Relationship between Depression with Physical Activity and Obesity in Older Diabetes Patients: Inflammation as a Mediator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Sample
2.3. Assessment of Covariables for Lifestyle Factors
2.4. Assessment of Depression
2.5. Assessment of Obesity
2.6. Assessment of PA Levels
2.7. Biochemical Determinations of Blood and Definition of Inflammation
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Older Adults with Type 2 Diabetes According to Depression and Inflammation Levels
3.2. Prevalence of Depression and Inflammation for Combined PA Levels with Obesity Status
3.3. Analysis of the Relationship between PA, Obesity, Inflammation, and Depression Based on Binary Logistic Regression
4. Discussion
4.1. Relationship between Diabetes, Obesity, and Depression
4.2. Relationship between Obesity, Inflammation, and Depression
4.3. Relationship between PA, Inflammation, and Depression
4.4. Relationship between Obesity, PA, and Inflammation
4.5. Relationship between Obesity, PA, Inflammation, and Depression
4.6. Achievements and Implications
4.7. Limitations and Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Blay, S.L.; Fillenbaum, G.G.; Marinho, V.; Andreoli, S.B.; Gastal, F.L. Increased health burden associated with comorbid depression in older Brazilians with diabetes. Affect Disord. 2011, 134, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, T.; Lloyd, C.E. Epidemiology of depression and diabetes: A systematic review. Affect Disord. 2012, 142, S8–S21. [Google Scholar] [CrossRef]
- Rustad, J.K.; Musselman, D.L.; Nemeroff, C.B. The relationship of depression and diabetes: Pathophysiological and treatment implications. Psychoneuroendocrinology 2011, 36, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.C.; Miller, A.H. Inflammation in depression: Is adiposity a cause? Dialogues Clin. Neurosci. 2011, 13, 41–53. [Google Scholar] [CrossRef]
- Taylor, L.; Loerbroks, A.; Herr, R.M.; Lane, R.D.; Fischer, J.E.; Thayer, J.F. Depression and smoking: Mediating role of vagal tone and inflammation. Ann. Behav. Med. 2011, 42, 334–340. [Google Scholar] [CrossRef]
- Gea, A.; Beunza, J.J.; Estruch, R.; Sanchez-Villegas, A.; Salas-Salvado, J.; Buil-Cosiales, P.; Gomez-Gracia, E.; Covas, M.I.; Corella, D.; Fiol, M.; et al. Alcohol intake, wine consumption and the development of depression: The PREDIMED study. BMC Med. 2013, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Luciano, M.; Mottus, R.; Starr, J.M.; McNeill, G.; Jia, X.; Craig, L.C.; Deary, I.J. Depressive symptoms and diet: Their effects on prospective inflammation levels in the elderly. Brain Behav. Immun. 2012, 26, 717–720. [Google Scholar] [CrossRef]
- Song, M.R.; Lee, Y.S.; Baek, J.D.; Miller, M. Physical activity status in adults with depression in the National Health and Nutrition Examination Survey, 2005–2006. Public Health Nurs. 2012, 29, 208–217. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef]
- Patel, A. Review: The role of inflammation in depression. Psychiatr. Danub. 2013, 25, S216–S223. [Google Scholar] [PubMed]
- Hayashino, Y.; Mashitani, T.; Tsujii, S.; Ishii, H. Elevated levels of hs-CRP are associated with high prevalence of depression in japanese patients with type 2 diabetes: The Diabetes Distress and Care Registry at Tenri (DDCRT 6). Diabetes Care 2014, 37, 2459–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Hernandez, H.; Simental-Mendia, L.E.; Rodriguez-Ramirez, G.; Reyes-Romero, M.A. Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. Int. J. Endocrinol. 2013, 2013, 678159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Hamer, M.; Hackett, R.A.; Bostock, S.; Lazzarino, A.I.; Carvalho, L.A.; Steptoe, A. Objectively assessed physical activity, adiposity, and inflammatory markers in people with type 2 diabetes. BMJ Open Diabetes Res. Care 2014, 2, e000030. [Google Scholar] [CrossRef]
- Rana, J.S.; Arsenault, B.J.; Despres, J.P.; Cote, M.; Talmud, P.J.; Ninio, E.; Wouter Jukema, J.; Wareham, N.J.; Kastelein, J.J.; Khaw, K.T.; et al. Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. Eur. Heart J. 2011, 32, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Vallance, J.K.; Winkler, E.A.; Gardiner, P.A.; Healy, G.N.; Lynch, B.M.; Owen, N. Associations of objectively-assessed physical activity and sedentary time with depression: NHANES (2005–2006). Prev. Med. 2011, 53, 284–288. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 3rd ed.; The Guilford Press: New York, NY, USA, 2022. [Google Scholar]
- Abu-Bader, S.; Jones, T.V. Statistical Mediation analysis using the Sobel Test and Hayes Process Macro. Int. J. Quant. Qual. Res. Methods 2021, 9, 42–61. [Google Scholar]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Hsu, L.Y.; Wang, S.H. Association of depression and diabetes complications and mortality: A population-based cohort study. Epidemiol. Psychiatr. Sci. 2020, 29, e96. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Chang, C.F.; Pan, M.Y.; Hsu, T.H.; Chen, M.Y. Depression and Its Associated Factors among Rural Diabetic Residents. J. Nurs. Res. 2017, 25, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Tai, S.Y.; Ma, T.C.; Wang, L.C.; Yang, Y.H. A community-based walk-in screening of depression in Taiwan. Sci. World J. 2014, 2014, 184018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124, 2245S–2317S. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Taiwan Health Promotion Administration, Ministry of Health and Welfare. BMI Measurements. Available online: https://health99.hpa.gov.tw/onlineQuiz/bmi (accessed on 21 June 2022).
- Hu, G.; Qiao, Q.; Silventoinen, K.; Eriksson, J.G.; Jousilahti, P.; Lindstrom, J.; Valle, T.T.; Nissinen, A.; Tuomilehto, J. Occupational, commuting, and leisure-time physical activity in relation to risk for Type 2 diabetes in middle-aged Finnish men and women. Diabetologia 2003, 46, 322–329. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- He, J.; Le, D.S.; Xu, X.; Scalise, M.; Ferrante, A.W.; Krakoff, J. Circulating white blood cell count and measures of adipose tissue inflammation predict higher 24-h energy expenditure. Eur. J. Endocrinol. 2010, 162, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.I.; Kuo, M.C.; Hwang, S.J.; Tsai, J.C.; Chen, H.C. The Advantages and Drawbacks of Methods for Assessing Kidney Function in Clinical Practice. J. Intern. Med. Taiwan 2012, 23, 34–41. [Google Scholar]
- AlShahrani, M.S. Prevalence of obesity and overweight among type 2 diabetic patients in Bisha, Saudi Arabia. J. Family Med. Prim. Care 2021, 10, 143–148. [Google Scholar] [CrossRef]
- Tseng, C.H. Body mass index and blood pressure in adult type 2 diabetic patients in Taiwan. Circ. J. 2007, 71, 1749–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nfor, O.N.; Wu, M.F.; Lee, C.T.; Wang, L.; Liu, W.H.; Tantoh, D.M.; Hsu, S.Y.; Lee, K.J.; Ho, C.C.; Debnath, T.; et al. Body mass index modulates the association between CDKAL1 rs10946398 variant and type 2 diabetes among Taiwanese women. Sci. Rep. 2018, 8, 13235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Website of the Health Promotion Administration, Ministry of Health and Welfare Nutrition and Health Survey in Taiwan (NAHSIT) Report 2013–2016. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1077&pid=6201 (accessed on 14 May 2021). (In Chinese).
- Pratt, L.A.; Brody, D.J. Depression and obesity in the U.S. adult household population, 2005–2010. NCHS Data Brief 2014, 167, 1–8. [Google Scholar]
- Pereira-Miranda, E.; Costa, P.R.F.; Queiroz, V.A.O.; Pereira-Santos, M.; Santana, M.L.P. Overweight and Obesity Associated with Higher Depression Prevalence in Adults: A Systematic Review and Meta-Analysis. J. Am. Coll. Nutr. 2017, 36, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, S.E.; Garmaroud, G.; Ghafouri, M.; Bafghi, S.A.; Ghafouri, M.; Tabesh, M.R.; Alizadehf, Z. Prevalence of anxiety and depression in patients with overweight and obesity. Obes. Med. 2020, 17, 100169. [Google Scholar] [CrossRef]
- Gonzalez-Castro, T.B.; Escobar-Chan, Y.M.; Fresan, A.; Lopez-Narvaez, M.L.; Tovilla-Zarate, C.A.; Juarez-Rojop, I.E.; Ble-Castillo, J.L.; Genis-Mendoza, A.D.; Arias-Vazquez, P.I. Higher risk of depression in individuals with type 2 diabetes and obesity: Results of a meta-analysis. J. Health Psychol. 2021, 26, 1404–1419. [Google Scholar] [CrossRef]
- Chen, F.; Wei, G.; Wang, Y.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Wang, D. Risk factors for depression in elderly diabetic patients and the effect of metformin on the condition. BMC Public Health 2019, 19, 1063. [Google Scholar] [CrossRef] [Green Version]
- Fulton, S.; Decarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- de Heredia, F.P.; Gomez-Martinez, S.; Marcos, A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, R.; Oldmeadow, C.; McEvoy, M.; Inder, K.J.; Schofield, P.W.; Nair, B.R.; Attia, J. The Association Between Obesity and Cognitive Function in Older Persons: How Much Is Mediated by Inflammation, Fasting Plasma Glucose, and Hypertriglyceridemia? J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1603–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Giuliani, F. The Role of Inflammation in Depression and Fatigue. Front. Immunol. 2019, 10, 1696. [Google Scholar] [CrossRef]
- Lotrich, F.E.; El-Gabalawy, H.; Guenther, L.C.; Ware, C.F. The role of inflammation in the pathophysiology of depression: Different treatments and their effects. J. Rheumatol. Suppl. 2011, 88, 48–54. [Google Scholar] [CrossRef]
- Raison, C.L.; Miller, A.H. Is depression an inflammatory disorder? Curr. Psychiatry Rep. 2011, 13, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28. [Google Scholar] [CrossRef]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 15, 51–60. [Google Scholar] [CrossRef]
- Sponder, M.; Campean, I.A.; Emich, M.; Fritzer-Szekeres, M.; Litschauer, B.; Graf, S.; Dalos, D.; Strametz-Juranek, J. Long-term physical activity leads to a significant increase in serum sRAGE levels: A sign of decreased AGE-mediated inflammation due to physical activity? Heart Vessel. 2018, 33, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kuk, J.L.; Davidson, L.E.; Hudson, R.; Kilpatrick, K.; Graham, T.E.; Ross, R. Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes. J. Appl. Physiol. 2005, 99, 1220–1225. [Google Scholar] [CrossRef]
- Park, M.; Reynolds, C.F., 3rd. Depression among older adults with diabetes mellitus. Clin. Geriatr. Med. 2015, 31, 117–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 2018, 105, 10–18. [Google Scholar] [CrossRef] [PubMed]
Depression | Inflammation Levels | ||||||
---|---|---|---|---|---|---|---|
Variables | With (n = 57) | Without (n = 140) | p | Low (n = 57) | Average (n = 105) | High (n = 35) | p |
Age (years) | 72.9 ± 6.2 | 71.8 ± 5.0 | 0.261 | 71 ± 4.3 | 72.4 ± 5.2 | 73.2 ± 6.8 | 0.124 |
Gender | |||||||
Men | 13 (22.8) | 77 (55.0) | <0.001 | 27 (47.4) | 52 (49.5) | 11 (31.4) | 0.169 |
Women | 44 (77.2) | 63 (45.0) | 30 (52.6) | 53 (50.5) | 24 (68.6) | ||
Education levels | |||||||
Primary school and below | 51 (89.5) | 124 (88.6) | 0.712 | 49 (86.0) | 95 (90.5) | 31 (88.6) | 0.396 |
Junior or senior high school | 4 (7.0) | 13 (9.3) | 7 (12.3) | 6 (5.7) | 4 (11.4) | ||
University | 2 (3.5) | 3 (2.1) | 1 (1.8) | 4 (3.8) | - | ||
Duration of diabetes (years) | 12.4 ± 7.9 | 10.5 ± 7.3 | 0.109 | 11.8 ± 7.8 | 10.8 ± 7.2 | 10.5 ± 8.1 | 0.618 |
Diabetes medication | |||||||
Oral hypoglycemic drug | 36 (63.2) | 102 (72.9) | 0.178 | 43 (75.4) | 73 (69.5) | 22 (62.9) | 0.435 |
Insulin and oral hypoglycemic drug | 21 (36.8) | 38 (27.1) | 14 (24.6) | 32 (30.5) | 13 (37.1) | ||
Lipid-lowering medication | 37 (64.9) | 102 (72.9) | 0.267 | 43 (75.4) | 74 (70.5) | 22 (62.9) | 0.438 |
Hypertension medication | 32 (56.1) | 87 (62.1) | 0.435 | 33 (57.9) | 67 (63.8) | 19 (54.3) | 0.547 |
HbA1c | 7.3 ± 1.2 | 7.3 ± 1.4 | 0.937 | 7.4 ± 1.3 | 7.2 ± 1.2 | 7.6 ± 1.5 | 0.169 |
eGFR | 70.4 ± 18.5 | 71.5 ± 19.4 | 0.728 | 73.7 ± 20.5 | 72.6 ± 18.4 | 62.9 ± 17.0 | 0.017 |
Dietary intake | |||||||
Energy intake (Kcal/kg/day) | 22.7 ± 5.9 | 27.0 ± 7.7 | <0.001 | 26.3 ± 7.9 | 25.4 ± 6.5 | 25.9 ± 9.2 | 0.756 |
Protein intake (g/kg) | 0.84 ± 0.30 | 0.71 ± 0.26 | 0.003 | 0.80 ± 0.28 | 0.80 ± 0.30 | 0.81 ± 0.33 | 0.999 |
Carbohydrate (% of energy) | 61.0 ± 7.7 | 60.6 ± 8.9 | 0.748 | 61.6 ± 8.0 | 60.2 ± 9.1 | 60.6 ± 7.5 | 0.639 |
Fat (% of energy) | 26.5 ± 6.1 | 26.9 ± 7.8 | 0.678 | 26.4 ± 6.8 | 27.0 ± 7.9 | 26.7 ± 6.3 | 0.897 |
Smoking | |||||||
Never smoked | 50 (87.7) | 93 (66.4) | 0.006 | 41 (71.9) | 75 (71.4) | 27 (77.1) | 0.031 |
Former smoked | 6 (10.5) | 29 (20.7) | 3 (5.3) | 16 (15.2) | - | ||
Currently smoking | 1 (1.8) | 18 (12.9) | 13 (22.8) | 14 (13.3) | 8 (22.9) | ||
Alcohol consumption | |||||||
Never consumed | 54 (94.7) | 112 (80.0) | 0.014 | 49 (86.0) | 85 (81.0) | 32 (91.4) | 0.413 |
Formerly consumed | 3 (5.3) | 11 (7.9) | 6 (10.5) | 10 (9.5) | 1 (2.9) | ||
Currently consuming | - | 17 (12.1) | 2 (3.5) | 10 (9.5) | 2 (5.7) |
PA Levels/Obesity Status | |||||||
---|---|---|---|---|---|---|---|
Variables | A Group (Low/Obesity) (n = 19) | B Group (Moderate/Obesity) (n = 21) | C Group (High/Obesity) (n = 17) | D Group (Low/Non-Obesity) (n = 27) | E Group (Moderate/Non-Obesity) (n = 56) | F Group (High/Non-Obesity) (n = 57) | p |
Depression | |||||||
With | 12 (63.2) | 11 (52.4) | 5 (29.4) | 11 (40.7) | 11 (19.6) | 7 (12.3) | <0.001 |
Without | 7 (36.8) | 10 (47.6) | 12 (70.6) | 16 (59.3) | 45 (80.4) | 50 (87.7) | |
High inflammation | |||||||
With | 9 (47.4) | 6 (28.6) | - | 5 (18.5) | 10 (17.9) | 5 (8.8) | 0.001 |
Without | 10 (52.6) | 15 (71.4) | 17 (100) | 22 (81.5) | 46 (82.1) | 52 (91.2) |
Variable (n) | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depression 1,2,3 | High Inflammation 1,2,4 | Depression 1,2,5 | Depression 1,2,6 | High Inflammation 1,2,7 | Depression 1,2,8 | |||||||
Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | |
Obesity | ||||||||||||
With (57) | 2.91 (1.31–6.50) | 0.009 | 2.59 (1.02–6.58) | 0.045 | 2.54 (1.09, 5.78) | 0.031 | 2.52 (0.96–6.61) | 0.062 | 2.45 (1.05–5.70) | 0.038 | ||
Without (140) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||
Physical activity | ||||||||||||
Low (46) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||
Moderate (77) | 0.49 (0.21–1.14) | 0.098 | 0.61 (0.24–1.55) | 0.302 | 0.52 (0.22–1.24) | 0.140 | 0.66 (0.26–1.68) | 0.379 | 0.53 (0.22–1.29) | 0.161 | ||
High (74) | 0.32 (0.12–0.86) | 0.023 | 0.18 (0.05–0.61) | 0.006 | 0.43 (0.16–1.20) | 0.109 | 0.18 (0.05–0.64) | 0.008 | 0.44 (0.16–1.25) | 0.124 | ||
High inflammation | ||||||||||||
With (35) | 5.14 (2.01–13.13) | 4.61 (1.77–12.00) | 4.23 (1.37–13.08) | 4.18 (1.56–11.20) | ||||||||
Without (162) | 1.00 | 0.001 | 1.00 | 0.002 | 1.00 | 0.012 | 1.00 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-H.; Li, R.-H.; Tsai, L.-C. Relationship between Depression with Physical Activity and Obesity in Older Diabetes Patients: Inflammation as a Mediator. Nutrients 2022, 14, 4200. https://doi.org/10.3390/nu14194200
Huang J-H, Li R-H, Tsai L-C. Relationship between Depression with Physical Activity and Obesity in Older Diabetes Patients: Inflammation as a Mediator. Nutrients. 2022; 14(19):4200. https://doi.org/10.3390/nu14194200
Chicago/Turabian StyleHuang, Jui-Hua, Ren-Hau Li, and Leih-Ching Tsai. 2022. "Relationship between Depression with Physical Activity and Obesity in Older Diabetes Patients: Inflammation as a Mediator" Nutrients 14, no. 19: 4200. https://doi.org/10.3390/nu14194200
APA StyleHuang, J. -H., Li, R. -H., & Tsai, L. -C. (2022). Relationship between Depression with Physical Activity and Obesity in Older Diabetes Patients: Inflammation as a Mediator. Nutrients, 14(19), 4200. https://doi.org/10.3390/nu14194200