | 9.00 | 2.34 | 2.83 | 14.12 | 14.00 | 20.00 | 9.00 | 2.52 | 2.50 |
RDS | 195.38 | 98.00 | 1635.00 | 6.00 | 273.49 | 16.33 | 204.68 | 113.00 | 1298.00 | 11.00 | 250.91 | 11.18 |
ORDINARYS | 5483.24 | 2391.00 | 60,851.00 | 282.00 | 10,670.69 | 19.89 | 5728.88 | 2350.00 | 61,437.00 | 315.00 | 10,836.65 | 19.56 |
EMPLOYEES | 5692.86 | 2510.00 | 61,318.00 | 301.00 | 10,768.02 | 19.45 | 5947.68 | 2525.00 | 61,918.00 | 359.00 | 10,926.29 | 19.18 |
FASSETS | $279.99 | $129.46 | $2092.09 | $11.01 | $427.86 | 10.89 | $298.87 | $144.09 | $2642.64 | $10.70 | $470.33 | 14.05 |
DEVEL | $11.06 | $3.96 | $82.74 | $0.03 | $17.93 | 9.81 | $12.97 | $5.34 | $94.07 | $0.05 | $20.29 | 8.64 |
2019 (n = 92) | 2020 (n = 104) | |||||||||||
Variables | Mean | Median | Max | Min | Std | Kurt | Mean | Median | Max | Min | Std | Kurt |
FOREVENUE | $1206.49 | $385.39 | $14,157.00 | $36.81 | $2375.23 | 18.60 | $1588.73 | $408.98 | $30,673.50 | $19.51 | $3979.69 | 32.36 |
MANAGERS | 13.97 | 14.00 | 21.00 | 8.00 | 2.85 | 2.56 | 13.89 | 14.00 | 22.00 | 9.00 | 2.65 | 3.22 |
RDS | 217.17 | 108.50 | 2405.00 | 7.00 | 336.40 | 24.01 | 236.12 | 120.50 | 2652.00 | 6.00 | 427.37 | 23.08 |
ORDINARYS | 5300.63 | 2292.50 | 69,871.00 | 268.00 | 10,503.66 | 25.21 | 5771.39 | 2216.50 | 94965.00 | 128.00 | 12,152.72 | 33.29 |
EMPLOYEES | 5531.77 | 2414.50 | 70,600.00 | 318.00 | 10,639.71 | 24.57 | 6021.39 | 2394.50 | 95993.00 | 172.00 | 12,334.79 | 32.43 |
FASSETS | $331.90 | $145.03 | $3853.85 | $7.33 | $588.30 | 20.00 | $391.68 | $137.32 | $4687.54 | $7.71 | $847.85 | 18.75 |
DEVEL | $13.75 | $5.63 | $157.30 | $0.10 | $24.54 | 16.69 | $14.08 | $5.59 | $163.59 | $0.17 | $25.48 | 16.19 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
(1) FOREVENUE | 1.000 | 0.198 | 0.476 | 0.785 | 0.788 | 0.786 | 0.557 | 0.562 | 0.023 |
----- | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.611) | |
(2) MANAGERS | 0.181 | 1.000 | 0.179 | 0.135 | 0.138 | 0.180 | 0.175 | 0.146 | −0.072 |
(0.000) | ----- | (0.000) | (0.003) | (0.002) | (0.000) | (0.000) | (0.001) | (0.115) | |
(3) RDS | 0.404 | 0.101 | 1.000 | 0.483 | 0.516 | 0.484 | 0.729 | 0.408 | 0.026 |
(0.000) | (0.026) | ----- | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.573) | |
(4) ORDINARYS | 0.852 | 0.204 | 0.368 | 1.000 | 0.999 | 0.726 | 0.504 | 0.523 | −0.008 |
(0.000) | (0.000) | (0.000) | ----- | (0.000) | (0.000) | (0.000) | (0.000) | (0.854) | |
(5) EMPLOYEES | 0.854 | 0.205 | 0.392 | 1.000 | 1.000 | 0.732 | 0.527 | 0.524 | −0.007 |
(0.000) | (0.000) | (0.000) | (0.000) | ----- | (0.000) | (0.000) | (0.000) | (0.871) | |
(6) FASSETS | 0.839 | 0.171 | 0.528 | 0.782 | 0.788 | 1.000 | 0.540 | 0.535 | −0.004 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ----- | (0.000) | (0.000) | (0.924) | |
(7) DEVEL | 0.525 | 0.187 | 0.719 | 0.509 | 0.524 | 0.723 | 1.000 | 0.408 | 0.044 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ----- | (0.000) | (0.333) | |
(8) LARGE | 0.719 | 0.143 | 0.503 | 0.666 | 0.673 | 0.667 | 0.560 | 1.000 | −0.043 |
(0.000) | (0.002) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ----- | (0.345) | |
(9) COVID19 | 0.075 | −0.064 | 0.051 | 0.007 | 0.008 | 0.068 | 0.044 | −0.043 | 1.000 |
(0.098) | (0.159) | (0.263) | (0.885) | (0.862) | (0.136) | (0.330) | (0.345) | ----- |
Variables | Coefficient | Variables | Coefficient |
---|---|---|---|
t-Statistic | t-Statistic | ||
Intercept | −20.425 | (ln MANAGERS) (ln ORDINARYS) | −0.113 |
(−1.572) | (−0.491) | ||
ln MANAGERS | −0.926 | (ln RDS) (ln ORDINARYS) | −0.028 |
(−0.213) | (−0.118) | ||
ln RDS | −1.755 * | (ln MANAGERS)(ln FASSETS) | −0.134 |
(−1.890) | (−0.760) | ||
ln ORDINARYS | −1.192 | (ln RDS)(ln FASSETS) | 0.055 |
(−1.077) | (0.928) | ||
ln FASSETS | 3.095 ** | (ln ORDINARYS)(ln FASSETS) | 0.027 |
(2.481) | (0.543) | ||
ln DEVEL | 1.569 ** | (ln MANAGERS) (ln DEVEL) | 0.071 ** |
(2.202) | (2.449) | ||
(ln MANAGERS) 2 | 0.823 | (ln RDS) (ln DEVEL) | 0.213 *** |
(1.148) | (3.181) | ||
(ln RDS) 2 | −0.087 *** | (ln ORDINARYS)(ln DEVEL) | −0.020 |
(−2.711) | (−0.500) | ||
(ln ORDINARYS) 2 | −0.144 *** | (ln FASSETS)(ln DEVEL) | −0.154 *** |
(−3.709) | (−4.126) | ||
(ln FASSETS) 2 | −0.045 | LARGE | 0.822 *** |
(−1.183) | (6.905) | ||
(ln DEVEL) 2 | 0.056 *** | COVID19 | 0.113 * |
(3.819) | (1.832) | ||
(ln MANAGERS)(ln RDS) | 0.099 | LARGECOVID19 | 0.198 |
(0.502) | (0.987) | ||
Adjusted R–squared | 0.834 | ||
Observations | 487 | ||
) | |||
F-statistic | 5.07 | ||
Significance level | 0.000 |
APE | APE Estimated Value | Significance Test |
---|---|---|
APE_ORDINARYS | 0.551 | F-statistic = 41.39 |
Significance level = 0.00 | ||
APE_RDS | −0.083 | F-statistic = 2.18 |
Significance level = 0.04 | ||
APE_MANAGERS | 0.238 | F-statistic = 0.76 |
Significance level = 0.60 | ||
APE_FASSETS | 0.312 | F-statistic = 17.82 |
Significance level = 0.00 | ||
APE_DEVEL | 0.137 | F-statistic = 8.43 |
APE_ LARGE | ||
When COVID19 = 0 | 0.822 | F-statistic = 26.50 |
When COVID19 = 1 | 1.020 | |
APE_COVID19 | ||
When LARGE = 0 | 0.113 | F-statistic = 2.97 |
When LARGE = 1 | 0.311 | Significance level = 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-C.; Chen, Y.-S.; Chen, J. The Impact of the COVID-19 Pandemic on Food Consumption Behavior: Based on the Perspective of Accounting Data of Chinese Food Enterprises and Economic Theory. Nutrients 2022, 14, 1206. https://doi.org/10.3390/nu14061206
Yang C-C, Chen Y-S, Chen J. The Impact of the COVID-19 Pandemic on Food Consumption Behavior: Based on the Perspective of Accounting Data of Chinese Food Enterprises and Economic Theory. Nutrients. 2022; 14(6):1206. https://doi.org/10.3390/nu14061206
Chicago/Turabian StyleYang, Chung-Cheng, Yahn-Shir Chen, and Jianxiong Chen. 2022. "The Impact of the COVID-19 Pandemic on Food Consumption Behavior: Based on the Perspective of Accounting Data of Chinese Food Enterprises and Economic Theory" Nutrients 14, no. 6: 1206. https://doi.org/10.3390/nu14061206
APA StyleYang, C. -C., Chen, Y. -S., & Chen, J. (2022). The Impact of the COVID-19 Pandemic on Food Consumption Behavior: Based on the Perspective of Accounting Data of Chinese Food Enterprises and Economic Theory. Nutrients, 14(6), 1206. https://doi.org/10.3390/nu14061206