Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedure and Outcome
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Population
3.2. Outcome
3.2.1. Association with aMED (≥3 vs. <3) and ABI (≤0.9 vs. >0.9)
3.2.2. Association with Individual Components of aMED
3.2.3. Association with aMED Score for Red/Processed Meat (Lower Intake vs. Higher Intake) in Subgroups
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K.; Murabito, J.M.; Vasan, R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002, 347, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [Green Version]
- McAllister, D.A.; Read, S.H.; Kerssens, J.; Livingstone, S.; McGurnaghan, S.; Jhund, P.; Petrie, J.; Sattar, N.; Fischbacher, C.; Kristensen, S.L.; et al. Incidence of Hospitalization for Heart Failure and Case-Fatality among 3.25 Million People with and without Diabetes Mellitus. Circulation 2018, 138, 2774–2786. [Google Scholar] [CrossRef] [PubMed]
- Mamas, M.A.; Sperrin, M.; Watson, M.C.; Coutts, A.; Wilde, K.; Burton, C.; Kadam, U.T.; Kwok, C.S.; Clark, A.B.; Murchie, P.; et al. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland. Eur. J. Heart Fail. 2017, 19, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.D.; Huang, S.T.; Wang, C.Y.; Lin, F.J.; Chen, H.M.; Hsiao, F.Y. Nationwide trends in incidence, healthcare utilization, and mortality in hospitalized heart failure patients in Taiwan. ESC Heart Fail. 2020, 7, 3653–3666. [Google Scholar] [CrossRef]
- Taylor, C.J.; Ordóñez-Mena, J.M.; Roalfe, A.K.; Lay-Flurrie, S.; Jones, N.R.; Marshall, T.; Hobbs, F.D.R. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: Population based cohort study. BMJ 2019, 364, l223. [Google Scholar] [CrossRef] [Green Version]
- Barone Gibbs, B.; Hivert, M.F.; Jerome, G.J.; Kraus, W.E.; Rosenkranz, S.K.; Schorr, E.N.; Spartano, N.L.; Lobelo, F. Physical Activity as a Critical Component of First-Line Treatment for Elevated Blood Pressure or Cholesterol: Who, What, and How?: A Scientific Statement From the American Heart Association. Hypertension 2021, 78, e26–e37. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef]
- Ha, K.; Kim, K.; Sakaki, J.R.; Chun, O.K. Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults. Nutrients 2020, 12, 1210. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelakantan, N.; Koh, W.P.; Yuan, J.M.; van Dam, R.M. Diet-Quality Indexes Are Associated with a Lower Risk of Cardiovascular, Respiratory, and All-Cause Mortality among Chinese Adults. J. Nutr. 2018, 148, 1323–1332. [Google Scholar] [CrossRef]
- Hu, E.A.; Steffen, L.M.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Adherence to the Healthy Eating Index-2015 and Other Dietary Patterns May Reduce Risk of Cardiovascular Disease, Cardiovascular Mortality, and All-Cause Mortality. J. Nutr. 2020, 150, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Lavie, C.J.; Arena, R. Obesity and Heart Failure: Focus on the Obesity Paradox. Mayo Clin. Proc. 2017, 92, 266–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billingsley, H.E.; Hummel, S.L.; Carbone, S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Kuehneman, T.; Gregory, M.; de Waal, D.; Davidson, P.; Frickel, R.; King, C.; Gradwell, E.; Handu, D. Academy of Nutrition and Dietetics Evidence-Based Practice Guideline for the Management of Heart Failure in Adults. J. Acad. Nutr. Diet 2018, 118, 2331–2345. [Google Scholar] [CrossRef]
- Vest, A.R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, Obesity, and Cachexia in Patients With Heart Failure: A Consensus Statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef]
- Levitan, E.B.; Lewis, C.E.; Tinker, L.F.; Eaton, C.B.; Ahmed, A.; Manson, J.E.; Snetselaar, L.G.; Martin, L.W.; Trevisan, M.; Howard, B.V.; et al. Mediterranean and DASH diet scores and mortality in women with heart failure: The Women’s Health Initiative. Circ. Heart Fail. 2013, 6, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Aronow, W.S.; Criqui, M.H.; Aban, I.; Love, T.E.; Eichhorn, E.J.; Ahmed, A. Effects of peripheral arterial disease on outcomes in advanced chronic systolic heart failure: A propensity-matched study. Circ. Heart Fail. 2010, 3, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Qian, C.; Fang, Q.; Wang, Y. The Prognostic Value of Peripheral Artery Disease in Heart Failure: Insights from a Meta-analysis. Heart Lung Circ. 2016, 25, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Knoops, K.T.; de Groot, L.C.; Kromhout, D.; Perrin, A.E.; Moreiras-Varela, O.; Menotti, A.; van Staveren, W.A. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 2004, 292, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Tognon, G.; Lissner, L.; Sæbye, D.; Walker, K.Z.; Heitmann, B.L. The Mediterranean diet in relation to mortality and CVD: A Danish cohort study. Br. J. Nutr. 2014, 111, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tognon, G.; Nilsson, L.M.; Lissner, L.; Johansson, I.; Hallmans, G.; Lindahl, B.; Winkvist, A. The Mediterranean diet score and mortality are inversely associated in adults living in the subarctic region. J. Nutr. 2012, 142, 1547–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandesara, P.B.; Hammadah, M.; Samman-Tahhan, A.; Kelli, H.M.; O’Neal, W.T. Peripheral artery disease and risk of adverse outcomes in heart failure with preserved ejection fraction. Clin. Cardiol. 2017, 40, 692–696. [Google Scholar] [CrossRef] [Green Version]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis 2015, 243, 93–98. [Google Scholar] [CrossRef]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Tsivgoulis, G.; Psaltopoulou, T.; Wadley, V.G.; Alexandrov, A.V.; Howard, G.; Unverzagt, F.W.; Moy, C.; Howard, V.J.; Kissela, B.; Judd, S.E. Adherence to a Mediterranean diet and prediction of incident stroke. Stroke 2015, 46, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. Adherence to a Mediterranean diet is associated with reduced risk of heart failure in men. Eur. J. Heart Fail. 2016, 18, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Wirth, J.; di Giuseppe, R.; Boeing, H.; Weikert, C. A Mediterranean-style diet, its components and the risk of heart failure: A prospective population-based study in a non-Mediterranean country. Eur. J. Clin. Nutr. 2016, 70, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Martínez-González, M.; Alonso-Gómez, A.; Rekondo, J.; Salas-Salvadó, J.; Corella, D.; Ros, E.; Fitó, M.; Estruch, R.; Lapetra, J.; et al. Mediterranean diet and risk of heart failure: Results from the PREDIMED randomized controlled trial. Eur. J. Heart Fail. 2017, 19, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis Padilha, G.; D’almeida, K.S.M.; Ronchi Spillere, S.; Corrêa Souza, G. Dietary Patterns in Secondary Prevention of Heart Failure: A Systematic Review. Nutrients 2018, 10, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanage, T.; Ninomiya, T.; Wang, A.; Neal, B.; Jun, M.; Wong, M.G.; Jardine, M.; Hillis, G.S.; Perkovic, V. Effects of the Mediterranean Diet on Cardiovascular Outcomes-A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0159252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miró, Ò.; Estruch, R.; Martín-Sánchez, F.J.; Gil, V.; Jacob, J.; Herrero-Puente, P.; Herrera Mateo, S.; Aguirre, A.; Andueza, J.A.; Llorens, P. Adherence to Mediterranean Diet and All-Cause Mortality After an Episode of Acute Heart Failure: Results of the MEDIT-AHF Study. JACC Heart Fail. 2018, 6, 52–62. [Google Scholar] [CrossRef]
- Cooper, H.A.; Exner, D.V.; Domanski, M.J. Light-to-moderate alcohol consumption and prognosis in patients with left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2000, 35, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Petrone, A.B.; Gaziano, J.M.; Djoussé, L. Alcohol consumption and risk of death in male physicians with heart failure. Am. J. Cardiol. 2014, 114, 1065–1068. [Google Scholar] [CrossRef] [Green Version]
- Sadhu, J.S.; Novak, E.; Mukamal, K.J.; Kizer, J.R.; Psaty, B.M.; Stein, P.K.; Brown, D.L. Association of Alcohol Consumption After Development of Heart Failure With Survival Among Older Adults in the Cardiovascular Health Study. JAMA Netw. Open 2018, 1, e186383. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Orsini, N. Red meat and processed meat consumption and all-cause mortality: A meta-analysis. Am. J. Epidemiol. 2014, 179, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N.B. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Liu, Y.; Zhu, L.; Mei, X.; Jin, P.; Luo, Y. Association between intake of red and processed meat and the risk of heart failure: A meta-analysis. BMC Public Health 2019, 19, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lin, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G.; Pan, A.; Hu, F.B. Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutr. 2016, 19, 893–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelista, L.S.; Jose, M.M.; Sallam, H.; Serag, H.; Golovko, G.; Khanipov, K.; Hamilton, M.A.; Fonarow, G.C. High-protein vs. standard-protein diets in overweight and obese patients with heart failure and diabetes mellitus: Findings of the Pro-HEART trial. ESC Heart Fail. 2021, 8, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Liu, W.J.; Wang, J.S. Associations of low-carbohydrate and low-fat intakes with all-cause mortality in subjects with prediabetes with and without insulin resistance. Clin. Nutr. 2021, 40, 3601–3607. [Google Scholar] [CrossRef] [PubMed]
- Matre, Å.O.; Van Parys, A.; Olsen, T.; Haugsgjerd, T.R.; Baravelli, C.M.; Nygård, O.; Dierkes, J.; Lysne, V. The Association of Meat Intake With All-Cause Mortality and Acute Myocardial Infarction Is Age-Dependent in Patients With Stable Angina Pectoris. Front. Nutr. 2021, 8, 642612. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Bradbury, K.E.; Sweeting, M.; Wood, A.; Johansson, I.; Kühn, T.; Steur, M.; Weiderpass, E.; Wennberg, M.; et al. Consumption of Meat, Fish, Dairy Products, and Eggs and Risk of Ischemic Heart Disease. Circulation 2019, 139, 2835–2845. [Google Scholar] [CrossRef]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Oosterwijk, M.M.; Groothof, D.; Navis, G.; Bakker, S.J.L.; Laverman, G.D. High-Normal Protein Intake Is Not Associated With Faster Renal Function Deterioration in Patients With Type 2 Diabetes: A Prospective Analysis in the DIALECT Cohort. Diabetes Care 2022, 45, 35–41. [Google Scholar] [CrossRef]
- The Lancet. Taking sex into account in medicine. Lancet 2011, 378, 1826. [Google Scholar] [CrossRef]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
aMED | |||
---|---|---|---|
Variables | <3 | ≥3 | p |
Number of participants | 468 | 364 | |
Age, years | 64.0 (62.3–65.6) | 67.8 (65.8–69.8) | <0.001 |
Male, n (%) | 275 (54.5) | 204 (54.6) | 0.969 |
Body mass index, kg/m2 | 31.2 (30.4–32.0) | 30.7 (29.6–31.7) | <0.001 |
Systolic blood pressure, mm Hg | 130.5 (127.9–133.1) | 131.8 (129.0–134.7) | <0.001 |
Diastolic blood pressure, mm Hg | 67.7 (65.5–70.0) | 66.7 (64.6–68.8) | <0.001 |
Hypertension, n (%) | 340 (67.5) | 273 (71.9) | 0.211 |
Smoking, n (%) | 320 (68.0) | 204 (55.8) | 0.005 |
Total cholesterol, mg/dL | 190.7 (184.9–196.6) | 187.0 (182.1–192.0) | <0.001 |
HDL cholesterol, mg/dL | 47.6 (45.8–49.4) | 50.9 (48.7–53.1) | <0.001 |
Triglycerides, mg/dL | 179.0 (163.9–194.0) | 158.8 (146.3–171.4) | <0.001 |
Fasting plasma glucose, mg/dL | 114.9 (108.8–121.1) | 118.6 (112.1–125.0) | <0.001 |
HbA1c, % | 6.03 (5.89–6.17) | 6.17 (6.03–6.31) | <0.001 |
eGFR, mL/min/1.73 m2 | 71.1 (67.7–74.5) | 69.7 (66.1–73.3) | <0.001 |
Daily calories, kcal/day | 1748 (1636–1860) | 1802 (1691–1913) | <0.001 |
% from carbohydrate | 48.9 (47.9–49.8) | 52.3 (51.2–53.5) | |
% from fat | 35.0 (34.1–36.0) | 32.1 (31.1–33.2) | |
% from protein | 16.1 (15.5–16.8) | 15.6 (14.9–16.3) | |
With ankle–brachial index data, n | 213 | 63 | |
Ankle–brachial index ≤ 0.9, n (%) | 38 (19.5) | 25 (18.2) | 0.792 |
Adjusted HR (95% CI) † | p | |
---|---|---|
All-cause mortlity | ||
aMED (≥3 vs. <3) | 0.797 (0.599–1.059) | 0.116 |
Ankle–brachial index (≤0.9 vs. >0.9) | 2.206 (1.412–3.447) | <0.001 |
Cardiovascular mortality mortality | ||
aMED (≥3 vs. <3) | 0.911 (0.539–1.538) | 0.724 |
Ankle–brachial index (≤0.9 vs. >0.9) | 2.027 (1.008–4.075) | 0.048 |
All-Cause Mortality | Cardiovascular Mortality | |||
---|---|---|---|---|
Adjusted HR (95% CI) † | p | Adjusted HR (95% CI) † | p | |
Age < 65 years | 0.682 (0.239–1.943) | 0.470 | 0.529 (0.101–2.765) | 0.447 |
Age ≥ 65 years | 0.983 (0.733–1.319) | 0.907 | 1.121 (0.651–1.929) | 0.677 |
Male | 0.720 (0.480–1.081) | 0.112 | 1.035 (0.508–2.107) | 0.924 |
Female | 0.899 (0.592–1.366) | 0.614 | 0.794 (0.432–1.458) | 0.452 |
Body mass index < 30 kg/m2 | 0.740 (0.523–1.047) | 0.088 | 0.684 (0.385–1.217) | 0.194 |
Body mass index ≥ 30 kg/m2 | 0.846 (0.502–1.426) | 0.527 | 1.379 (0.621–3.061) | 0.425 |
Calorie intake < 25 kcal/kg/day | 0.784 (0.556–1.106) | 0.163 | 0.886 (0.481–1.633) | 0.695 |
Calorie intake ≥ 25 kcal/kg/day | 0.909 (0.552–1.496) | 0.704 | 1.176 (0.506–2.734) | 0.703 |
No diabetes | 0.910 (0.663–1.249) | 0.557 | 0.733 (0.450–1.194) | 0.209 |
Diabetes | 0.745 (0.418–1.029) | 0.314 | 1.268 (0.494–3.253) | 0.618 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.685 (0.455–1.029) | 0.068 | 0.935 (0.492–1.778) | 0.837 |
eGFR < 60 mL/min/1.73 m2 | 0.780 (0.524–1.159) | 0.216 | 0.802 (0.443–1.452) | 0.462 |
All-Cause Mortality | Cardiovascular Mortality | |||
---|---|---|---|---|
Adjusted HR (95% CI) † | p | Adjusted HR (95% CI) † | p | |
Alcohol score = 0 | 1 (reference) | 1 (reference) | ||
Alcohol score = 1 | 0.522 (0.243–1.123) | 0.095 | 0.324 (0.132–0.794) | 0.014 |
Red/processed meat score = 0 | 1 (reference) | 1 (reference) | ||
Red/processed meat score = 1 | 1.406 (1.011–1.955) | 0.043 | 1.125 (0.656–1.929) | 0.665 |
Sea food score = 0 | 1 (reference) | 1 (reference) | ||
Sea food score = 1 | 0.960 (0.621–1.484) | 0.854 | 0.776 (0.392–1.537) | 0.463 |
Whole grains score = 0 | 1 (reference) | 1 (reference) | ||
Whole grains score = 1 | 0.953 (0.713–1.274) | 0.743 | 1.054 (0.625–1.778) | 0.842 |
Legumes score = 0 | 1 (reference) | 1 (reference) | ||
Legumes score = 1 | 0.764 (0.572–1.020) | 0.068 | 0.793 (0.442–1.423) | 0.432 |
Nuts score = 0 | 1 (reference) | 1 (reference) | ||
Nuts score = 1 | 0.940 (0.699–1.265) | 0.682 | 1.053 (0.642–1.728) | 0.836 |
Fruits score = 0 | 1 (reference) | 1 (reference) | ||
Fruits score = 1 | 0.884 (0.638–1.223) | 0.451 | 1.060 (0.626–1.794) | 0.826 |
Vegetables score = 0 | 1 (reference) | 1 (reference) | ||
Vegetables score = 1 | 0.966 (0.714–1.306) | 0.820 | 1.084 (0.711–1.653) | 0.706 |
MUFA/SFA score = 0 | 1 (reference) | 1 (reference) | ||
MUFA/SFA score = 1 | 0.979 (0.739–1.296) | 0.879 | 0.804 (0.512–1.264) | 0.341 |
Adjusted HR (95% CI) † | p | |
---|---|---|
Overall | 1.406 (1.011–1.955) | 0.043 |
Age < 65 years | 0.944 (0.363–2.452) | 0.905 |
Age ≥ 65 years | 1.524 (1.092–2.127) | 0.014 |
Male | 1.207 (0.712–2.046) | 0.481 |
Female | 1.665 (1.106–2.508) | 0.015 |
Body mass index < 30 kg/m2 | 1.111 (0.796–1.551) | 0.530 |
Body mass index ≥ 30 kg/m2 | 1.795 (1.001–3.219) | 0.049 |
Calorie intake < 25 kcal/kg/day | 1.473 (0.980–2.215) | 0.063 |
Calorie intake ≥ 25 kcal/kg/day | 1.559 (0.849–2.860) | 0.150 |
No diabetes | 0.979 (0.684–1.403) | 0.909 |
Diabetes | 2.318 (1.404–3.828) | 0.001 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.949 (0.542–1.660) | 0.852 |
eGFR < 60 mL/min/1.73 m2 | 1.903 (1.298–2.791) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-Y.; Lee, C.-L.; Liu, W.-J.; Wang, J.-S. Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure. Nutrients 2022, 14, 842. https://doi.org/10.3390/nu14040842
Chang C-Y, Lee C-L, Liu W-J, Wang J-S. Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure. Nutrients. 2022; 14(4):842. https://doi.org/10.3390/nu14040842
Chicago/Turabian StyleChang, Chih-Yun, Chia-Lin Lee, Wei-Ju Liu, and Jun-Sing Wang. 2022. "Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure" Nutrients 14, no. 4: 842. https://doi.org/10.3390/nu14040842
APA StyleChang, C. -Y., Lee, C. -L., Liu, W. -J., & Wang, J. -S. (2022). Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure. Nutrients, 14(4), 842. https://doi.org/10.3390/nu14040842