Establishing the Prevalence of Osteomalacia in Arab Adolescents Using Biochemical Markers of Bone Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry
2.2. Blood Samples
2.3. Definition of Biochemical Osteomalacia
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cashman, K.D. Global differences in vitamin D status and dietary intake: A review of the data. Endocr. Connect. 2022, 11, e210282. [Google Scholar] [CrossRef] [PubMed]
- Al-Alyani, H.; Al-Turki, H.A.; Al-Essa, O.N.; Alani, F.M.; Sadat-Ali, M. Vitamin D deficiency in Saudi Arabians: A reality or simply hype: A meta-analysis (2008–2015). J. Fam. Community Med. 2018, 25, 1–4. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Vitamin D in Saudi Arabia: Prevalence, distribution and disease associations. J. Steroid Biochem. Mol. Biol. 2018, 175, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Al Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos. 2020, 15, 35. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Saleh, Y.; Aljohani, N.; Sulimani, R.; Al-Othman, A.M.; Alfawaz, H.; Fouda, M.; Al-Amri, F.; Shahrani, A.; Alharbi, M.; et al. Vitamin D status correction in Saudi Arabia: An experts’ consensus under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis, and Musculoskeletal Diseases (ESCEO). Arch. Osteoporos 2017, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Al-Daghri, N.M.; Hussain, S.D.; Ansari, M.G.; Khattak, M.N.; Aljohani, N.; Al-Saleh, Y.; Al-Harbi, M.Y.; Sabico, S.; Alokail, M.S. Decreasing prevalence of vitamin D deficiency in the central region of Saudi Arabia (2008–2017). J. Steroid Biochem. Mol. Biol. 2021, 212, 105920. [Google Scholar] [CrossRef]
- Zimmerman, L.; McKeon, B. Osteomalacia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Uday, S.; Högler, W. Spot the silent sufferers: A call for clinical diagnostic criteria for solar and nutritional osteomalacia. J. Steroid Biochem. Mol. Biol. 2019, 188, 141–146. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Nutritional rickets & osteomalacia: A practical approach to management. Indian J. Med. Res. 2020, 152, 356–367. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [Green Version]
- Fida, N.M. Assessment of nutritional rickets in Western Saudi Arabia. Saudi Med. J. 2003, 24, 337–340. [Google Scholar]
- Al Jurayyan, N.A.; Mohamed, S.; Al Issa, S.D.; Al Jurayyan, A.N. Rickets and osteomalacia in Saudi children and adolescents attending endocrine clinic, Riyadh, Saudi Arabia. Sudan J. Paediatr. 2012, 12, 56–63. [Google Scholar] [PubMed]
- Hazzazi, M.A.; Alzeer, I.; Tamimi, W.; Al Atawi, M.; Al Alwan, I. Clinical presentation and etiology of osteomalacia/rickets in adolescents. Saudi J. Kidney Dis. Transpl. 2013, 24, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Sulimani, R.A.; Mohammed, A.G.; Alfadda, A.A.; Alshehri, S.N.; Al-Othman, A.M.; Al-Daghri, N.M.; Hanley, D.A.; Khan, A.A. Vitamin D deficiency and biochemical variations among urban Saudi adolescent girls according to season. Saudi Med. J. 2016, 37, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Othman, A.; Albanyan, A.; Al-Attas, O.S.; Alokail, M.S.; Sabico, S.; Chrousos, G.P. Perceived Stress Scores among Saudi Students Entering Universities: A Prospective Study during the First Year of University Life. Int. J. Environ. Res. Public Health 2014, 11, 3972–3981. [Google Scholar] [CrossRef] [Green Version]
- Amer, O.E.; Sabico, S.; Khattak, M.N.K.; Alnaami, A.M.; Aljohani, N.J.; Alfawaz, H.; AlHameidi, A.; Al-Daghri, N.M. Increasing Prevalence of Pediatric Metabolic Syndrome and Its Components among Arab Youth: A Time-Series Study from 2010–2019. Children 2021, 8, 1129. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Hameidi, A.; Alfawaz, H.; Alharbi, M.; Khattak, M.N.K.; Alnaami, A.M.; Aljohani, N.J.; Alkhaldi, G.; Wani, K.; et al. Effects of a 12-Month Hybrid (In-Person + Virtual) Education Program in the Glycemic Status of Arab Youth. Nutrients 2022, 14, 1759. [Google Scholar] [CrossRef]
- Al-Musharaf, S.; Fouda, M.A.; Turkestani, I.Z.; Al-Ajlan, A.; Sabico, S.; Alnaami, A.M.; Wani, K.; Hussain, S.D.; Alraqebah, B.; Al-Serehi, A.; et al. Vitamin D Deficiency Prevalence and Predictors in Early Pregnancy among Arab Women. Nutrients 2018, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Adeli, K.; Higgins, V.; Trajcevski, K.; Habeeb, N.W.-A. The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper. Crit. Rev. Clin. Lab. Sci. 2017, 54, 358–413. [Google Scholar] [CrossRef] [Green Version]
- Aljuraibah, F.; Bacchetta, J.; Brandi, M.L.; Florenzano, P.; Javaid, M.K.; Mäkitie, O.; Raimann, A.; Rodriguez, M.; Siggelkow, H.; Tiosano, D.; et al. An Expert Perspective on Phosphate Dysregulation With a Focus on Chronic Hypophosphatemia. J. Bone Miner. Res. 2022, 37, 12–20. [Google Scholar] [CrossRef]
- El Mouzan, M.I.; Al Salloum, A.A.; AlQurashi, M.M.; Al Herbish, A.S.; Al Omar, A. The LMS and Z scale growth reference for Saudi school-age children and adolescents. Saudi J. Gastroenterol. 2016, 22, 331–336. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for sta-tistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, G.I.; Bereket, A.; El Kholy, M.; Audì, L.; Cesur, Y.; Ozkan, B.; Rashad, M.; Cancio, M.F.; Weisman, Y.; Saggese, G.; et al. Rickets in the Middle East: Role of Environment and Genetic Predisposition. J. Clin. Endocrinol. Metab. 2008, 93, 1743–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thacher, T.D.; Pludowski, P.; Shaw, N.J.; Mughal, M.Z.; Munns, C.F.; Högler, W. Nutritional rickets in immigrant and refugee children. Public Health Rev. 2016, 37, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutritional Rickets: A Review of Disease Burden, Causes, Diagnosis, Prevention and Treatment; World Health Organization: Geneva, Switzerland, 2019.
- Thacher, T.D.; Fischer, P.R.; Tebben, P.J.; Singh, R.J.; Cha, S.S.; Maxson, J.A.; Yawn, B.P. Increasing Incidence of Nutritional Rickets: A Population-Based Study in Olmsted County, Minnesota. Mayo Clin. Proc. 2013, 88, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabra, T.; Tahbildar, P.; Sharma, A.; Boruah, S.; Mahajan, R.; Raje, A. Prevalence of skeletal deformity due to nutritional rickets in children between 1 and 18 years in tea garden community. J. Clin. Orthop. Trauma 2016, 7, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Julies, P.; Lynn, R.M.; Pall, K.; Leoni, M.; Calder, A.; Mughal, Z.; Shaw, N.; McDonnell, C.; McDevitt, H.; Blair, M. Nutritional rickets under 16 years: UK surveillance results. Arch. Dis. Child. 2020, 105, 587–592. [Google Scholar] [CrossRef]
- Shah, T.H.; Hassan, M.; Siddiqui, T.S. Subclinical rickets. Pak. J. Med. Sci. 2014, 30, 854–857. [Google Scholar]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Högler, W. Complications of vitamin D deficiency from the foetus to the infant: One cause, one prevention, but who’s responsibility? Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 385–398. [Google Scholar] [CrossRef]
- Golden, N.H.; Abrams, S.A.; Committee on Nutrition. Optimizing Bone Health in Children and Adolescents. Pediatrics 2014, 134, e1229–e1243. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.; Borai, A.; Dakhakhni, M.; Bahijri, S.; Faizo, H.; Bokhari, F.F.; Ferns, G.; Mirza, A.A. Stability and validity of intact parathyroid hormone levels in different sample types and storage conditions. J. Clin. Lab. Anal. 2021, 35, e23771. [Google Scholar] [CrossRef]
- Atapattu, N.; Shaw, N.; Högler, W. Relationship between serum 25-hydroxyvitamin D and parathyroid hormone in the search for a biochemical definition of vitamin D deficiency in children. Pediatr. Res. 2013, 74, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Mumena, W.A.; Ateek, A.A.; Alamri, R.K.; Alobaid, S.A.; Alshallali, S.H.; Afifi, S.Y.; Aljohani, G.A.; Kutbi, H.A. Fast-Food Consumption, Dietary Quality, and Dietary Intake of Adolescents in Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 15083. [Google Scholar] [CrossRef]
- Kutbi, H.A. Nutrient intake and gender differences among Saudi children. J. Nutr. Sci. 2021, 10, e99. [Google Scholar] [CrossRef]
- Sadat-Ali, M.; Al Elq, A.; Al-Farhan, M.; Sadat, N.A. Fortification with vitamin D: Comparative study in the Saudi Arabian and US markets. J. Fam. Community Med. 2013, 20, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, M.; Andronis, L.; Pallan, M.; Högler, W.; Frew, E. The economic case for prevention of population vitamin D deficiency: A modelling study using data from England and Wales. Eur. J. Clin. Nutr. 2020, 74, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Uday, S.; Kongjonaj, A.; Aguiar, M.; Tulchinsky, T.; Hoegler, W. Variations in infant and childhood vitamin D supplementation programmes across Europe and factors influencing adherence. Endocr. Connect. 2017, 6, 667–675. [Google Scholar] [CrossRef]
Parameters | All | Girls | Boys | p-Value |
---|---|---|---|---|
N | 2938 | 1697 | 1241 | |
Age (years) | 14.9 ± 1.7 | 14.8 ± 1.8 | 15.1 ± 1.6 | <0.001 |
Height (cm) | 158.9 ± 10.3 | 156.4 ± 9.5 | 162.6 ± 10.3 | <0.001 |
Weight (kg) | 60.4 ± 16.8 | 57.6 ± 15.2 | 65.8 ± 33.6 | <0.001 |
BMI (kg/m2) | 23.8 ± 5.7 | 23.5 ± 5.7 | 24.2 ± 5.7 | 0.004 |
BMI Z-score | 0.6 ± 1.2 | 0.6 ± 1.2 | 0.7 ± 1.2 | 0.06 |
Ca (mmol/L) | 2.5 ± 0.4 | 2.5 ± 0.4 | 2.6 ± 0.4 | <0.001 |
Pi (mmol/L) | 1.5 ± 0.4 | 1.4 ± 0.3 | 1.6 ± 0.5 | <0.001 |
ALP (U/L) | 63.6 (42.5–94) | 58.2 (39.5–88.9) | 70.6 (48.0–100.6) | <0.001 |
25(OH)D (nmol/L) | 30.8 (22.5–42.2) | 26.9 (20.5–38.4) | 35.8 (28.1–46.4) | <0.001 |
Parameters | Girls | Boys | ||||
---|---|---|---|---|---|---|
Controls | Cases | p-Value | Controls | Cases | p-Value | |
N | 1447 | 250 | 1196 | 45 | ||
Age (years) | 14.7 ± 1.8 | 14.7 ± 1.7 | 0.90 | 15.1 ± 1.6 | 14.9 ± 1.5 | 0.59 |
Height (cm) | 156.1 ± 9.5 | 157.1 ± 9.5 | 0.13 | 162.3 ± 10.5 | 163.7 ± 8.6 | 0.39 |
Weight (kg) | 56.8 ± 15.2 | 59.9 ± 14.8 | 0.004 | 64.0 ± 18.1 | 67.7 ± 23.0 | 0.20 |
BMI (kg/m2) | 23.3 ± 5.7 | 24.2 ± 5.9 | 0.02 | 24.1 ± 5.6 | 25.2 ± 8.3 | 0.22 |
BMI Z-score | 0.6 ± 1.1 | 0.8 ± 1.1 | 0.009 | 0.7 ± 1.3 | 0.8 ± 1.2 | 0.53 |
Ca (mmol/L) | 2.5 ± 0.3 | 2.3 ± 0.4 | <0.001 | 2.6 ± 0.3 | 2.2 ± 0.5 | <0.001 |
Pi (mmol/L) | 1.5 ± 0.3 | 1.1 ± 0.3 | <0.001 | 1.6 ± 0.5 | 1.2 ± 0.7 | <0.001 |
ALP (U/L) | 56.4 (38.7–84.4) | 60.4 (40.7–96.4) | 0.05 | 70.1 (47.6–98.3) | 67.3 (55.5–110.6) | 0.34 |
25(OH)D (nmol/L) | 29.7 (21.4–41.4) | 21.9 (18.0–25.9) | <0.001 | 37.0 (29.5–47.6) | 21.3 (17.4–25.2) | <0.001 |
Components | Crude OR (95%CI) | p-Value | Adjusted OR (95%CI) * | p-Value |
---|---|---|---|---|
Low Ca and/or Pi | 2.1 (1.7–2.6) | <0.001 | 2.2 (1.7–2.7) | <0.001 |
Low 25(OH)D | 3.1 (2.7–3.7) | <0.001 | 3.3 (2.8–3.9) | <0.001 |
Elevated ALP | 3.3 (2.0–5.5) | <0.001 | 4.2 (2.4–7.3) | <0.001 |
At least one component | 3.7 (3.2–4.4) | <0.001 | 4.0 (3.3–4.7) | <0.001 |
Biochemical osteomalacia | 4.5 (3.3–6.3) | <0.001 | 4.6 (3.3–6.4) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Daghri, N.M.; Yakout, S.; Sabico, S.; Wani, K.; Hussain, S.D.; Aljohani, N.; Uday, S.; Högler, W. Establishing the Prevalence of Osteomalacia in Arab Adolescents Using Biochemical Markers of Bone Health. Nutrients 2022, 14, 5354. https://doi.org/10.3390/nu14245354
Al-Daghri NM, Yakout S, Sabico S, Wani K, Hussain SD, Aljohani N, Uday S, Högler W. Establishing the Prevalence of Osteomalacia in Arab Adolescents Using Biochemical Markers of Bone Health. Nutrients. 2022; 14(24):5354. https://doi.org/10.3390/nu14245354
Chicago/Turabian StyleAl-Daghri, Nasser M., Sobhy Yakout, Shaun Sabico, Kaiser Wani, Syed Danish Hussain, Naji Aljohani, Suma Uday, and Wolfgang Högler. 2022. "Establishing the Prevalence of Osteomalacia in Arab Adolescents Using Biochemical Markers of Bone Health" Nutrients 14, no. 24: 5354. https://doi.org/10.3390/nu14245354