Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection Process
2.4. Data Extraction and Coding
2.5. Risk ofBias Assessment
2.6. Data Synthesis and Analyses
3. Results
3.1. Studies Selection
3.2. Studies Characteristics
3.3. Population Characteristics
3.4. Risk of Bias Assessment
3.5. Meta-Analysis Results
3.5.1. Effects of Caffeine Supplementation on Physical Performances
CMJ
Handgrip Strength
SJFT
Judogi Strength-Endurance Test
3.5.2. Effects of Caffeine Supplementation on the Physiological Responses
Effects of Caffeine Supplementation on Blood Lactate
Effects of Caffeine Supplementation on Heart Rate Responses
3.5.3. Effects of Caffeine Supplementation on RPE
Post-Anaerobic Exercise
Post-Simulated Combats
3.5.4. Effects of Caffeine Supplementation on Technical Skills
Number of Offensive Actions
Duration of Offensive Actions
3.5.5. Stability and Reliability of The Results
4. Discussion
4.1. Effects of Caffeine Supplementation on Physical Performance
4.1.1. CMJ
4.1.2. Handgrip Strength
4.1.3. SJFT
4.1.4. SJFT Index
4.1.5. Strength-Endurance Performance
4.1.6. Reaction Time, Kick Speed and Agility
4.2. Effects of Caffeine on Physiological Responses
4.2.1. Effects of Caffeine on Blood Lactate
4.2.2. Effects of Caffeine on Heart Rate
4.3. Effects of Caffeine on RPE
4.4. Effects of Caffeine on Technical-Tactical Aspects
4.5. Possible Moderating Factors
4.5.1. Effect of Sex
4.5.2. Effect of Habitual Intake
4.5.3. Effect of Training Status
4.5.4. Effect of Age
4.5.5. Effects of Genetic Background
4.5.6. Effect of Caffeine Dose
4.5.7. Effect of Supplementation Timing and Form
4.5.8. Effects of Time of Day
4.6. Adverse Effects
4.7. Methodological Recommendations
4.8. Strengths, Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of High-Intensity Interval Training in Combat Sports: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Del Vecchio, F.B.; Matsushigue, K.A.; Artioli, G.G. Physiological profiles of elite judo athletes. Sports Med. 2011, 41, 147–166. [Google Scholar] [CrossRef]
- Krabben, K.; Orth, D.; van der Kamp, J. Combat as an interpersonal synergy: An ecological dynamics approach to combat sports. Sports Med. 2019, 49, 1825–1836. [Google Scholar] [CrossRef] [Green Version]
- Simoncini, L.; Lago-Rodriguez, A.; Lopez-Samanes, A.; Perez-Lopez, A.; Dominguez, R. Effects of nutritional supplements on judo-related performance: A review. J. Hum. Kinet. 2021, 77, 81–96. [Google Scholar] [CrossRef]
- Begum, G.; Cunliffe, A.; Leveritt, M. Physiological role of carnosine in contracting muscle. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gonzalez, L.M.; Sanchez-Oliver, A.J.; Mata, F.; Jodra, P.; Antonio, J.; Dominguez, R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sports Nutr. 2018, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R. Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 101. [Google Scholar] [CrossRef]
- Del Coso, J.; Munoz, G.; Munoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H., Jr. Caffeine and exercise performance: Possible directions for definitive findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Dong, C.; Zhou, Z.; Zheng, X. Effects of various doses of caffeine ingestion on intermittent exercise performance and cognition. Brain Sci. 2020, 10, 595. [Google Scholar] [CrossRef]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 412–429. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Daly, J. Caffeine analogs: Biomedical impact. Cell Mol. Life Sci. 2007, 64, 2153–2169. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients 2018, 10, 1352. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Christensen, P.M.; Shirai, Y.; Ritz, C.; Nordsborg, N.B. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front. Physiol. 2017, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.T.; da Silva, J.V.F.; Bueno, N.B. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 2587–2600. [Google Scholar] [CrossRef]
- Glaister, M.; Gissane, C. Caffeine and physiological responses to submaximal exercise: A meta-analysis. Int. J. Sports Physiol Perform. 2018, 13, 402–411. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Marin-Puyalto, J.; Muniz-Pardos, B.; Matute-Llorente, A.; Del Coso, J.; Gomez-Cabello, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Lozano-Berges, G. Does acute caffeine supplementation improve physical performance in female team-sport athletes? Evidence from a systematic review and meta-analysis. Nutrients 2021, 13, 3663. [Google Scholar] [CrossRef]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef]
- Grgic, J.; Del Coso, J. Ergogenic effects of acute caffeine intake on muscular endurance and muscular strength in women: A meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 5773. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Diaz-Lara, F.J.; Coso, J.D.; Duncan, M.J.; Tallis, J.; Pickering, C.; Schoenfeld, B.J.; Mikulic, P. The effects of caffeine ingestion on measures of rowing performance: A systematic review and meta-analysis. Nutrients 2020, 12, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grgic, J.; Mikulic, P. Effects of caffeine on rate of force development: A meta-analysis. Scand. J. Med. Sci. Sports 2021, 32, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Raya-Gonzalez, J.; Rendo-Urteaga, T.; Dominguez, R.; Castillo, D.; Rodriguez-Fernandez, A.; Grgic, J. Acute Effects of Caffeine Supplementation on Movement Velocity in Resistance Exercise: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 717–729. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Grgic, J. Effects of caffeine on isometric handgrip strength: A meta-analysis. Clin. Nutr. ESPEN 2022, 47, 89–95. [Google Scholar] [CrossRef]
- Diaz-Lara, J.; Grgic, J.; Detanico, D.; Botella, J.; Jiménez, S.L.; Del Coso, J. Effects of acute caffeine intake on combat sports performance: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Trabelsi, K.; Bragazzi, N.; Zlitni, S.; Khacharem, A.; Boukhris, O.; El-Abed, K.; Ammar, A.; Khanfir, S.; Shephard, R.J.; Hakim, A.; et al. Observing Ramadan and sleep-wake patterns in athletes: A systematic review, meta-analysis and meta-regression. Br. J. Sports Med. 2020, 54, 674–680. [Google Scholar] [CrossRef]
- Trabelsi, K.; Ammar, A.; Boukhris, O.; Glenn, J.M.; Clark, C.C.T.; Stannard, S.R.; Slater, G.; Zmijewski, P.; Driss, T.; Ben Saad, H.; et al. Dietary intake and body composition during Ramadan in athletes: A systematic review and meta-analysis with meta-regression. J. Am. Nutr. Assoc. 2022, 1–22. [Google Scholar] [CrossRef]
- Rico-González, M.; Pino-Ortega, J.; Clemente, F.; Los Arcos, A. Guidelines for performing systematic reviews in sports science. Biol. Sport 2022, 39, 463–471. [Google Scholar] [CrossRef]
- Buscemi, N.; Hartling, L.; Vandermeer, B.; Tjosvold, L.; Klassen, T.P. Single data extraction generated more errors than double data extraction in systematic reviews. J. Clin. Epidemiol. 2006, 59, 697–703. [Google Scholar] [CrossRef]
- Aedma, M.; Timpmann, S.; Ööpik, V. Effect of caffeine on upper-body anaerobic performance in wrestlers in simulated competition-day conditions. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Astley, C.; Souza, D.; Polito, M. Acute caffeine ingestion on performance in young judo athletes. Pediatr. Exerc. Sci. 2017, 29, 336–340. [Google Scholar] [CrossRef]
- Athayde, M.; Kons, R.; Detanico, D. Can caffeine intake improve neuromuscular and technical-tactical performance during judo matches? J. Strength Cond. Res. 2018, 32, 3095–3102. [Google Scholar] [CrossRef]
- Carmo, K.E.O.; Pérez, D.I.V.; Valido, C.N.; Dos Santos, J.L.; Miarka, B.; Mendes-Netto, R.S.; Leite, M.M.R.; Antoniêtto, N.R.; Aedo-Muñoz, E.A.; Brito, C.J. Caffeine improves biochemical and specific performance after judo training: A double-blind crossover study in a real judo training situation. Nutr. Metab. 2021, 18, 15. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; Portillo, J.; Areces, F.; García, J.M.; Abián-Vicén, J. Enhancement of high-intensity actions and physical performance during a simulated Brazilian Jiu-Jitsu competition with a moderate dose of caffeine. Int. J. Sports Physiol. Perform. 2016, 11, 861–867. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Główka, N.; Grygiel, A. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: A randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2019, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Filip-Stachnik, A.; Krawczyk, R.; Krzysztofik, M.; Rzeszutko-Belzowska, A.; Dornowski, M.; Zajac, A.; Del Coso, J.; Wilk, M. Effects of acute ingestion of caffeinated chewing gum on performance in elite judo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 49. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Felippe, L.J.; Silva-Cavalcante, M.D.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine ingestion after rapid weight loss in judo athletes reduces perceived effort and increases plasma lactate concentration without improving performance. Nutrients 2014, 6, 2931–2945. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Silva, J.P.; Rocha, A.; Rocha, J.C.C.; Silva, V.; Correia-Oliveira, C.R. Caffeine ingestion increases the upper-body intermittent dynamic strength endurance performance of combat sports athletes. Eur. J. Sport Sci. 2021, 2, 227–236. [Google Scholar] [CrossRef]
- Negaresh, R.; Del Coso, J.; Mokhtarzade, M.; Lima-Silva, A.E.; Baker, J.S.; Willems, M.E.T.; Talebvand, S.; Khodadoost, M.; Farhani, F. Effects of different dosages of caffeine administration on wrestling performance during a simulated tournament. Eur. J. Sport Sci. 2019, 19, 499–507. [Google Scholar] [CrossRef]
- Pereira, L.A.; Cyrino, E.S.; Avelar, A.; Segantin, A.Q.; Altimari, J.M.; Trindade, M.C.d.C.; Altimari, L.R. A ingestão de cafeína não melhora o desempenho de atletas de judô. Motriz Rev. Educ. Fís. 2010, 16, 714–722. [Google Scholar] [CrossRef]
- Athayde, M.; Kons, R.L.; Detanico, D. An exploratory double-blind study of caffeine effects on performance and perceived exertion in Judo. Percept. Mot. Skills 2019, 126, 515–529. [Google Scholar] [CrossRef]
- Merino-Fernández, M.; Giráldez-Costas, V.; González-García, J.; Gutiérrez-Hellín, J.; González-Millán, C.; Matos-Duarte, M.; Ruiz-Moreno, C. Effects of 3 mg/kg body mass of caffeine on the performance of Jiu-Jitsu elite athletes. Nutrients 2022, 14, 675. [Google Scholar] [CrossRef]
- Felippe, L.C.; Lopes-Silva, J.P.; Bertuzzi, R.; McGinley, C.; Lima-Silva, A.E. Separate and combined effects of caffeine and sodium-bicarbonate intake on judo performance. Int. J. Sports Physiol. Perform. 2016, 11, 221–226. [Google Scholar] [CrossRef]
- Krawczyk, R.; Krzysztofik, M.; Kostrzewa, M.; Komarek, Z.; Wilk, M.; Del Coso, J.; Filip-Stachnik, A. Preliminary research towards acute effects of different doses of caffeine on strength-power performance in highly trained judo athletes. Int. J. Environ. Res. Public Health 2022, 19, 2868. [Google Scholar] [CrossRef]
- Merino Fernandez, M.; Ruiz-Moreno, C.; Giraldez-Costas, V.; Gonzalez-Millan, C.; Matos-Duarte, M.; Gutierrez-Hellin, J.; Gonzalez-Garcia, J. Caffeine Doses of 3 mg/kg increase unilateral and bilateral vertical jump outcomes in elite traditional Jiu-Jitsu athletes. Nutrients 2021, 13, 1705. [Google Scholar] [CrossRef]
- Cortez, L.; Mackay, K.; Contreras, E.; Penailillo, L. Acute effect of caffeine ingestion on reaction time and electromyographic activity of the Dollyo Chagi round kick in taekwondo fighters. RICYDE Rev. Int. Cienc. Deporte 2017, 13, 52–62. [Google Scholar] [CrossRef]
- Coswig, V.S.; Gentil, P.; Irigon, F.; Del Vecchio, F.B. Caffeine ingestion changes time-motion and technical-tactical aspects in simulated boxing matches: A randomized double-blind PLA-controlled crossover study. Eur. J. Sport Sci. 2018, 18, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Akbari, K.; Gahreman, D.E.; Sarshin, A.; Tabben, M.; Kaviani, M.; Sadeghinikoo, A.; Koozehchian, M.S.; Naderi, A. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. J. Int. Soc. Sports Nutr. 2019, 16, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine supplementation improves anaerobic performance and neuromuscular efficiency and fatigue in olympic-level boxers. Nutrients 2019, 11, 2120. [Google Scholar] [CrossRef] [Green Version]
- Arazi, H.; Hoseinihaji, M.; Eghbali, E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz. J. Pharm. Sci. 2016, 52, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Silva, J.P.; Silva Santos, J.F.; Branco, B.H.; Abad, C.C.; Oliveira, L.F.; Loturco, I.; Franchini, E. Caffeine ingestion increases estimated glycolytic metabolism during taekwondo combat simulation but does not improve performance or parasympathetic reactivation. PLoS ONE 2015, 10, e0142078. [Google Scholar] [CrossRef]
- Santos, V.G.; Santos, V.R.; Felippe, L.J.; Almeida, J.W., Jr.; Bertuzzi, R.; Kiss, M.A.; Lima-Silva, A.E. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Ouergui, I.; Mahdi, N.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Sahnoun, Z.; Bouassida, A.; Bouhlel, E.; Nobari, H.; Ardigò, L.P.; et al. Acute effects of low dose of caffeine ingestion combined with conditioning activity on psychological and physical performances of male and female taekwondo athletes. Nutrients 2022, 14, 571. [Google Scholar] [CrossRef]
- De Azevedo, A.P.; Guerra, M.A.; Caldas, L.C.; Guimaraes-Ferreira, L. Acute caffeine ingestion did not enhance punch performance in professional mixed-martial arts athletes. Nutrients 2019, 11, 1422. [Google Scholar] [CrossRef] [Green Version]
- De Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of caffeine supplementation on sports performance based on differences between sexes: A systematic review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [Green Version]
- Follmann, D.; Elliott, P.; Suh, I.; Cutler, J. Variance imputation for overviews of clinical trials with continuous response. J. Clin. Epidemiol. 1992, 45, 769–773. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Elsevier Science: Burlington, MA, USA, 2013. [Google Scholar]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G.; Group, C.S.M. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons (Wiley): Hoboken, NJ, USA, 2019; pp. 241–284. [Google Scholar]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 2013, 8, e69930. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C.J.B. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot—based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1. 0 (Updated March 2011); The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Kulinskaya, E.; Koricheva, J. Use of quality control charts for detection of outliers and temporal trends in cumulative meta-analysis. Res. Synth. Methods 2010, 1, 297–307. [Google Scholar] [CrossRef]
- Ferreira, R.E.S.; Pacheco, R.L.; de Oliveira Cruz Latorraca, C.; Riera, R.; Eid, R.G.; Martimbianco, A.L.C. Effects of caffeine supplementation on physical performance of soccer players: Systematic review and meta-analysis. Sports Health 2021, 13, 347–358. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on exercise testing: A meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef]
- Turnes, T.; Silva, B.A.; Kons, R.L.; Detanico, D. Is bilateral deficit in handgrip strength associated with performance in specific judo tasks? J. Strength Cond Res. 2022, 36, 455–460. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Ardigò, L.P.; Selmi, O.; Levitt, D.E.; Chtourou, H.; Bouassida, A.; Bouhlel, E.; Franchini, E. Changes in perceived exertion, well-being, and recovery during specific judo training: Impact of training period and exercise modality. Front. Physiol. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Chen, Y.C.; Tung, K.; Chao, H.H.; Wang, H.S. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: A double-blind randomized trial. J. Appl. Physiol. 2019, 127, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.; Veiga-Herreros, P.; Sanchez-Oliver, A.J.; Montoya, J.J.; Ramos-Alvarez, J.J.; Miguel-Tobal, F.; Lago-Rodriguez, A.; Jodra, P. Acute effects of caffeine intake on psychological responses and high-intensity exercise performance. Int. J. Environ. Res. Public Health 2021, 18, 584. [Google Scholar] [CrossRef]
- Del Coso, J.; Salinero, J.J.; Gonzalez-Millan, C.; Abian-Vicen, J.; Perez-Gonzalez, B. Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. J. Int. Soc. Sports Nutr. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Franchini, E.; Miarka, B.; Matheus, L.; Del Vecchio, F.B. Endurance in judogi grip strength tests: Comparison between elite and non-elite judo players. Arch. Budo 2011, 7, 1–4. [Google Scholar]
- Thibordee, S.; Prasartwuth, O. Effectiveness of roundhouse kick in elite Taekwondo athletes. J. Electromyogr. Kinesiol. 2014, 24, 353–358. [Google Scholar] [CrossRef]
- Bishop, D. Dietary supplements and team-sport performance. Sports Med. 2010, 40, 995–1017. [Google Scholar] [CrossRef]
- Gladden, L.B. A lactatic perspective on metabolism. Med. Sci. Sports Exerc. 2008, 40, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Mohr, M.; Nielsen, J.J.; Bangsbo, J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J. Appl Physiol 2011, 111, 1372–1379. [Google Scholar] [CrossRef]
- Lee, C.L.; Cheng, C.F.; Lin, J.C.; Huang, H.W. Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur. J. Appl. Physiol 2012, 112, 2107–2116. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Costin, A.; Costin, N.; Cohen, P.; Eisenach, C.; Marchlinski, F. Effect of exercise on heart-rate response to mental stress in teenagers. Eur. J. Prev. Cardiol. 2013, 20, 593–596. [Google Scholar] [CrossRef]
- Petzer, A.; Pienaar, A.; Petzer, J.P. The interactions of caffeine with monoamine oxidase. Life Sci. 2013, 93, 283–287. [Google Scholar] [CrossRef]
- Nurminen, M.L.; Niittynen, L.; Korpela, R.; Vapaatalo, H. Coffee, caffeine and blood pressure: A critical review. Eur. J. Clin. Nutr. 1999, 53, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Benjamim, C.J.R.; Monteiro, L.R.L.; Pontes, Y.M.M.; Silva, A.; Souza, T.K.M.; Valenti, V.E.; Garner, D.M.; Cavalcante, T.C.F. Caffeine slows heart rate autonomic recovery following strength exercise in healthy subjects. Rev. Port. Cardiol. 2021, 40, 399–406. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Rooks, C.R.; Thom, N.J.; McCully, K.K.; Dishman, R.K. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Prog. Neurobiol. 2010, 92, 134–150. [Google Scholar] [CrossRef]
- McCall, A.L.; Millington, W.R.; Wurtman, R.J. Blood-brain barrier transport of caffeine: Dose-related restriction of adenine transport. Life Sci. 1982, 31, 2709–2715. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The influence of caffeine supplementation on resistance exercise: A review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Pethick, J.; Winter, S.L.; Burnley, M. Caffeine ingestion attenuates fatigue-induced loss of muscle torque complexity. Med. Sci. Sports Exerc. 2017, 50, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- Gonzaga, L.A.; Vanderlei, L.C.M.; Gomes, R.L.; Valenti, V.E. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: A crossover study. Sci. Rep. 2017, 7, 14091. [Google Scholar] [CrossRef] [Green Version]
- Miarka, B.; Fukuda, H.D.; Del Vecchio, F.B.; Franchini, E. Discriminant analysis of technical-tactical actions in high-level judo athletes. Int. J. Perfor. Anal. Sport 2016, 16, 30–39. [Google Scholar] [CrossRef]
- Chaabene, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Chamari, K. Physical and physiological profile of elite karate athletes. Sports Med. 2012, 42, 829–843. [Google Scholar]
- Jacobson, B.H.; Hester, G.M.; Palmer, T.B.; Williams, K.; Pope, Z.K.; Sellers, J.H.; Conchola, E.C.; Woolsey, C.; Estrada, C. Effect of Energy drink consumption on power and velocity of selected sport performance activities. J. Strength Cond. Res. 2018, 32, 1613–1618. [Google Scholar] [CrossRef]
- Owens, D.S. Lifestyle modification: Diet, exercise, sports, and other issues. In Hypertrophic Cardiomyopathy; Springer: Berlin/Heidelberg, Germany, 2019; pp. 169–182. [Google Scholar]
- Pickering, C. Caffeine, CYP1A2 genotype, and sports performance: Is timing important? Ir. J. Med. Sci. 2019, 188, 349–350. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. What should we do about habitual caffeine use in athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacology 1999, 51, 83–133. [Google Scholar]
- Goncalves, L.d.S.; Painelli, V.d.S.; Yamaguchi, G.; Oliveira, L.F.d.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Salles Painelli, V.; Teixeira, E.L.; Tardone, B.; Moreno, M.; Morandini, J.; Larrain, V.H.; Pires, F.O. Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, C.; Lara, B.; Salinero, J.J.; Brito de Souza, D.; Ordovas, J.M.; Del Coso, J. Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur. J. Nutr. 2020, 59, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of caffeine on resistance exercise: A review of recent research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Hudson, G.M.; Green, J.M.; Bishop, P.A.; Richardson, M.T. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J. Strength Cond. Res. 2008, 22, 1950–1957. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and exercise: What next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, G.; Sedeaud, A.; Marck, A.; Antero-Jacquemin, J.; Schipman, J.; Sauliere, G.; Marc, A.; Desgorces, F.-D.; Toussaint, J.-F. Has athletic performance reached its peak? Sports Med. 2015, 45, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef]
- Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: A [11C] TMSX PET study. Nucl. Med. Biol. 2005, 32, 831–836. [Google Scholar] [CrossRef]
- Swift, C.; Tiplady, B. The effects of age on the response to caffeine. Psychopharmacology 1988, 94, 29–31. [Google Scholar] [CrossRef]
- Sterkowicz-Przybycien, K.; Fukuda, D.H.; Franchini, E. Meta-analysis to determine normative values for the special judo fitness test in male athletes: 20+ years of sport-specific data and the lasting legacy of Stanislaw Sterkowicz. Sports 2019, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Spriet, L.L. Exercise and sport performance with low doses of caffeine. Sports Med. 2014, 44, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Wang, X.; Deng, Y.; Zheng, X. Cognition and brain activation in response to various doses of caffeine: A near-infrared spectroscopy study. Front. Psychol. 2020, 11, 1393. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Boyett, J.C.; Giersch, G.E.W.; Womack, C.J.; Saunders, M.J.; Hughey, C.A.; Daley, H.M.; Luden, N.D. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients 2016, 8, 639. [Google Scholar] [CrossRef] [Green Version]
- Mora-Rodríguez, R.; Pallarés, J.G.; López-Gullón, J.M.; López-Samanes, Á.; Fernández-Elías, V.E.; Ortega, J.F. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J. Sci. Med. Sport 2015, 18, 338–342. [Google Scholar] [CrossRef]
- Souissi, Y.; Souissi, M.; Chtourou, H. Effects of caffeine ingestion on the diurnal variation of cognitive and repeated high-intensity performances. Pharmacol. Biochem. Behav. 2019, 177, 69–74. [Google Scholar] [CrossRef]
- Souissi, M.; Abedelmalek, S.; Chtourou, H.; Atheymen, R.; Hakim, A.; Sahnoun, Z. Effects of morning caffeine’ ingestion on mood States, simple reaction time, and short-term maximal performance on elite judoists. Asian J. Sports Med. 2012, 3, 161–168. [Google Scholar] [CrossRef]
- Souissi, M.; Abedelmalek, S.; Bou Dhiba, D.; Theodoros Nikolaidis, P.; Ben Awicha, H.; Chtourou, H.; Sahnoun, Z. Morning caffeine ingestion increases cognitive function and short-term maximal performance in footballer players after partial sleep deprivation. Biol. Rhythm. Res. 2015, 46, 617–629. [Google Scholar] [CrossRef]
- Souissi, M.; Chikh, N.; Affès, H.; Sahnoun, Z. Caffeine reversal of sleep deprivation effects on alertness, mood and repeated sprint performances in physical education students. Biol. Rhythm. Res. 2018, 49, 746–760. [Google Scholar] [CrossRef]
- Souissi, M.; Souissi, Y.; Mseddi, E.; Sahnoun, Z. The effects of caffeine on the diurnal variation of the reaction time and short-term maximal performance after one night of sleep deprivation. Biol. Rhythm. Res. 2021, 52, 1544–1559. [Google Scholar] [CrossRef]
- Lane, J.; Steege, J.; Rupp, S.; Kuhn, C. Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharmacol. 1992, 43, 543–546. [Google Scholar] [CrossRef]
- Areta, J.; Irwin, C.; Desbrow, B. Inaccuracies in caffeine intake quantification and other important limitations in recent publication by Gonçalves et al. J. Appl. Physiol. 2017, 123, 1414. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Christensen, M.; Ramos, S.I.; Alm, C.; Dahl, M.-L.; Benítez, J.; Bertilsson, L. Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther. Drug Monit. 2000, 22, 409–417. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2014, 61, 58–63. [Google Scholar]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Stafisfical Power Analysis for the Behavioural Sciences, 2nd ed.; Erlbaum: Hillside, NJ, USA, 1988. [Google Scholar]
- Paton, C.D.; Lowe, T.; Irvine, A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur. J. Appl. Physiol. 2010, 110, 1243–1250. [Google Scholar] [CrossRef]
Database | Terms Combination | Results |
---|---|---|
Pubmed | (“Caffeine”[Mesh]) OR “Coffee” [Mesh] AND “Martial Arts”[Mesh] | 19 |
Web of Science | Caffeine AND Combat Sports | 35 |
Scopus | Caffeine OR Coffee AND Combat Sports OR Martial Arts OR Judo OR Taekwondo OR Wrestling OR Boxing OR Jiu-Jitsu | 19 |
Cochrane Library | Caffeine AND Martial Arts | 19 |
Study | Design | Sample Size | Timing | Doses | Form | Measures | Results | Pedro Score |
---|---|---|---|---|---|---|---|---|
Aedma et al. [44] | RDBCCrSD | 14 BJJ practitioners | 30 min | 5 mg·kg−1 | Capsules | 4 ×arm ergometer test (6 × 15 s + 40 s rest) [La], HR, RPF, RPE | Significant time effect but no treatment ≠ in PP, MP, RPE and RPF. | 10 |
Arazi et al. [65] | RDBCCrSD | 10 karatekas | 60 min | 2 mg·kg−1 5 mg·kg−1 | Capsules | leg press Vertical jump (sergeant) RAST (6 × 35 m) RPE, pain perception | 5 mg·kg−1 of caffeine ↓ RPE and pain perception values during muscular endurance test. No ≠ in leg press, vertical jump and RAST performance. | 10 |
Astley et al. [45] | RDBSD | 18 judo athletes | 60 min | 4 mg·kg−1 | Cgapsules | SJFT HR RPE | Number of throws ↑ by 31.22% SJFT index ↓ by 22.29% RPE ↓ by 14.63% No changes in HR | 10 |
Cortez et al. [61] | RDBSD | 13 taekwondo athletes | 60 min | 5 mg·kg−1 | Capsules | 3 × dollyochagi circular kick pre- and post-3 × 60 s CMJ | Reaction time ↑ by 29% in pretest and by 25% in posttest | 10 |
Coswig et al. [62] | RDBCCrSD | 10 boxers | 30 min | 6 mg·kg−1 | Capsules | -Simulated boxing matches HR RPE | Duration of interaction blocks↑by 47.73% Effort: Pause ratio was 4.4 s:8.7 s (approx. 1:2) for placebo and 6.5 s:9.4 s (1:1.44) for caffeine No ≠ in HR and RPE between conditions | 10 |
Athayde et al. [46] | RDBCrSD | 14 judo athletes | 60 min | 5 mg·kg−1 | Capsules | CMJ Handgrip strength Judogi grip strength test 3 × 5-min judo matches separated by 15 min of passive rest [La] | Peak [La] ↑ in the 5th minute after match 3 by 22.14% No effects on CMJ, handgrip strength and the number of attacks. | 10 |
Athayde et al. [56] | RDBCrSD | 12 judo athletes | 60 min | 5 mg·kg−1 | Capsules | 3 × 5-min judo matches separated by 15 min of passive rest RPE and RPR | No effects on match-derived technical variables, RPE and RPR. | 10 |
Diaz-Lara, Del Coso, García et al. [48] | RDBCrSD | 14 elite BJJ athletes | 60 min | 3 mg·kg−1 | Capsules | Handgrip strength CMJ Maximal static lift Bench-press | Hand grip strength ↑ in dominant hand by 4.4%, and non-dominant hand by 4.9%. CMJ height ↑ by 2.7%. Bench press ↑ by 3%. Max number of bench press reps at maximal strength ↑ by 14.7% | 10 |
Diaz-Lara, Del Coso, Portillo et al. [49] | RDBSD | 14 elite BJJ athletes | 60 min | 3 mg·kg−1 | Capsules | Handgrip strength Maximum static lift CMJ 2 simulated BJJ combats (with 20 min rest) [La] RPE | The duration of high-intensity offensive actions ↑ in combat 1 by 58.3% and by 42% in combat 2. The number of successful offensive actions↑ in combat 2 by 28.57%. The number of blocks ↑ by 66.7% in combat 1 and by 28.57% in combat 2. Maximal static lift test ↑ by in pre-fight 2 by 15.8% and after fight 2 by 17.8%. Jump height and Handgrip Strength ↑ as in Diaz-Lara et al. [48]. [La] ↑ by 17.33% (8.8 ± 2.9 vs. 7.5 ± 2.7 mmol/L) in the prefight 2, and just after fight 2 by 11.76% (15.2 ± 3.3 vs. 13.6 ± 4.0 mmol/L). PRE ↑ by 4.84%. | 10 |
Durkalec-Michalski et al. [50] | RDBCrSD | 22 judo athletes | 60 min | 3 mg·kg−1 6 mg·kg−1 9 mg·kg−1 | Capsules | 3 × 4-min judo matches SJFT HR RPE | The 6 and 9 mg·kg−1 doses ↑the total number of attacks in SJFTs compared to 3 mg·kg−1, PLA or baseline. RPE remains unchanged. 9 mg·kg−1CAF ↑ HRRA and HR1minAF SJFTs as compared to PLA. Total number of throws in randoris were ↑ with 9 mg·kg1 compared to PLA. | 10 |
Merino Fernández et al. [60] | RDBCrSD | 16 Spanish national Jiu-Jitsu athletes | 60 min | 3 mg·kg−1 | Capsules | 3 CMJ with both legs, 3 CMJ with the right leg and 3 CMJ with the left leg | Caffeine ↑bilateral jump height (Δ% = 4.40), flight time (Δ% = 2.20), flight time: contraction time (Δ% = 8.90), concentric impulse (Δ% = 1.80), peak power (Δ% = 2.50). Caffeine ↑left leg flight time (Δ% = 1.91), left leg jump height (Δ% = 3.75) and right leg flight time: contraction time (Δ% = 9.72). | 10 |
Merino Fernández et al. [57] | RDBSD | 22 jiu-jitsu athletes | 60 min | 3 mg·kg−1 | Capsule | SJFT Simulated combat HR | Number of throws during the SJFT ↑ by 5%. SJFT index ↓ by 5.8%. HR during SJFT ↑ by 4%. No ≠ for offensive and defensive technical actions. | 10 |
Krawczyk et al. [59] | RDBCrSD | 10 judo athletes | 60 min | 3 mg·kg−1 6 mg·kg−1 | Capsules | bench press with 50% of 1RM bench pull with 50% of 1RM CMJ Handgrip strength Dynamic and isometric versions of the Judogi Grip Strength Test | Both 3 and 6 mg·kg−1 of caffeine: ↑ Peak bar velocity in the bench press by 5.2%. ↑Mean bar velocity in the bench pull by ~ 9% and 12%. ↑Number of repetitions in the Judogi Grip Strength Test by 15%. No ≠ in the CMJ and handgrip strength. | 10 |
Pereira et al. [55] | RDBCrSD | 13 judo athletes | 60 min | 6 mg·kg−1 | Capsules | SJFT HR | No ≠ in number of throws, SJFT index and HR. | 10 |
San Juan et al. [64] | RDBCCrSD | 8 boxer athletes | 60 min | 6 mg·kg−1 | Capsules | Handgrip strength CMJ 30-s Wingate test [La] | Caffeine ↑ peak power by 6.27%, ↓ The time to reach peak power by −9.91% in the Wingate test, ↑ jump height by 5.1%. Enhance neuromuscular efficiency at peak power in the vastus lateralis and gluteus maximus. | 10 |
Santos et al. [67] | RDBCrSD | 10 taekwondo athletes | 60 min | 5 mg·kg−1 | Capsules | 2 × (5 × bandaltchagui kick) + 2 simulated taekwondo matches). [La]; HR; RPE | caffeine ↑ the reaction time by 11.9% prior to the first combat. ↑ number of attacks in combat 2 by 37.39%. ↑ referee time-outs in combat 2 by 60%. ↑ [La] after round 2 by 31.65% and by 35.48% in the first combat. RPE and HR were unaffected. | 10 |
Lopes-Silva et al. [53] | RDBCrSD | 10 judo and jiu-jitsu athletes | 60 min | 5 mg·kg−1 | Capsules | 4 set of judogi dynamic strength-endurance test Handgrip strength [La]; HR; RPE | Caffeine ↑ the number of repetitions by 7% and ↑ maximal isometric handgrip strength by 5%. [La]; HR and RPE values were unaffected. | 10 |
Lopes-Silva et al. [52] | RDBCCrSD | 6 judo athletes | 60 min | 6 mg·kg−1 | Capsules | 3 × SJFT [La] RPE | No significant ≠ in the number of throws. [La] was systemically higher and RPE ↓ by 14.6% with caffeine. | 10 |
Lopes-Silva et al. [66] | RDBCrSD | 10 taekwondo athletes | 60 min | 5 mg·kg−1 | Capsules | 3 rounds of 2 min [La] HR RPE | No ≠ in any of the variables examined. | 10 |
Carmo et al. [47] | RDBCrSD | 8 judo athletes | 60 min and 120 min (post-traning) | 5 mg·kg−1 | Capsules | SJFT CMJ [La], HR RPE, Pain perception | At 120 min: [La] ↑ by 63.63%. No ≠ in number of throws and SJFT index No ≠ for HR, CMJ, perceived pain and RPE. | 9 |
Filip-Stachnik et al. [51] | RDBCrSD | 9 judo athletes | 15 min | 5.4 mg·kg−1 2.7 mg·kg−1 | Caffeinated chewing gums | 2 × SJFT separated by 4 min of combat RPE HR [La] | No ≠ in number of throws, SJFT index, [La], HR and RPE. | 10 |
Felippe et al. [58] | RDBCSD | 10 judo athletes | 60 min | 0.3 g·kg−1 of NaHCO3 6 mg·kg−1 of caffeine NaHCO3+ caffeine | Capsules | 3 × SJFT RPE [La] | Caffeine+ NaHCO3: ↑ Number of throws in SJFT1 by 5.17%, in SJFT3 by 8.44% and total number of throws by 5.66%. Caffeine ↑ [La] in all experimental conditions compared with placebo. No significant ≠ in RPE | 10 |
de Azevedo et al. [69] | RDBCCrSD | 11 MMA athletes | 60 min | 5 mg·kg−1 | Capsules | 3 sets of repeated punching (15 s + 45 s rest) RPE | No ≠ in the number of throws and RPE. | 10 |
Rezaei et al. [63] | RDBCrSD | 8 karatekas | 50 min | 5 mg·kg−1 NaHCO3 | Capsules | Karate aerobic specific test (KAST) [La]; RPE; HR | Caffeine ↓ time to exhaustion by 5.97%. HR, RPE and [La] were unaffected. | 10 |
Negaresh et al. [54] | RDBSD | 11 freestyle wrestlers | 45 min before 1st match ~30 min before the following matches | Selective dose 10 mg·kg−1 4 mg·kg−1 Repeated-dose (5 × 2 mg·kg−1) | Capsules | Pittsburgh Wrestling Performance Test (PWPT) 5 wrestling matches (2 × 3-min wrestling rounds) HR [La] RPF | In comparison to the Placebo: (10 mg·kg−1 of caffeine ↓ PWPT time only before the 1st match. The repeated dose and the selective dose reduced PWPT time in the 3rd and 4th matches. RPF was less before the 4th match with the repeated and selective dose [La] was higher with the selective dose after the 4thand 5th matches. | 10 |
Ouergui et al. [68] | RDBCCrSD | 20 taekwondo athletes | 60 min | 3 mg·kg−1 | Capsules | TSAT FSKT-10s FSKT-mult RPE | ↓ TSAT time by ~3.3% ↑ FSKT-10s by 4% No significant ≠ in FSKT-mult and RPE | 10 |
Study | Sex | Habitual Caffeine Intake | Age (Years) | Experience (Years) |
---|---|---|---|---|
Aedma et al. [44] | NR | 10 intake < 70 and 4 were intake 80–200 mg/day. | 25.3 ± 4.9 | ≥4 |
Arazi et al. [65] | F | ˂60 mg/day, and 1 cup of coffee | 16.8 ± 1.2 | ≥3 |
Astley et al. [45] | M | NR | 16.1 ± 1.4 | NR |
Athayde et al. [46] | M | Moderate caffeine consumers | 22.5 ± 7.1 | 12.9 ± 6.4 |
Athayde et al. [56] | M | Moderate caffeine consumers | 23.1 ± 4.2 | 12.5 ± 3.9 |
Carmo et al. [47] | M | NR | 21.6 ± 2.0 | ≥7 |
Cortez et al. [61] | NR | NR | 22.8 ± 4.7 | 3.7 ± 1.8 |
Coswig et al. [62] | M | NR | 25.9 ± 5.2 | 5 ± 1.5 |
de Azevedo et al. [69] | M | <250 mg/day | 27.6 ± 4.3 | NR |
Diaz-Lara, Del Coso, García et al. [48] | M | <60 mg/day | 29.2 ± 3.3 | ≥5 |
Diaz-Lara, Del Coso, Portillo et al. [49] | M | Light caffeine consumers | 29.2 ± 3.3 | ≥5 |
Durkalec-Michalski et al. [50] | M | 10 consumers 12 non-consumers | 21.7 ±3.7 | 11.0 ± 4.5 |
Felippe et al. [58] | M | <2 cups of coffee/day | 23 ± 5 | 15 ± 5 |
Filip-Stachnik et al. [51] | M | 3.1 ± 1.3 mg/day | 23.7 ± 4.4 | 15.6 ± 4.0 |
Lopes-Silva et al. [53] | NR | NR | 25.2 ± 5.3 | ≥10 |
Lopes-Silva et al. [52] | M | NR | 25.3 ± 5.7 | 14.4 ± 8.9 |
Lopes-Silva et al. [66] | M | 2 consumed > 6 cups/day 8 consumed < 2 cups/day | 21 ± 4 | ≥9 |
Merino Fernández et al. [60] | M F | <0.99 mg/day | 21.50 ± 4.75 20.63 ± 3.20 | 11.88 ± 3.94 15.38 ± 2.92 |
Merino Fernández et al. [57] | M/F | NR | 22 ± 4 | 15 ± 7 |
Krawczyk et al. [59] | M/F | 2.6 mg/kg/day | 24.1 ± 4.7 | 15.1 ± 5.2 |
Negaresh et al. [54] | M | <3 cups of coffee/day | 24 ± 3 | ≥10 |
Pereira et al. [55] | F | NR | 17.6 ± 1.6 | ≥2 |
Rezaei et al. [63] | NR | ≤125 mg/day | 20.5 ± 2.4 | >5 |
San Juan et al. [64] | M | NR | 22.0 ± 1.78 | NR |
Santos et al. [67] | M | NR | 24.9 ± 7.3 | ≥7 |
Ouergui et al. [68] | M/F | <3 cups of coffee/day | 17.5 ± 0.7 | ≥6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delleli, S.; Ouergui, I.; Messaoudi, H.; Trabelsi, K.; Ammar, A.; Glenn, J.M.; Chtourou, H. Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2996. https://doi.org/10.3390/nu14142996
Delleli S, Ouergui I, Messaoudi H, Trabelsi K, Ammar A, Glenn JM, Chtourou H. Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(14):2996. https://doi.org/10.3390/nu14142996
Chicago/Turabian StyleDelleli, Slaheddine, Ibrahim Ouergui, Hamdi Messaoudi, Khaled Trabelsi, Achraf Ammar, Jordan M. Glenn, and Hamdi Chtourou. 2022. "Acute Effects of Caffeine Supplementation on Physical Performance, Physiological Responses, Perceived Exertion, and Technical-Tactical Skills in Combat Sports: A Systematic Review and Meta-Analysis" Nutrients 14, no. 14: 2996. https://doi.org/10.3390/nu14142996