Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Laboratory Methods
2.3. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services: Atlanta, GA, USA, 2020.
- Hall, R.M.; Strong, A.P.; Krebs, J.D. Importance of low carbohydrate diets in diabetes management. Nutr. Diet. Suppl. 2016, 8, 9–19. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S53–S72. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L., on behalf of the PUFAH Group. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. BMJ 2019, 366, l4697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, M.L.; Dunbar, S.A.; Jaacks, L.M.; Karmally, W.; Mayer-Davis, E.J.; Wylie-Rosett, J.; Yancy, W.S., Jr. Macronutrients, food groups, and eating patterns in the management of diabetes: A systematic review of the literature, 2010. Diabetes Care 2012, 35, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Barbaresko, J.; Pischke, C.R.; Iser, N.; Beckhaus, J.; Schwingshackl, L.; Schlesinger, S. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020, 17, e1003347. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Zeng, F.; Deng, G.; Liang, J.; Wang, J.; Su, Y.; Chen, Y.; Mao, L.; Liu, Z.; et al. Biomarkers of fatty acids and risk of type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2021, 61, 2705–2718. [Google Scholar] [CrossRef]
- Chen, G.C.; Arthur, R.; Qin, L.Q.; Chen, L.H.; Mei, Z.; Zheng, Y.; Li, Y.; Wang, T.; Rohan, T.E.; Qi, Q. Association of Oily and Nonoily Fish Consumption and Fish Oil Supplements with Incident Type 2 Diabetes: A Large Population-Based Prospective Study. Diabetes Care 2021, 44, 672–680. [Google Scholar] [CrossRef]
- Qian, F.; Ardisson Korat, A.V.; Imamura, F.; Marklund, M.; Tintle, N.; Virtanen, J.K.; Zhou, X.; Bassett, J.K.; Lai, H.; Hirakawa, Y.; et al. n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care 2021, 44, 1133–1142. [Google Scholar] [CrossRef]
- Abbott, K.A.; Veysey, M.; Lucock, M.; Niblett, S.; King, K.; Burrows, T.; Garg, M.L. Sex-dependent association between erythrocyte n-3 PUFA and type 2 diabetes in older overweight people. Br. J. Nutr. 2016, 115, 1379–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.C.; Chang, C.I.; Chang, W.T.; Liao, Y.L.; Chung, H.F.; Hsu, C.C.; Shin, S.J.; Lin, K.D. Blood biomarkers of various dietary patterns correlated with metabolic indicators in Taiwanese type 2 diabetes. Food Nutr. Res. 2019, 63, 3592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; An, W.S.; Park, Y. Erythrocyte n-3 polyunsaturated fatty acids and the risk of type 2 diabetes in Koreans: A case-control study. Ann. Nutr. Metab. 2013, 63, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.; Collins, C.E.; Garg, M.L. Omega-3 index, obesity and insulin resistance in children. Int. J. Pediatr. Obes. 2011, 6, e532–e539. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Sullivan, V.K.; Fulgoni, V.L., 3rd; Eren, F.; Cassens, M.E.; Bunczek, M.T.; Kris-Etherton, P.M. Circulating Concentrations of Essential Fatty Acids, Linoleic and α-Linolenic Acid, in US Adults in 2003–2004 and 2011–2012 and the Relation with Risk Factors for Cardiometabolic Disease: An NHANES Analysis. Curr. Dev. Nutr. 2020, 4, nzaa149. [Google Scholar] [CrossRef]
- Matsuura, B.; Kanno, S.; Minami, H.; Tsubouchi, E.; Iwai, M.; Matsui, H.; Horiike, N.; Onji, M. Effects of antihyperlipidemic agents on hepatic insulin sensitivity in perfused Goto-Kakizaki rat liver. J. Gastroenterol. 2004, 39, 339–345. [Google Scholar] [CrossRef]
- Minami, A.; Ishimura, N.; Sakamoto, S.; Takishita, E.; Mawatari, K.; Okada, K.; Nakaya, Y. Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia. Br. J. Nutr. 2002, 87, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Schwichtenberg, K.A.; Hanson, N.Q.; Tsai, M.Y. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin. Chem. 2006, 52, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Pottala, J.V.; Lacey, S.M.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham heart study. Atherosclerosis 2012, 225, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Kalsbeek, A.; Veenstra, J.; Westra, J.; Disselkoen, C.; Koch, K.; McKenzie, K.A.; O’Bott, J.; Vander Woude, J.; Fischer, K.; Shearer, G.C.; et al. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham heart study offspring cohort. PLoS ONE 2018, 13, e0194882. [Google Scholar] [CrossRef]
- Lechner, K.; Scherr, J.; Lorenz, E.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; Duvinage, A.; Edelmann, F. Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients: The Aldo-DHF randomized controlled trial. Clin. Res. Cardiol. 2022, 111, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Young, I.E.; Parker, H.M.; Cook, R.L.; O’Dwyer, N.J.; Garg, M.L.; Steinbeck, K.S.; Cheng, H.L.; Donges, C.; Franklin, J.L.; O’Connor, H.T. Association between Obesity and Omega-3 Status in Healthy Young Women. Nutrients 2020, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S. Homeostasis model assessment: Insulin resistance and b-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Pottala, J.V.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans. J. Nutr. 2012, 142, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.; Djalali, M.; Honarvar, N.M.; Mazaherioun, M.; Zarei, M.; Agh, F.; Gholampour, Z.F.; Javanbakht, M.H. The Effect of n-3 Polyunsaturated Fatty Acids Supplementation on Serum Irisin in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Int. J. Endocrinol. Metab. 2017, 15, e40614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toorang, F.; Djazayery, A.; Djalali, M. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients. Iran. J. Public Health 2016, 45, 340–345. [Google Scholar] [PubMed]
- Pooya, S.; Jalali, M.D.; Jazayery, A.D.; Saedisomeolia, A.; Eshraghian, M.R.; Toorang, F. The efficacy of omega-3 fatty acid supplementation on plasma homocysteine and malondialdehyde levels of type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Taouis, M.; Dagou, C.; Ster, C.; Durand, G.; Pinault, M.; Delarue, J. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E664–E671. [Google Scholar] [CrossRef] [Green Version]
- Djoussé, L.; Biggs, M.L.; Lemaitre, R.N.; King, I.B.; Song, X.; Ix, J.H.; Mukamal, K.J.; Siscovick, D.S.; Mozaffarian, D. Plasma omega-3 fatty acids and incident diabetes in older adults. Am. J. Clin. Nutr. 2011, 94, 527–533. [Google Scholar] [CrossRef]
- Harris, W.S.; Luo, J.; Pottala, J.V.; Margolis, K.L.; Espeland, M.A.; Robinson, J.G. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women’s Health Initiative Memory Study. PLoS ONE 2016, 11, e0147894. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; von Schacky, C. The Omega-3 index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Cerrato, M.; Ceseri, M.; DeFina, L.F.; Delgado, G.E.; Gellert, S.; Hahn, A.; Howard, B.V.; Kadota, A.; Kleber, M.E.; et al. Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 index. Prostaglandins Leukot. Essent. Fatty Acids 2022, 179, 102418. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Albert, B.B.; Derraik, J.G.B.; Brennan, C.M.; Biggs, J.B.; Smith, G.C.; Garg, M.L.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci. Rep. 2014, 4, 6697. [Google Scholar] [CrossRef] [Green Version]
- Abbott, K.A.; Burrows, T.L.; Thota, R.N.; Alex, A.; Acharya, S.; Attia, J.; McEvoy, M.; Garg, M.L. Association between plasma phospholipid omega-3 polyunsaturated fatty acids and type 2 diabetes is sex dependent: The Hunter Community Study. Clin. Nutr. 2020, 39, 1059–1066. [Google Scholar] [CrossRef]
- Bhaswant, M.; Poudyal, H.; Brown, L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J. Nutr. Biochem. 2015, 26, 571–584. [Google Scholar] [CrossRef]
- Hou, M.; Zhou, W.; Sun, L.; Wang, B.; Shen, J.; Cao, L.; Lv, H. Effect of Fish Oil on Insulin Sensitivity in Children: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Can. J. Diabetes 2021, 45, 531–538.e1. [Google Scholar] [CrossRef]
- Iggman, D.; Arnlöv, J.; Vessby, B.; Cederholm, T.; Sjögren, P.; Risérus, U. Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia 2010, 53, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, T.A.; Burke, V.; Puddey, I.B.; Watts, G.F.; O’Neal, D.N.; Best, J.D.; Beilin, L.J. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am. J. Clin. Nutr. 2000, 71, 1085–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heine, R.J. Dietary fish oil and insulin action in humans. Ann. N. Y. Acad. Sci. 1993, 683, 110–121. [Google Scholar] [CrossRef]
- Kasim, S.E. Dietary marine fish oils and insulin action in type 2 diabetes. Ann. N. Y. Acad. Sci. 1993, 683, 250–257. [Google Scholar] [CrossRef]
- Takkunen, M.J.; Schwab, U.S.; de Mello, B.D.F.; Eriksson, J.G.; Lindström, J.; Tuomilehto, J.; Uusitupa, M.I.J.; DPS Study Group. Longitudinal associations of serum fatty acid composition with type 2 diabetes risk and markers of insulin secretion and sensitivity in the Finnish Diabetes Prevention Study. Eur. J. Nutr. 2016, 55, 967–979. [Google Scholar] [CrossRef]
- Toborek, M.; Lee, Y.W.; Garrido, R.; Kaiser, S.; Hennig, B. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells. Am. J. Clin. Nutr. 2002, 75, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.; Nadler, J. Inflammatory mechanisms of diabetic complications. Curr. Diabetes Rep. 2007, 7, 242–248. [Google Scholar] [CrossRef]
Normal Weight (n = 24,901) | Overweight (n = 35,175) | Obese (n = 40,496) | |||||||
---|---|---|---|---|---|---|---|---|---|
Hyperglycemic (n = 918) | Normoglycemic (n = 23,983) | p-Value | Hyperglycemic (n = 2698) | Normoglycemic (n = 32,477) | p-Value | Hyperglycemic (n = 6606) | Normoglycemic (n = 33,890) | p-Value | |
Age (y) | 64.0 ± 14.4 | 54.5 ± 16.7 | <0.001 | 62.9 ± 12.3 | 56.0 ± 14.7 | <0.001 | 58.4 ± 11.8 | 53.7 ± 14.0 | <0.001 |
Women (%) | 46.1 | 68.0 | <0.001 | 35.1 | 45.3 | <0.001 | 42.4 | 52.6 | <0.001 |
BMI (kg/m2) | 23.0 ± 1.5 | 22.5 ± 1.7 | <0.001 | 27.7 ± 1.4 | 27.4 ± 1.4 | <0.001 | 37.1 ± 6.5 | 35.6 ± 5.5 | <0.001 |
Glucose (mg/dL) | 180.8 ± 69.3 | 88.8 ± 10.7 | <0.001 | 175.8 ± 62.1 | 92.6 ± 11.2 | <0.001 | 177.8 ± 57.1 | 95.1 ± 12.2 | <0.001 |
HbA1c (%) | 7.8 ± 2.2 | 5.3 ± 0.5 | <0.001 | 7.7 ± 1.9 | 5.4 ± 0.5 | <0.001 | 7.9 ± 1.8 | 5.6 ± 0.6 | <0.001 |
Insulin (µU/mL) | 14.9 ± 24.4 | 7.1 ± 6.9 | <0.001 | 19.4 ± 26.9 | 10.5 ± 9.9 | <0.001 | 27.1 ± 31.4 | 17.4 ± 17.4 | <0.001 |
HOMA-IR | 6.5 ± 12.8 | 1.6 ± 1.6 | <0.001 | 8.3 ± 12.3 | 2.5 ± 2.7 | <0.001 | 11.7 ± 14.8 | 4.2 ± 4.3 | <0.001 |
ALA | 0.14 ± 0.05 | 0.15 ± 0.05 | 0.158 | 0.140 ± 0.048 | 0.139 ± 0.043 | 0.141 | 0.137 ± 0.041 | 0.135 ± 0.038 | 0.024 |
EPA | 0.72 ± 0.63 | 0.85 ± 0.75 | <0.001 | 0.71 ± 0.60 | 0.76 ± 0.62 | <0.001 | 0.61 ± 0.48 | 0.63 ± 0.49 | <0.001 |
DHA | 4.31 ± 1.66 | 4.50 ± 1.54 | 0.001 | 4.272 ± 1.484 | 4.269 ± 1.417 | 0.924 | 3.91 ± 1.29 | 3.92 ± 1.26 | 0.463 |
Omega-3 Index | 5.03 ± 2.18 | 5.35 ± 2.14 | <0.001 | 4.98 ± 1.97 | 5.03 ± 1.92 | 0.237 | 4.52 ± 1.68 | 4.56 ± 1.65 | 0.104 |
Quintiles of Erythrocyte n-3 Polyunsaturated Fatty Acid Content | p-Value for Trend 2 | p-Value for Interaction with Weight Groups 3 | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
ALA | Cutoff (%) | ≤0.10 | 0.10< to ≤0.12 | 0.12< to ≤0.14 | 0.14< to ≤0.17 | >0.17 | 0.712 | |
Normal weight | ||||||||
Cases/controls (n) | 175/4011 | 169/4169 | 179/4810 | 170/4964 | 225/6029 | |||
OR (95% CI) | 1.00 | 1.05 (0.85–1.31) | 1.07 (0.86–1.33) | 1.01 (0.81–1.26) | 1.15 (0.94–1.42) | 0.275 | ||
Overweight | ||||||||
Cases/controls (n) | 634/6863 | 502/6445 | 502/6748 | 496/6139 | 564/6282 | |||
OR (95% CI) | 1.00 | 0.91 (0.81–1.03) | 0.91 (0.81–1.03) | 1.03 (0.91–1.16) | 1.18 (1.05–1.33) 4 | 0.003 | ||
Obese | ||||||||
Cases/controls (n) | 1569/7725 | 1308/6919 | 1322/7107 | 1200/6431 | 1207/5708 | |||
OR (95% CI) | 1.00 | 0.99 (0.91–1.07) | 1.04 (0.95–1.12) | 1.09 (1.00–1.19) 4 | 1.32 (1.21–1.43) 5 | <0.001 | ||
EPA | Cutoff (%) | ≤0.34 | 0.34< to ≤0.45 | 0.45< to ≤0.61 | 0.61< to ≤0.98 | >0.98 | 0.010 | |
Normal weight | ||||||||
Cases/controls (n) | 233/4478 | 194/3925 | 142/4073 | 158/4957 | 191/6550 | |||
OR (95% CI) | 1.00 | 0.89 (0.73–1.09) | 0.62 (0.50–0.77) 4 | 0.53 (0.43–0.66) 4 | 0.44 (0.36–0.54) 4 | <0.001 | ||
Overweight | ||||||||
Cases/controls (n) | 623/5793 | 555/6089 | 484/6488 | 494/7009 | 542/7098 | |||
OR (95% CI) | 1.00 | 0.83 (0.74–0.94) 5 | 0.66 (0.59–0.75) 4 | 0.58 (0.51–0.66) 4 | 0.58 (0.51–0.65) 4 | <0.001 | ||
Obese | ||||||||
Cases/controls (n) | 1659/7388 | 1624/7832 | 1367/7449 | 1093/6370 | 863/4851 | |||
OR (95% CI) | 1.00 | 0.90 (0.84–0.98) 5 | 0.79 (0.73–0.85) 4 | 0.69 (0.63–0.75) 4 | 0.65 (0.59–0.71) 4 | <0.001 | ||
DHA | Cutoff (%) | ≤2.95 | 2.95< to ≤3.59 | 3.59< to ≤4.32 | 4.32< to ≤5.36 | >5.36 | ||
Normal weight | 0.010 | |||||||
Cases/controls (n) | 197/3959 | 168/3791 | 169/4312 | 160/5129 | 224/6792 | |||
OR (95% CI) | 1.00 | 0.87 (0.70–1.08) | 0.74 (0.60–0.92) 5 | 0.56 (0.45–0.70) 4 | 0.56 (0.46–0.69) 4 | <0.001 | ||
Overweight | ||||||||
Cases/controls (n) | 513/5944 | 529/6125 | 521/6351 | 557/6987 | 578/7070 | |||
OR (95% CI) | 1.00 | 0.91 (0.80–1.04) | 0.82 (0.72–0.93) 5 | 0.76 (0.67–0.86) 4 | 0.72 (0.64–0.82) 4 | <0.001 | ||
Obese | ||||||||
Cases/controls (n) | 1552/7975 | 1610/7891 | 1422/7316 | 1127/6158 | 895/4550 | |||
OR (95% CI) | 1.00 | 0.97 (0.90–1.05) | 0.89 (0.82–0.96) 5 | 0.79 (0.72–0.86) 4 | 0.80 (0.73–0.88) 4 | <0.001 | ||
Omega-3 Index | Cutoff (%) | ≤3.35 | 3.35< to ≤4.04 | 4.04< to ≤4.93 | 4.93< to ≤6.33 | >6.33 | ||
Normal weight | 0.036 | |||||||
Cases/controls (n) | 192/3986 | 177/3796 | 176/4247 | 157/5138 | 216/6816 | |||
OR (95% CI) | 1.00 | 0.92 (0.75–1.14) | 0.81 (0.66–1.00) | 0.57 (0.46–0.71) 4 | 0.54 (0.44–0.66) 4 | <0.001 | ||
Overweight | ||||||||
Cases/controls (n) | 525/5923 | 542/6043 | 516/6401 | 537/7011 | 578/7099 | |||
OR (95% CI) | 1.00 | 0.93 (0.82–1.06) | 0.79 (0.70–0.90) 4 | 0.71 (0.62–0.81) 4 | 0.70 (0.61–0.79) 4 | <0.001 | ||
Obese | ||||||||
Cases/controls (n) | 1596/7896 | 1608/7973 | 1438/7325 | 1101/6157 | 863/4539 | |||
OR (95% CI) | 1.00 | 0.93 (0.86–1.00) | 0.86 (0.80–0.94) 4 | 0.74 (0.68–0.80) 4 | 0.74 (0.67–0.81) 4 | <0.001 |
ALA | p-Value | EPA | p-Value | DHA | p-Value | Omega-3 Index | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
HbA1c | Normal weight (n = 24,901) | 0.007 | 0.259 | −0.066 | <0.001 | −0.059 | <0.001 | −0.066 | <0.001 |
Overweight (n = 35,175) | 0.036 | <0.001 | −0.071 | <0.001 | −0.058 | <0.001 | −0.067 | <0.001 | |
Obese (n = 40,496) | 0.046 | <0.001 | −0.070 | <0.001 | −0.066 | <0.001 | −0.071 | <0.001 | |
Insulin | Normal weight (n = 24,901) | −0.023 | <0.001 | −0.044 | <0.001 | −0.013 | 0.043 | −0.025 | <0.001 |
Overweight (n = 35,175) | 0.014 | 0.009 | −0.019 | <0.001 | 0.007 | 0.164 | −0.001 | 0.915 | |
Obese (n = 40,496) | 0.016 | −0.010 | 0.049 | 0.013 | 0.008 | 0.007 | 0.144 | ||
HOMA-IR | Normal weight (n = 24,901) | −0.014 | 0.014 | −0.038 | <0.001 | −0.012 | 0.056 | −0.022 | <0.001 |
Overweight (n = 35,175) | 0.017 | 0.001 | −0.024 | <0.001 | −0.001 | 0.892 | −0.008 | 0.111 | |
Obese (n = 40,496) | 0.028 | <0.001 | −0.015 | 0.004 | −0.0004 | 0.936 | −0.005 | 0.350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.; Harris, W.S.; Tintle, N.L.; Park, Y. Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States. Nutrients 2022, 14, 4407. https://doi.org/10.3390/nu14204407
Jo S, Harris WS, Tintle NL, Park Y. Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States. Nutrients. 2022; 14(20):4407. https://doi.org/10.3390/nu14204407
Chicago/Turabian StyleJo, Sunyoung, William S. Harris, Nathan L. Tintle, and Yongsoon Park. 2022. "Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States" Nutrients 14, no. 20: 4407. https://doi.org/10.3390/nu14204407
APA StyleJo, S., Harris, W. S., Tintle, N. L., & Park, Y. (2022). Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States. Nutrients, 14(20), 4407. https://doi.org/10.3390/nu14204407