Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Three Different Instant Porridge Powder Formulations
2.3. Analysis of Nutritive Values
2.4. Sensory Evaluation
2.5. Physical Analysis
2.6. Anti-Nutrient Analysis
2.7. Determination of Iron and Zinc Bioaccessibility
2.8. Microbiological Analysis
2.9. Statistical Analysis
3. Results
3.1. Nutritional Analysis
3.2. Sensory Evaluation of Instant Porridge Powders
3.3. Physical Analysis of Instant Porridge Powders
3.4. Mineral Inhibitor Contents in Instant Porridge Powders
3.5. In Vitro Iron and Zinc Bioaccessibility of Instant Porridge Powders
3.6. Microbiological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet 2020, 33, 624–643. [Google Scholar] [CrossRef] [PubMed]
- Harding, K.L.; Aguayo, V.M.; Webb, P. Hidden hunger in South Asia: A review of recent trends and persistent challenges. Public Health Nutr. 2018, 21, 785–795. [Google Scholar] [CrossRef]
- van der Merwe, R.; Kruger, J.; Ferruzzi, M.G.; Duodu, K.G.; Taylor, J.R.N. Improving iron and zinc bioaccessibility through food-to-food fortification of pearl millet with tropical plant foodstuffs (moringa leaf powder, roselle calyces and baobab fruit pulp). J. Food Sci. Technol. 2019, 56, 2244–2256. [Google Scholar] [CrossRef]
- Gibson, R.; Hotz, C.; Temple, L.; Yeudall, F.; Mtitimuni, B.; Ferguson, E. Dietary Strategies to Combat Deficiencies of Iron, Zinc, and Vitamin A in Developing Countries: Development, Implementation, Monitoring, and Evaluation. Food Nutr. Bull. 2000, 21, 219–231. [Google Scholar] [CrossRef]
- Nair, M.K.; Augustine, L.F.; Konapur, A. Food-Based Interventions to Modify Diet Quality and Diversity to Address Multiple Micronutrient Deficiency. Front. Public Health 2015, 3, 277. [Google Scholar] [CrossRef]
- Best, C.; Neufingerl, N.; van Geel, L.; van den Briel, T.; Osendarp, S. The nutritional status of school-aged children: Why should we care? Food Nutr. Bull. 2010, 31, 400–417. [Google Scholar] [CrossRef]
- Human Capital Summit: Committing to Action to Drive Economic Growth. Available online: https://live.worldbank.org/human-capital-summit-2017 (accessed on 28 October 2021).
- Dhungana, M. Mid-Day Meals Attract Children to Schools in Achham. Available online: https://kathmandupost.com/national/2019/02/17/mid-day-meals-attract-children-to-schools-in-achham (accessed on 13 October 2021).
- Fiorentino, M. Malnutrition in School-Aged Children and Adolescents in Senegal and Cambodia: Public Health Issues and Interventions; Université Montpellier: Montpellier, France, 2015. [Google Scholar]
- MoHP; UNICEF; USAID; EU; CDC; Era, N. Nepal National Micronutrient Status Survey Report 2016; Ministry of Health and Population: Kathmandu, Nepal, 2018.
- Shrestha, R.M.; Schreinemachers, P.; Nyangmi, M.G.; Sah, M.; Phuong, J.; Manandhar, S.; Yang, R.-Y. Home-grown school feeding: Assessment of a pilot program in Nepal. BMC Public Health 2020, 20, 28. [Google Scholar] [CrossRef]
- Shrestha, L.; Parmar, A.; Kulig, B.; Hensel, O.; Sturm, B. Feeding practices of pre-school children and associated factors in Kathmandu, Nepal. J. Hum. Nutr. Diet 2020, 33, 241–251. [Google Scholar] [CrossRef]
- Ghimire, K.; Bhandari, B.; Gurung, S.B.; Dhami, N.; Baniya, B. Diversity and Utilization Status of Millets Genetic Resources in Nepal. In Proceedings of the 2nd National Workshop, Kathmandu, Nepal, 22–23 May 2017. [Google Scholar]
- Yang, T.; Ma, S.; Liu, J.; Sun, B.; Wang, X. Influences of four processing methods on main nutritional components of foxtail millet: A review. Grain Oil Sci. Technol. 2022, 5, 156–165. [Google Scholar] [CrossRef]
- Shrestha, R.; Neupane, R.K.; Adhikari, N.P. Status and Future Prospects of Pulses in Nepal. In Proceedings of the Regional Workshop on Pulse Production, Nepal Agricultural Research Council (NARC), Kathmandu, Nepal, 24–25 October 2011. [Google Scholar]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Gibson, R.S. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proc. Nutr. Soc. 2006, 65, 51–60. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef]
- Jabeur, I.; Pereira, E.; Caleja, C.; Calhelha, R.C.; Soković, M.; Catarino, L.; Barros, L.; Ferreira, I. Exploring the chemical and bioactive properties of Hibiscus sabdariffa L. calyces from Guinea-Bissau (West Africa). Food Funct. 2019, 10, 2234–2243. [Google Scholar] [CrossRef]
- Thompson, B.; Amoroso, L. Combating Micronutrient Deficiencies: Food-Based Approaches; CABI: Wallingford, UK, 2011. [Google Scholar]
- Subedi, S.; Suttisansanee, U.; Chupeerach, C.; Chamchan, R.; Khemthong, C.; Kettawan, A.; On-nom, N. Changes in Nutritional and Physico-Chemical Properties of Chickpea Flour and Foxtail Millet Flour as a Result of Pregelatinizing. In Proceedings of the 23rd Food Innovation Asia Conference 2021 (FIAC 2021), Bangkok, Thailand, 17–18 June 2021. [Google Scholar]
- AOAC. Official Method of Analysis of AOAC Internation, 21st ed.; AOAC International: Arlington, VA, USA, 2019. [Google Scholar]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Oladele, A.K.; Aina, J. Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). Afr. J. Biotechnol. 2007, 6, 2473–2476. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Autio, K.; Åman, P. Chemical Composition and Microstructure of Two Naked Waxy Barleys. J. Cereal Sci. 1999, 30, 183–191. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Yong, H.Y. Evaluation of rheological and textural properties of texture-modified rice porridge using tapioca and sago starch as thickener. J. Food Meas. Charact. 2017, 11, 1586–1591. [Google Scholar] [CrossRef]
- McKie, V.A.; MccleAry, B.V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. AOAC Int. 2016, 99, 738–743. [Google Scholar] [CrossRef]
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Quantification of Tannins in Tree Foliage A Laboratory Manual for the FAO/IAEA Co-Ordinated Research Project on ‘Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on Tanniniferous Tree Foliage’; International Atomic Energy Agency (IAEA): Vienna, Austria, 2000; p. 26. [Google Scholar]
- Ting, S.R.; Loh, S.P. In vitro bioaccessibility of calcium, iron and zinc from breads and bread spreads. Int. Food Res. J. 2016, 23, 2175–2180. [Google Scholar]
- FDA. Bacteriological Analytical Manual (BAM); US Food and Drug Administration: Silver Spring, MD, USA, 2001.
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
- TISI. Thai Community Product Standard, Instant Rice Porridge; Thai Industrial Standards Institute: Bangkok, Thailand, 2019.
- Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Improvement of the nutritional quality of a traditional complementary porridge made of fermented yellow maize (Zea mays): Effect of maize-legume combinations and traditional processing methods. Food Nutr. Bull. 2007, 28, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Suri, D.J.; Tano-Debrah, K.; Ghosh, S.A. Optimization of the nutrient content and protein quality of cereal-legume blends for use as complementary foods in Ghana. Food Nutr. Bull. 2014, 35, 372–381. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Codex Alimentarius (CODEX CAC/GL 08): Guidelines on Formulated Supplementary Foods for Older Infants and Young Children. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/zh/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B8-1991%252FCXG_008e.pdf (accessed on 13 October 2021).
- WHO. Proceedings of the WHO UNICEF WFP UNHCR informal consultation on the management of moderate malnutrition in under-5 children. Food Nutr. Bull. 2009, 30, S464–S474. [Google Scholar]
- ICMR; NIN. Nutrient Requirements for Indians; The Indian Council of Medical Research (ICMR) and National Institute of Nutrition (NIN): Hyderabad, India, 2020. [Google Scholar]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108 Suppl. 1, S11–S26. [Google Scholar] [CrossRef]
- Thai Recommended Daily Intakes (Thai RDIs). Appendix No. 3. In MOPH Notification No. 182 B.E. 2541 Re: Nutrition Labelling; Royal Thai Government Gazette: Nonthaburi, Thailand, 1998. [Google Scholar]
- Mgaya Kilima, B. Physiochemical, mineral composition and antioxidant properties of Roselle (Hibiscus sabdariffa L.) extract blended with tropical fruit juices. Afr. J. Food Agric. Nutr. Dev. 2014, 14, 8963–8978. [Google Scholar]
- WHO; FAO. Vitamin and Mineral Requirements in Human Nutrition; Nutrition and Food Safety: Geneva, Switzerland, 2004. [Google Scholar]
- Brown, K.; Rivera, J.; Bhutta, Z.; Gibson, R.; King, J.; Lonnerdal, B.; Ruel, M.; Sandtröm, B.; Wasantwisut, E.; Hotz, C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [CrossRef]
- El Wakeel, M.A. Ultra Structure and Functional Properties of Some Dry Mixes of Food; Ain Shams University: Cairo, Egypt, 2007. [Google Scholar]
- Gámbaro, A.; Giménez, A.N.A.; Ares, G.; Gilardi, V. Influence of enzymes on the texture of brown pan bread. J. Texture Stud. 2006, 37, 300–314. [Google Scholar] [CrossRef]
- Giménez, A.; Varela, P.; Salvador, A.; Ares, G.; Fiszman, S.; Garitta, L. Shelf life estimation of brown pan bread: A consumer approach. Food Qual. Prefer. 2007, 18, 196–204. [Google Scholar] [CrossRef]
- Giménez, A.N.A.; Ares, G.; Gámbaro, A. Survival analysis to estimate sensory shelf life using acceptability scores. J. Sens. Stud. 2008, 23, 571–582. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.; Abu-Salem, F.M.; Abou-Arab, E.A. Physico- chemical properties of natural pigments (anthocyanin) extracted from Rosellecalyces (Hibiscus subdariffa). J. Am. Sci. 2011, 7, 445–456. [Google Scholar]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Beswa, D.; Singo, T. Effect of roselle extracts on the selected quality characteristics of ice cream. Int. J. Food Prop. 2019, 22, 42–53. [Google Scholar] [CrossRef]
- Bonazzi, C.; Dumoulin, E. Quality Changes in Food Materials as Influenced by Drying Processes; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yousf, N.; Nazir, F.; Salim, R.; Ahsan, H.; Sirwal, A. Water solubility index and water absorption index of extruded product from rice and carrot blend. J. Pharmacogn. Phytochem. 2017, 6, 2165–2168. [Google Scholar]
- Ikegwu, O.; Okechukwu, P.; Ekumankana, E. PhysicoChemical and Pasting Characteristics of Flour and Starch from Achi Brachystegia eurycoma Seed. J. Food Technol. 2010, 8, 58–66. [Google Scholar] [CrossRef]
- Mahgoub, S.; Mohammed, A.; Mobarak, E.-A. Physiochemical, Nutritional and Technological Properties of Instant Porridge Supplemented with Mung Bean. Food Nutr. Sci. 2020, 11, 1078–1095. [Google Scholar] [CrossRef]
- Walle, H.; Haile, D. Optimization of cereal-legume blend ratio to enhance the nutritional quality and functional property of complementary food. Ethiop. J. Sci. Technol. 2017, 10, 109. [Google Scholar] [CrossRef]
- Sharma, C.; Singh, B.; Hussain, S.Z.; Sharma, S. Investigation of process and product parameters for physicochemical properties of rice and mung bean (Vigna radiata) flour based extruded snacks. J. Food Sci. Technol. 2017, 54, 1711–1720. [Google Scholar] [CrossRef]
- Kinsella, J.E. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. Nutr. 1976, 1, 219–280. [Google Scholar] [CrossRef]
- Mayachiew, P.; Charunuch, C.; Devahastin, S. Physicochemical and Thermal Properties of Extruded Instant Functional Rice Porridge Powder as Affected by the Addition of Soybean or Mung Bean. J. Food Sci. 2015, 80, E2782–E2791. [Google Scholar] [CrossRef]
- Ukom, A.N.; Adiegwu, E.C.; Ojimelukwe, P.C.; Okwunodulu, I.N. Quality and sensory acceptability of yellow maize ogi porridge enriched with orange-fleshed sweet potato and African yam bean seed flours for infants. Sci. Afr. 2019, 6, e00194. [Google Scholar] [CrossRef]
- Nnam, N.M. Chemical, sensory and rheological properties of porridges from processed sorghum (Sorghum bicolor), bambara groundnut (Vigna subterranea L. Verdc) and sweet potato (Ipomoea batatas) flours. Plant Foods Hum. Nutr. 2001, 56, 251–264. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.M.; Guo, S.D. Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT-Food Sci. Technol. 2007, 40, 946–954. [Google Scholar] [CrossRef]
- Reyes, V.G., Jr.; Jindal, V.K. A small sample back extrusion test for measuring texture of cooked-rice. J. Food Qual. 1990, 13, 109–118. [Google Scholar] [CrossRef]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Thompson, L.U. Potential Health Benefits and Problems Associated With Anti Nutrients in Foods. Int. J. Food Resour. 1993, 26, 131–149. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Afsana, K.; Shiga, K.; Ishizuka, S.; Hara, H. Reducing effect of ingesting tannic acid on the absorption of iron, but not of zinc, copper and manganese by rats. Biosci. Biotechnol. Biochem. 2004, 68, 584–592. [Google Scholar] [CrossRef]
- Fekadu Gemede, H.; Retta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Nath, H.; Samtiya, M.; Dhewa, T. Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Hum. Nutr. Metab. 2022, 28, 200147. [Google Scholar] [CrossRef]
- Jacob, J.K.; Tiwari, K.; Correa-Betanzo, J.; Misran, A.; Chandrasekaran, R.; Paliyath, G. Biochemical basis for functional ingredient design from fruits. Annu. Rev. Food Sci. Technol. 2012, 3, 79–104. [Google Scholar] [CrossRef]
- Torres, L.; Amaral, J.; Canniatti-Brazaca, S. Promoters effectiveness in the improvement in iron and zinc absorption from the rice and bean. Food Sci. Technol. 2020, 40, 363–368. [Google Scholar] [CrossRef]
- Salovaara, S.; Sandberg, A.-S.; Andlid, T. Combined Impact of pH and Organic Acids on Iron Uptake by Caco-2 Cells. J. Agric. Food Chem. 2003, 51, 7820–7824. [Google Scholar] [CrossRef]
- Ma, G.; Jin, Y.; Piao, J.; Kok, F.; Guusje, B.; Jacobsen, E. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J. Agric. Food Chem. 2005, 53, 10285–10290. [Google Scholar] [CrossRef]
- Etcheverry, P.; Grusak, M.A.; Fleige, L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front. Physiol. 2012, 3, 317. [Google Scholar] [CrossRef] [Green Version]
Ingredients (%) | Instant Porridge Powders | ||
---|---|---|---|
ICP | ICF | IPP | |
Pregelatinized chickpea flour (PCPF) | 82.66 | 49.74 | 46.76 |
Pregelatinized foxtail millet flour (PFMF) | – | 33.45 | 31.44 |
Oil | 8.51 | 7.23 | 7.23 |
Roselle calyx powder (RCP) | – | – | 4.99 |
Seasoning spices mix powder (SSMP) | 6.70 | 7.32 | 7.32 |
Salt | 2.13 | 2.26 | 2.26 |
Formulations | Energy (kcal) | Protein (g) | Fat (g) | Carbohydrates (g) | Total DF (g) | Ash (g) | Iron (mg) | Zinc ns (mg) |
---|---|---|---|---|---|---|---|---|
ICP | 458.76 ± 0.44 a | 20.15 ± 0.07 a | 15.03 ± 0.13 a | 60.72 ± 0.25 c | 17.15 ± 0.53 a | 4.10 ± 0.05 b | 4.15 ± 0.01 b | 3.58 ± 1.09 |
ICF | 447.07 ± 0.89 c | 16.60 ± 0.11 b | 12.67 ± 0.23 c | 66.66 ± 0.20 a | 11.54 ± 0.24 c | 4.07 ± 0.08 b | 4.23 ± 0.16 b | 2.72 ± 0.13 |
IPP | 450.70 ± 0.79 b | 16.50 ± 0.00 b | 13.73 ± 0.00 b | 65.40 ± 0.07 b | 13.80 ± 0.00 b | 4.44 ± 0.01 a | 4.89 ± 0.25 a | 3.95 ± 0.21 |
Instant Porridge Powders | Sensory Attributes | |||||
---|---|---|---|---|---|---|
Appearance ns | Color ns | Odor ns | Taste ns | Texture ns | Overall Liking ns | |
ICP | 6.45 ± 1.21 | 6.85 ± 1.09 | 7.10 ± 1.66 | 6.28 ± 1.81 | 6.20 ± 1.41 | 6.43 ± 1.69 |
ICF | 6.65 ± 1.37 | 6.68 ± 1.21 | 6.68 ± 1.44 | 6.75 ± 1.11 | 6.55 ± 1.11 | 6.68 ± 1.27 |
IPP | 6.73 ± 1.38 | 6.70 ± 1.36 | 7.10 ± 1.21 | 6.60 ± 1.35 | 6.73 ± 0.93 | 6.85 ± 1.10 |
Formulations | Color | Aw | WSI (%) ns | WAI (g/g) ns | BD (g/cm3) ns | Consistency (N s) | Index of Viscosity (N s) | ||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | |||||||
ICP | 35.40 ± 0.27 a | 3.69 ± 0.09 b | 35.88 ± 0.09 a | 0.17 ± 0.00 a | 6.40 ± 3.67 | 4.04 ± 0.12 | 0.72 ± 0.01 | 96.65 ± 4.37 c | 2.47 ± 2.10 c |
ICF | 34.06 ± 0.57 b | 3.42 ± 0.17 c | 32.47 ± 0.26 b | 0.13 ± 0.01 b | 6.40 ± 1.39 | 4.00 ± 0.09 | 0.72 ± 0.00 | 413.94 ± 35.38 a | 62.07 ± 8.93 a |
IPP | 27.80 ± 0.40 c | 4.13 ± 0.02 a | 19.64 ± 0.31 c | 0.18 ± 0.01 a | 6.13 ± 1.22 | 3.77 ± 0.17 | 0.72 ± 0.01 | 306.64 ± 22.65 b | 37.65 ± 5.18 b |
Formulation | Mineral Inhibitors | ||
---|---|---|---|
Phytic Acid (g/100 g DW) ns | Tannin (mg TAE/100 mg DW) | Total Phenols (mg TAE/100 mg DW) | |
ICP | 1.48 ± 0.05 | 1.39 ± 0.01 b | 1.67 ± 0.01 b |
ICF | 1.45 ± 0.13 | 0.71 ± 0.01 c | 1.15 ± 0.02 c |
IPP | 1.58 ± 0.16 | 2.58 ± 0.13 a | 2.83 ± 0.13 a |
Formulations | Iron | Zinc | pH | ||
---|---|---|---|---|---|
Bioaccessible (mg/100 g) | % Bioaccessibility | Bioaccessible (mg/100 g) | % Bioaccessibility | ||
ICP | 0.32 ± 0.01 b | 7.83 ± 0.08 b | 0.87 ± 0.01 b | 30.97 ± 2.38 b | 5.78 ± 0.02 a |
ICF | 0.33 ± 0.02 b | 8.20 ± 0.07 b | 0.90 ± 0.02 b | 34.65 ± 2.66 b | 5.83 ± 0.02 a |
IPP | 0.51 ± 0.01 a | 11.08 ± 0.86 a | 1.70 ± 0.02 a | 45.83 ± 2.90 a | 4.55 ± 0.03 b |
Formulations | Microbiological Quality | |
---|---|---|
Total Plate Count (CFU/g) | Yeast and Mold (CFU/g) | |
ICP | 3.0 × 104 ± 0.06 | Less than 10 |
ICF | 7.2 × 104 ± 0.03 | Less than 10 |
IPP | 6.8 × 103 ± 0.01 | Less than 10 |
Formulations | Minerals | RDA 1 | Contribution (%) per Serving (70 g) | AR (mg/d) | Contribution (%) per Serving (70 g) |
---|---|---|---|---|---|
ICP | Protein | 23 | 58.89 | NA | NA |
Iron | 15 | 19.04 | 0.89 2 | 25.17 2 | |
Zinc | 5.90 | 33.46 | 0.83 3 (1.53 4) | 73.38 3 (39.87 4) | |
ICF | Protein | 23 | 48.51 | NA | NA |
Iron | 15 | 18.99 | 0.89 2 | 25.96 2 | |
Zinc | 5.90 | 30.97 | 0.83 3 (1.53 4) | 75.90 3 (41.18 4) | |
IPP | Protein | 23 | 47.17 | NA | NA |
Iron | 15 | 21.40 | 0.89 2 | 40.10 2 | |
Zinc | 5.90 | 44.02 | 0.83 3 (1.53 4) | 143.40 3 (77.80 4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subedi, S.; Suttisansanee, U.; Kettawan, A.; Chupeerach, C.; Khemthong, C.; Thangsiri, S.; On-nom, N. Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx. Nutrients 2022, 14, 4070. https://doi.org/10.3390/nu14194070
Subedi S, Suttisansanee U, Kettawan A, Chupeerach C, Khemthong C, Thangsiri S, On-nom N. Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx. Nutrients. 2022; 14(19):4070. https://doi.org/10.3390/nu14194070
Chicago/Turabian StyleSubedi, Sandhya, Uthaiwan Suttisansanee, Aikkarach Kettawan, Chaowanee Chupeerach, Chanakan Khemthong, Sirinapa Thangsiri, and Nattira On-nom. 2022. "Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx" Nutrients 14, no. 19: 4070. https://doi.org/10.3390/nu14194070
APA StyleSubedi, S., Suttisansanee, U., Kettawan, A., Chupeerach, C., Khemthong, C., Thangsiri, S., & On-nom, N. (2022). Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx. Nutrients, 14(19), 4070. https://doi.org/10.3390/nu14194070