Cystine and Theanine as Stress-Reducing Amino Acids—Perioperative Use for Early Recovery after Surgical Stress
Abstract
1. Introduction
Stress and Biological Reaction
2. Trial of Stress Reduction
2.1. Surgical Procedure
2.2. Nutritional Management (Early Enteral Feeding: Animal Model)
2.3. Nutritional Management (Perioperative Management: Enhanced Recovery after Surgery)
3. Amino Acids Cystine and Theanine
3.1. Influence of Cystine/Theanine Administration on Exercise Load in Athletes
3.2. Application of Cystine/Theanine to Patients Undergoing Surgery
3.3. Supportive Data of Animal Experiment for Cystine/Theanine
4. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Moore, F.D. Metabolic Care of the Surgical Patients; WB Saunders: Philadelphia, PA, USA, 1956. [Google Scholar]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Long, C.L.; Schaffel, N.; Geiger, J.W.; Schiller, W.R.; Blakemore, W.S. Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J. Parenter. Enter. Nutr. 1979, 3, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Mackiewics, A.; Kushner, I.; Baumann, H. Acute Phase Protein; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Biolo, G.; Toigo, G.; Ciocchi, B.; Situlin, R.; Iscra, F.; Gullo, A.; Guarnieri, G. Metabolic response to injury and sepsis: Changes in protein metabolism. Nutrition 1997, 13, 52S–57S. [Google Scholar] [CrossRef]
- Sobotka, L.; Soeters, P.B. Basics in clinical nutrition: Metabolic response to injury and sepsis. e-ESPEN 2009, 4, e1–e3. [Google Scholar] [CrossRef][Green Version]
- Bistrian, B.R. A simple technique to estimate severity of stress. Surg. Gynecol. Obstet. 1979, 148, 675–678. [Google Scholar]
- Cerra, F.; Blackburn, G.; Hirsch, J.; Mullen, K.; Luther, W. The effect of stress level, amino acid formula, and nitrogen dose on nitrogen retention in traumatic and septic stress. Ann. Surg. 1987, 205, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Riegel, C.; Koop, C.E.; Drew, J.; Stevens, L.W.; Rhoads, J.E.; Bullitt, L.; Barrus, D.; Grigger, R.P.; Barnes, M.; Barnhart, A.; et al. The nutritional requirements for nitrogen balance in surgical patients during the early postoperative period. J. Clin. Investig. 1947, 26, 18–23. [Google Scholar] [CrossRef][Green Version]
- Terarshima, H. The rights and wrongs of early PN after stress: Real truth of the argumentation. JJSMN 2016, 50, 111–126. [Google Scholar]
- Himal, H.S. Minimally invasive (laparoscopic) surgery. Surg. Endosc. 2002, 16, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Clinical Outcomes of Surgical Therapy Study, G.; Nelson, H.; Sargent, D.J.; Wieand, H.S.; Fleshman, J.; Anvari, M.; Stryker, S.J.; Beart, R.W., Jr.; Hellinger, M.; Flanagan, R., Jr.; et al. A comparison of laparoscopically assisted and open colectomy for colon cancer. N. Engl. J. Med. 2004, 350, 2050–2059. [Google Scholar] [CrossRef]
- Kaiser, A.M.; Kang, J.C.; Chan, L.S.; Vukasin, P.; Beart, R.W., Jr. Laparoscopic-assisted vs. open colectomy for colon cancer: A prospective randomized trial. J. Laparoendosc. Adv. Surg. Techniques. Part A 2004, 14, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Ordemann, J.; Jacobi, C.A.; Schwenk, W.; Stosslein, R.; Muller, J.M. Cellular and humoral inflammatory response after laparoscopic and conventional colorectal resections. Surg. Endosc. 2001, 15, 600–608. [Google Scholar] [CrossRef]
- Mochizuki, H.; Trocki, O.; Dominioni, L.; Brackett, K.A.; Joffe, S.N.; Alexander, J.W. Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann. Surg. 1984, 200, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.C.; Ljungqvist, O.; Von Meyenfeldt, M.; Revhaug, A.; Dejong, C.H.; Lassen, K.; Nygren, J.; Hausel, J.; Soop, M.; Andersen, J.; et al. Enhanced recovery after surgery: A consensus review of clinical care for patients undergoing colonic resection. Clin. Nutr. 2005, 24, 466–477. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hubner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R.; Price, P.; Reid, T.D.; Hunt, S.; Clark, G.W.; Havard, T.J.; Puntis, M.C.; Lewis, W.G. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin. Nutr. 2011, 30, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, S.; Shibakusa, T.; Tanaka, K.A. Cystine and theanine: Amino acids as oral immunomodulative nutrients. SpringerPlus 2013, 2, 635. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, T.; Tsuchiya, T.; Oyama, A.; Tsuchiya, T.; Abe, N.; Sato, A.; Chiba, Y.; Kurihara, S.; Shibakusa, T.; Mikami, T. Perioperative oral administration of cystine and theanine enhances recovery after distal gastrectomy: A prospective randomized trial. JPEN J. Parenter. Enter. Nutr. 2013, 37, 384–391. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 15 November 2021).
- Buchanan, J.H. A cystine-rich protein fraction from oxidized alpha-keratin. Biochem. J. 1977, 167, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, L.E.; Crawhall, J.C.; Segal, S. Intestinal transport of cystine and cysteine in man: Evidence for separate mechanisms. J. Clin. Investig. 1967, 46, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Juneja, L.R.; Chu, D.C.; Okubo, T.; Nagato, Y.; Yokogoshi, H. L-Theanine-a unique amino acid of green tea and its relaxation effect in humans. Trens Food Sci. Technol. 1999, 10, 199–204. [Google Scholar] [CrossRef]
- Asatoor, A.M. Tea as a source of urinary ethylamine. Nature 1966, 210, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Rimaniol, A.C.; Mialocq, P.; Clayette, P.; Dormont, D.; Gras, G. Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am. J. Physiology. Cell Physiol. 2001, 281, C1964–C1970. [Google Scholar] [CrossRef] [PubMed]
- Margonis, K.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Douroudos, I.; Chatzinikolaou, A.; Mitrakou, A.; Mastorakos, G.; Papassotiriou, I.; Taxildaris, K.; et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic. Biol. Med. 2007, 43, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; MacNee, W. Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 2000, 16, 534–554. [Google Scholar] [CrossRef]
- Murakami, S.; Kurihara, S.; Titchenal, C.A.; Ohtani, M. Suppression of exercise-induced neutrophilia and lymphopenia in athletes by cystine/theanine intake: A randomized, double-blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2010, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Kurihara, S.; Koikawa, N.; Nakamura, A.; Aoki, K.; Yosigi, H.; Sawaki, K.; Ohtani, M. Effects of oral supplementation with cystine and theanine on the immune function of athletes in endurance exercise: Randomized, double-blind, placebo-controlled trial. Biosci. Biotechnol. Biochem. 2009, 73, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Kawada, S.; Kobayashi, K.; Ohtani, M.; Fukusaki, C. Cystine and theanine supplementation restores high-intensity resistance exercise-induced attenuation of natural killer cell activity in well-trained men. J. Strength Cond. Res. 2010, 24, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Shibakusa, T.; Mikami, T.; Kurihara, S.; Chiba, Y.; Tsuchiya, T.; Miyachi, T.; Oyama, A.; Tanaka, K.A.; Koyama, N. Enhancement of postoperative recovery by preoperative oral co-administration of the amino acids, cystine and theanine, in a mouse surgical model. Clin. Nutr. 2012, 31, 555–561. [Google Scholar] [CrossRef]
- Luo, J.L.; Hammarqvist, F.; Andersson, K.; Wernerman, J. Skeletal muscle glutathione after surgical trauma. Ann. Surg. 1996, 223, 420–427. [Google Scholar] [CrossRef]
- Tanaka, K.A.; Kurihara, S.; Shibakusa, T.; Chiba, Y.; Mikami, T. Cystine improves survival rates in a LPS-induced sepsis mouse model. Clin. Nutr. 2015, 34, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Miyakuni, T.; Fukatsu, K.; Ri, M.; Murakoshi, S.; Inoue, Y.; Kurihara, S.; Takayama, T.; Yasuhara, H. Cystine and Theanine Improve Survival after Gut Ischemia-Reperfusion. Ann. Nutr. Metab. 2018, 73, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Paton, F.; Chambers, D.; Wilson, P.; Eastwood, A.; Craig, D.; Fox, D.; Jayne, D.; McGinnes, E. Effectiveness and implementation of enhanced recovery after surgery programmes: A rapid evidence synthesis. BMJ Open 2014, 4, e005015. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, S.; Yoshida, S.; Sukegawa, E.; Yoshimura, S.; Uchida, H.; Maeda, K.; Yamamoto, T. Evaluation of safety of long-term excessive intake of L-cystine and L-theanine in healthy adult subjects. Seikatsu Eisei 2008, 52, 229–236. [Google Scholar]
- Matsuu-Matsuyama, M.; Shichijo, K.; Tsuchiya, T.; Kondo, H.; Miura, S.; Matsuda, K.; Sekine, I.; Nakashima, M. Protective effects of a cystine and theanine mixture against acute radiation injury in rats. Environ. Toxicol. Pharmacol. 2020, 78, 103395. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, R.; Tsuchiya, T.; Miyata, G.; Sato, T.; Takahashi, K.; Miura, K.; Oshio, H.; Ohori, H.; Ariyoshi, K.; Oyamada, S.; et al. Efficacy of oral administration of cystine and theanine in colorectal cancer patients undergoing capecitabine-based adjuvant chemotherapy after surgery: A multi-institutional, randomized, double-blinded, placebo-controlled, phase II trial (JORTC-CAM03). Support. Care Cancer 2020, 28, 3649–3657. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, T.; Kobayashi, D.; Egashira, N.; Tsuchiya, T.; Shimazoe, T. Oral administration of Cystine and Theanine ameliorates oxaliplatin-induced chronic peripheral neuropathy in rodents. Sci. Rep. 2020, 10, 12665. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sato, R.; Komura, T.; Ichikawa, H.; Hirashima, T.; Otake, S.; Akazawa, N.; Yazawa, T.; Abe, T.; Okada, T.; et al. Protective effect of the oral administration of cystine and theanine on oxaliplatin-induced peripheral neuropathy: A pilot randomized trial. Int. J. Clin. Oncol. 2020, 25, 1814–1821. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Honda, H.; Oikawa, M.; Kakita, T.; Oyama, A.; Oishi, H.; Tochikubo, K.; Hashimoto, T.; Kurihara, S.; Shibakusa, T.; et al. Oral administration of the amino acids cystine and theanine attenuates the adverse events of S-1 adjuvant chemotherapy in gastrointestinal cancer patients. Int. J. Clin. Oncol. 2016, 21, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, J.; Nishikawa, S.; Kurihara, S. Oral administration of cystine and theanine attenuates 5-fluorouracil-induced intestinal mucositis and diarrhea by suppressing both glutathione level decrease and ROS production in the small intestine of mucositis mouse model. BMC Cancer 2021, 21, 1343. [Google Scholar] [CrossRef]
Author and Year | Study Design | Number of Patients | Study Results | Conclusions |
---|---|---|---|---|
Miyachi, et al. (2013) [20] | RCT | C/T group: 15 placebo group: 18 | Significant decrease in C/T group: IL-6, CRP, body temperature and REE. | C/T reduces excessive inflammation after surgery and enhances recovery. |
Author and Year | Study Model in Mice/Cells | Study Results | Conclusions |
---|---|---|---|
Shibakusa, et al. (2012) [33] | Small intestine manipulation model in mice | Significant decrease in C/T group: IL-6. Significant increase in C/T group: GSH level, food intake and locomotor activity. | C/T reduces excessive inflammation after surgery and enhances recovery. |
Tanaka, et al. (2015) [35] | LPS-induced sepsis model in mice/LPS-treated THP-1 cells | Significant decrease in C(/T) group: IL-6. Significant increase in C(/T) group: survival rate and IL-10 production. | C(/T) reduces excessive inflammation after LPS treatment through enhancing IL-10 production and recovers survival rate. |
Miyakuni, et al. (2018) [36] | Intestinal ischemia reperfusion model in mice | Rapidly decrease in C/T group: IL-6 and TNF-α. Significant increase in C/T group: survival rate. | C/T reduces excessive inflammation after an intestinal ischemia reperfusion and recovers survival rate. |
Author and Year | Study Design | Number of Patients | Study Results | Conclusions |
---|---|---|---|---|
Tsuchiya, et al. (2016) [44] | RCT | C/T group: 32 Placebo group: 31 | C/T improved the completion rate, alleviated the adverse events, especially diarrhea in colon and gastric cancer patients. | C/T reduces adverse event of S-1 adjuvant chemotherapy. |
Hamaguchi, et al. (2019) [41] | RCT | C/T group: 52 Placebo group: 48 | C/T reduced diarrhea and hand foot syndrome in colon cancer patients, but it was not significantly different | C/T has a possibility to reduce diarrhea and hand foot syndrome of capecitabine. |
Kobayashi, et al. (2020) [43] | RCT | C/T group: 14 Control group: 14 | C/T reduced neuropathy grading score during mFOLFOX chemotherapy in colon cancer patients. | C/T has a protective effect against peripheral neuropathy induced by oxaliplatin. |
Author and Year | Study Model in Rats/Mice | Study Results | Conclusions |
---|---|---|---|
Kawashiri, et al. (2020) [42] | Oxaliplatin-induced peripheral neuropathy model in rats | Significant increase in C/T group: GSH level. Significant suppress in C/T group: axonal degeneration. | C/T enhances GSH level and suppresses peripheral neuropathy induced by oxaliplatin. |
Yoneda, et al. (2021) [45] | 5-FU-induced diarrhea model in mice | Significant improvement in C/T group: GSH level, villus destruction, diarrhea, food intake and body weight. | C/T enhances GSH level and suppresses diarrhea induced by 5-FU. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, T.; Kurihara, S. Cystine and Theanine as Stress-Reducing Amino Acids—Perioperative Use for Early Recovery after Surgical Stress. Nutrients 2022, 14, 129. https://doi.org/10.3390/nu14010129
Tsuchiya T, Kurihara S. Cystine and Theanine as Stress-Reducing Amino Acids—Perioperative Use for Early Recovery after Surgical Stress. Nutrients. 2022; 14(1):129. https://doi.org/10.3390/nu14010129
Chicago/Turabian StyleTsuchiya, Takashi, and Shigekazu Kurihara. 2022. "Cystine and Theanine as Stress-Reducing Amino Acids—Perioperative Use for Early Recovery after Surgical Stress" Nutrients 14, no. 1: 129. https://doi.org/10.3390/nu14010129
APA StyleTsuchiya, T., & Kurihara, S. (2022). Cystine and Theanine as Stress-Reducing Amino Acids—Perioperative Use for Early Recovery after Surgical Stress. Nutrients, 14(1), 129. https://doi.org/10.3390/nu14010129