Association of Habitual Dietary Intake with Liver Iron—A Population-Based Imaging Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Liver Iron Content with Magnetic Resonance Imaging
2.3. Assessment of Habitual Dietary Intake
2.4. Statistical Analysis
3. Results
3.1. Study Sample
3.2. Habitual Food and Nutrient Intake
3.3. Association of Baseline Characteristics with Liver Iron Content
3.4. Association of Macronutrients with Liver Iron Content
3.5. Association of Selected Micronutrients with Liver Iron Content
3.6. Association of Selected Food Groups with Liver Iron Content
4. Discussion
4.1. Distribution of Liver Iron and Correlation with Age
4.2. Relationship of Liver Fat and Liver Iron
4.3. Association of Alcohol with Liver Iron
4.4. Association of Fiber, Carbohydrates, and Vegetables with Liver Iron
4.5. Association of Potassium and Magnesium with Liver Iron
4.6. Intestinal Iron Bioavailability
4.7. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, E.R.; Shah, Y.M. Iron homeostasis in the liver. Compr. Physiol. 2013, 3, 315–330. [Google Scholar]
- Obrzut, M.; Atamaniuk, V.; Glaser, K.J.; Chen, J.; Ehman, R.L.; Obrzut, B.; Cholewa, M.; Gutkowski, K. Value of liver iron concentration in healthy volunteers assessed by MRI. Sci. Rep. 2020, 10, 17887. [Google Scholar] [CrossRef]
- Gonzalez-Casas, R.; Jones, E.A.; Moreno-Otero, R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009, 15, 4653–4658. [Google Scholar] [CrossRef]
- Siddique, A.; Nelson, J.E.; Aouizerat, B.; Yeh, M.M.; Kowdley, K.V. Iron deficiency in patients with nonalcoholic Fatty liver disease is associated with obesity, female gender, and low serum hepcidin. Clin. Gastroenterol. Hepatol. 2014, 12, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Dongiovanni, P.; Fracanzani, A.L.; Fargion, S.; Valenti, L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J. Hepatol. 2011, 55, 920–932. [Google Scholar] [CrossRef]
- Fleming, D.J.; Tucker, K.L.; Jacques, P.F.; Dallal, G.E.; Wilson, P.W.; Wood, R.J. Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am. J. Clin. Nutr. 2002, 76, 1375–1384. [Google Scholar] [CrossRef] [Green Version]
- Ju, S.Y.; Ha, A.W. Dietary factors associated with high serum ferritin levels in postmenopausal women with the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012. Nutr. Res. Pract. 2016, 10, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.J.; Ley, S.H.; Bhupathiraju, S.N.; Li, Y.; Wang, D.D. Associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults: A cross-sectional study in the China Health and Nutrition Survey. Am. J. Clin. Nutr. 2017, 105, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Péneau, S.; Dauchet, L.; Vergnaud, A.C.; Estaquio, C.; Kesse-Guyot, E.; Bertrais, S.; Latino-Martel, P.; Hercberg, S.; Galan, P. Relationship between iron status and dietary fruit and vegetables based on their vitamin C and fiber content. Am. J. Clin. Nutr. 2008, 87, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Aranda, N.; Viteri, F.E.; Montserrat, C.; Arija, V. Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona, Spain. Ann. Hematol. 2010, 89, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Galan, P.; Yoon, H.C.; Preziosi, P.; Viteri, F.; Valeix, P.; Fieux, B.; Briançon, S.; Malvy, D.; Roussel, A.M.; Favier, A.; et al. Determining factors in the iron status of adult women in the SU.VI.MAX study. SUpplementation en VItamines et Minéraux AntioXydants. Eur. J. Clin. Nutr. 1998, 52, 383–388. [Google Scholar] [CrossRef]
- Osler, M.; Milman, N.; Heitmann, B.L. Dietary and non-dietary factors associated with iron status in a cohort of Danish adults followed for six years. Eur. J. Clin. Nutr. 1998, 52, 459–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, G.N.; Dominitz, J.A.; Weiss, N.S.; Heagerty, P.J.; Kowdley, K.V. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 2004, 126, 1293–1301. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Zhu, G.; Heath, A.C.; Powell, L.W.; Martin, N.G. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol. Clin. Exp. Res. 2001, 25, 1037–1045. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Toxqui, L.; Lopez-Parra, A.M.; Baeza-Richer, C.; Perez-Granados, A.M.; Arroyo-Pardo, E.; Vaquero, M.P. Influence of diet, menstruation and genetic factors on iron status: A cross-sectional study in Spanish women of childbearing age. Int. J. Mol. Sci. 2014, 15, 4077–4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, D.J.; Jacques, P.F.; Dallal, G.E.; Tucker, K.L.; Wilson, P.W.; Wood, R.J. Dietary determinants of iron stores in a free-living elderly population: The Framingham Heart Study. Am. J. Clin. Nutr. 1998, 67, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, U.; Frith-Terhune, A.; Cogswell, M.; Kettel Khan, L. Dietary intake does not account for differences in low iron stores among Mexican American and non-Hispanic white women: Third National Health and Nutrition Examination Survey, 1988–1994. J. Nutr. 2002, 132, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Wunderlich, A.P.; Cario, H.; Juchems, M.S.; Beer, M.; Schmidt, S.A. Noninvasive MRI-Based Liver Iron Quantification: Methodic Approaches, Practical Applicability and Significance. Rofo 2016, 188, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- McKay, A.; Wilman, H.R.; Dennis, A.; Kelly, M.; Gyngell, M.L.; Neubauer, S.; Bell, J.D.; Banerjee, R.; Thomas, E.L. Measurement of liver iron by magnetic resonance imaging in the UK Biobank population. PLoS ONE 2018, 13, e0209340. [Google Scholar] [CrossRef] [PubMed]
- Holle, R.; Happich, M.; Löwel, H.; Wichmann, H.E. KORA—A research platform for population based health research. Gesundheitswesen 2005, 67, S19–S25. [Google Scholar] [CrossRef] [Green Version]
- Bamberg, F.; Hetterich, H.; Rospleszcz, S.; Lorbeer, R.; Auweter, S.D.; Schlett, C.L.; Schafnitzel, A.; Bayerl, C.; Schindler, A.; Saam, T.; et al. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects with Prediabetes, Subjects with Diabetes, and Normal Control Subjects from the General Population: The KORA-MRI Study. Diabetes 2017, 66, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Suhre, K.; Arnold, M.; Bhagwat, A.M.; Cotton, R.J.; Engelke, R.; Raffler, J.; Sarwath, H.; Thareja, G.; Wahl, A.; DeLisle, R.K.; et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 2017, 8, 14357. [Google Scholar] [CrossRef] [Green Version]
- Hetterich, H.; Bayerl, C.; Peters, A.; Heier, M.; Linkohr, B.; Meisinger, C.; Auweter, S.; Kannengießer, S.A.; Kramer, H.; Ertl-Wagner, B.; et al. Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population. Eur. Radiol. 2016, 26, 1895–1904. [Google Scholar] [CrossRef]
- Pineda, N.; Sharma, P.; Xu, Q.; Hu, X.; Vos, M.; Martin, D.R. Measurement of hepatic lipid: High-Speed T2-corrected multiecho acquisition at 1H MR spectroscopy—A rapid and accurate technique. Radiology 2009, 252, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.C.; Enriquez, C.; Ghugre, N.; Tyzka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005, 106, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Mitry, P.; Wawro, N.; Six-Merker, J.; Zoller, D.; Jourdan, C.; Meisinger, C.; Thierry, S.; Nothlings, U.; Knuppel, S.; Boeing, H.; et al. Usual Dietary Intake Estimation Based on a Combination of Repeated 24-H Food Lists and a Food Frequency Questionnaire in the KORA FF4 Cross-Sectional Study. Front. Nutr. 2019, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.P.; Meffert, P.; Heske, C.; Kromrey, M.L.; Schmidt, C.O.; Mensel, B.; Volzke, H.; Lerch, M.M.; Hernando, D.; Mayerle, J.; et al. Prevalence of Fatty Liver Disease and Hepatic Iron Overload in a Northeastern German Population by Using Quantitative MR Imaging. Radiology 2017, 284, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.E.; Wilson, L.; Brunt, E.M.; Yeh, M.M.; Kleiner, D.E.; Unalp-Arida, A.; Kowdley, K.V. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 2011, 53, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Garry, P.J.; Hunt, W.C.; Baumgartner, R.N. Effects of iron intake on iron stores in elderly men and women: Longitudinal and cross-sectional results. J. Am. Coll. Nutr. 2000, 19, 262–269. [Google Scholar] [CrossRef]
- Zacharski, L.R.; Ornstein, D.L.; Woloshin, S.; Schwartz, L.M. Association of age, sex, and race with body iron stores in adults: Analysis of NHANES III data. Am. Heart J. 2000, 140, 98–104. [Google Scholar] [CrossRef]
- Cempaka, A.R.; Tseng, S.H.; Yuan, K.C.; Bai, C.H.; Tinkov, A.A.; Skalny, A.V.; Chang, J.S. Dysregulated Iron Metabolism-Associated Dietary Pattern Predicts an Altered Body Composition and Metabolic Syndrome. Nutrients 2019, 11, 2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, L.J.; Subramaniam, V.N.; Crawford, D.H. Iron and non-alcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 8112–8122. [Google Scholar] [CrossRef] [Green Version]
- Costa-Matos, L.; Batista, P.; Monteiro, N.; Simões, M.; Egas, C.; Pereira, J.; Pinho, H.; Santos, N.; Ribeiro, J.; Cipriano, M.A.; et al. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls. Eur. J. Gastroenterol. Hepatol. 2012, 24, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Dostalikova-Cimburova, M.; Balusikova, K.; Kratka, K.; Chmelikova, J.; Hejda, V.; Hnanicek, J.; Neubauerova, J.; Vranova, J.; Kovar, J.; Horak, J. Role of duodenal iron transporters and hepcidin in patients with alcoholic liver disease. J. Cell. Mol. Med. 2014, 18, 1840–1850. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Yee, J. Hepcidin. Adv. Chronic. Kidney Dis. 2019, 26, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Harrison-Findik, D.D.; Lu, S.; Zmijewski, E.M.; Jones, J.; Zimmerman, M.C. Effect of alcohol exposure on hepatic superoxide generation and hepcidin expression. World J. Biol. Chem. 2013, 4, 119–130. [Google Scholar] [CrossRef]
- Ohtake, T.; Saito, H.; Hosoki, Y.; Inoue, M.; Miyoshi, S.; Suzuki, Y.; Fujimoto, Y.; Kohgo, Y. Hepcidin is down-regulated in alcohol loading. Alcohol. Clin. Exp. Res. 2007, 31, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Kohgo, Y.; Ohtake, T.; Ikuta, K.; Suzuki, Y.; Torimoto, Y.; Kato, J. Dysregulation of systemic iron metabolism in alcoholic liver diseases. J. Gastroenterol. Hepatol. 2008, 23, S78–S81. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L. Wheat fiber, phytates and iron absorption. Scand. J. Gastroenterol. Suppl. 1987, 129, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, M.; Bothwell, T.H.; Charlton, R.W.; Torrance, J.D.; Bezwoda, W.R.; MacPhail, A.P.; Derman, D.P.; Novelli, L.; Morrall, P.; Mayet, F. Factors affecting the absorption of iron from cereals. Br. J. Nutr. 1984, 51, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.F.; Juillerat, M.A.; Reddy, M.B.; Lynch, S.R.; Dassenko, S.A.; Cook, J.D. Soy protein, phytate, and iron absorption in humans. Am. J. Clin. Nutr. 1992, 56, 573–578. [Google Scholar] [CrossRef]
- Brussaard, J.H.; Brants, H.A.; Bouman, M.; Löwik, M.R. Iron intake and iron status among adults in the Netherlands. Eur. J. Clin. Nutr. 1997, 51, S51–S58. [Google Scholar]
- Hurrell, R.F.; Reddy, M.; Cook, J.D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 1999, 81, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, X.; Fan, W.; Yu, W.; Wang, S.; Li, Z.; Scott, E.M.; Li, X. Potassium and Obesity/Metabolic Syndrome: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Nutrients 2016, 8, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teramoto, T.; Kawamori, R.; Miyazaki, S.; Teramukai, S. OMEGA Study Group. Sodium intake in men and potassium intake in women determine the prevalence of metabolic syndrome in Japanese hypertensive patients: OMEGA Study. Hypertens. Res. 2011, 34, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, X.; Song, Y.; Fan, L.; Wu, L.; Kabagambe, E.K.; Hou, L.; Shrubsole, M.J.; Liu, J.; Dai, Q. Intakes of magnesium, calcium and risk of fatty liver disease and prediabetes. Public Health Nutr. 2018, 21, 2088–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Romero, F.; Jaquez-Chairez, F.O.; Rodríguez-Morán, M. Magnesium in metabolic syndrome: A review based on randomized, double-blind clinical trials. Magnes. Res. 2016, 29, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.R. The effect of calcium on iron absorption. Nutr. Res. Rev. 2000, 13, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Hallberg, L.; Rossander-Hulthén, L.; Brune, M.; Gleerup, A. Inhibition of haem-iron absorption in man by calcium. Br. J. Nutr. 1993, 69, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.F.; Lynch, S.R.; Trinidad, T.P.; Dassenko, S.A.; Cook, J.D. Iron absorption in humans as influenced by bovine milk proteins. Am. J. Clin. Nutr. 1989, 49, 546–552. [Google Scholar] [CrossRef]
- Lynch, S.R.; Cook, J.D. Interaction of vitamin C and iron. Ann. N. Y. Acad. Sci. 1980, 355, 32–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.; Cook, J.D. Meat protein fractions enhance nonheme iron absorption in humans. J. Nutr. 2006, 136, 2808–2812. [Google Scholar] [CrossRef] [PubMed]
- Ruivard, M.; Lainé, F.; Ganz, T.; Olbina, G.; Westerman, M.; Nemeth, E.; Rambeau, M.; Mazur, A.; Gerbaud, L.; Tournilhac, V.; et al. Iron absorption in dysmetabolic iron overload syndrome is decreased and correlates with increased plasma hepcidin. J. Hepatol. 2009, 50, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
All | Men | Women | ||
---|---|---|---|---|
N = 303 | N = 169 (55.8%) | N = 134 (44.2%) | p-value Men vs. Women | |
Age (years) Menopausal status premenopausal postmenopausal | 56.4 ± 9.0 - - | 56.6 ± 9.3 - - | 56.2 ± 8.7 42 (31%) 92 (69%) | 0.727 |
Anthropometric measurements | ||||
Height (cm) | 171.4 ± 9.7 | 177.8 ± 6.8 | 163.3 ± 6.3 | <0.001 |
Weight (kg) | 82.1 ± 16.5 | 88.9 ± 14.4 | 73.5 ± 15.0 | <0.001 |
BMI (kg/m2) | 27.9 ± 5.0 | 28.1 ± 4.5 | 27.6 ± 5.5 | 0.346 |
MRI measurements of the liver | ||||
LIC (mg/g) | 1.23 ± 0.12 | 1.26 ± 0.13 | 1.20 ± 0.10 | <0.001 |
LFC (PDFF in %) | 8.57 ± 7.9 5.61 (2.9–11.3) | 10.35 ± 8.4 7.26 (4.1–14.0) | 6.33 ± 6.4 3.85 (2.4–7.5) | <0.001 <0.001 |
Metabolic measurements | ||||
Blood pressure | ||||
Hypertension | 107 (35.3%) | 70 (41.4%) | 37 (27.6%) | 0.017 |
SBP (mmHg) | 120.0 ± 16.5 | 125.3 ± 15.9 | 113.2 ± 14.6 | <0.001 |
DBP (mmHg) | 74.9 ± 10.0 | 77.1 ± 10.3 | 72.1 ± 8.7 | <0.001 |
Glycemic Status | 0.030 | |||
normoglycemic | 190 (62.7%) | 95 (56.2%) | 95 (70.9%) | |
prediabetes | 76 (25.1%) | 49 (29.0%) | 27 (20.1%) | |
diabetes | 37 (12.2%) | 25 (14.8%) | 12 (9.0%) | |
Behavior | ||||
Physical Activity | 0.028 | |||
no | 76 (25.1%) | 53 (31.4%) | 23 (17.2%) | |
sporadically | 41 (13.5%) | 21 (12.4%) | 20 (14.9%) | |
regularly around 1 h/week | 97 (32.0%) | 46 (27.2%) | 51 (38.1%) | |
regularly more than 2 h/week | 89 (29.4%) | 49 (29.0%) | 40 (29.8%) | |
Smoking | 0.173 | |||
never-smoker | 112 (37.0%) | 56 (33.1%) | 56 (41.8%) | |
ex-Smoker | 133 (43.9%) | 82 (48.5%) | 51 (38.1%) | |
smoker | 58 (19.1%) | 31 (18.3%) | 27 (20.1%) | |
Medication | ||||
antihypertensive | 82 (27.1%) | 47 (27.8%) | 35 (26.1%) | 0.842 |
lipid lowering | 33 (10.9%) | 17 (10.1%) | 16 (11.9%) | 0.737 |
All | Men | Women | ||
---|---|---|---|---|
N = 303 | N = 169 | N = 134 | p-value | |
Total energy intake (kcal/d) | 1840 ± 414 | 2065 ± 352 | 1556 ± 295 | <0.001 |
Macronutrients | ||||
Carbohydrates (g/d) | 192.9 ± 50.7 | 213.7 ± 49.5 | 166.5 ± 38.8 | <0.001 |
Protein (g/d) | 69.9 ± 15.0 | 76.6 ± 13.3 | 61.5 ± 12.5 | <0.001 |
Fat (g/d) | 77.1 ± 16.6 | 85.3 ± 14.2 | 66.6 ± 13.1 | <0.001 |
Alcohol (Ethanol) (g/d) | 11.7 ± 11.1 | 17.5 ± 11.3 | 4.4 ± 4.7 | <0.001 |
Fiber (g/d) | 16.5 ± 4.4 | 16.6 ± 4.5 | 16.3 ± 4.2 | 0.545 |
Sugars (g/d) | 94.8 ± 32.6 | 101.3 ± 35.1 | 86.6 ± 27.1 | <0.001 |
Saturated fatty acids (g/d) | 34.8 ± 7.6 | 38.3 ± 6.7 | 30.3 ± 6.2 | <0.001 |
Monounsaturated fatty acids (g/d) | 27.3 ± 6.2 | 30.5 ± 5.2 | 23.2 ± 4.8 | <0.001 |
Polyunsaturated fatty acids (g/d) | 9.9 ± 2.6 | 10.8 ± 2.6 | 8.7 ± 2.0 | <0.001 |
Omega-3-fatty acids (g/d) | 1.5 ± 0.4 | 1.7 ± 0.4 | 1.3 ± 0.4 | <0.001 |
Omega-6-fatty acids (g/d) | 8.4 ± 2.2 | 9.2 ± 2.3 | 7.4 ± 1.7 | <0.001 |
Omega-6: Omega-3 ratio | 5.6 ± 1.0 | 5.6 ± 0.9 | 5.7 ± 1.1 | 0.843 |
Micronutrients | ||||
Sodium (mg/d) | 2119 ± 565 | 2390 ± 515 | 1777 ± 423 | <0.001 |
Potassium (mg/d) | 2537 ± 505 | 2653 ± 489 | 2390 ± 488 | <0.001 |
Calcium (mg/d) | 765.3 ± 206.6 | 745.9 ± 192.3 | 789.7 ± 221.7 | 0.067 |
Magnesium (mg/d) | 284.7 ± 61.0 | 307.0 ± 59.1 | 256.6 ± 51.2 | <0.001 |
Phosphorus (mg/d) | 1111 ± 263 | 1201 ± 251 | 997 ± 234 | <0.001 |
Chloride (mg/d) | 3302 ± 808 | 3672 ± 727 | 2836 ± 648 | <0.001 |
Iron (µg/d) | 9647 ± 1931 | 10514 ± 1759 | 8553 ± 1548 | <0.001 |
Zinc (µg/d) | 9715 ± 2024 | 10603 ± 1731 | 8596 ± 1804 | <0.001 |
Vitamin A—Retinol equivalent (µg/d) | 1843 ± 648 | 1925 ± 656 | 1741 ± 625 | 0.014 |
Vitamin C—ascorbic acid (µg/d) | 97,037 ± 28,481 | 92,328 ± 24,718 | 102,975 ± 31,724 | 0.002 |
Food groups | ||||
Meat (g/d) | 121.1 ± 42.5 | 145.5 ± 37.9 | 90.4 ± 24.3 | <0.001 |
Red meat (g/d) | 29.3 ± 12.3 | 35.4 ± 12.1 | 21.5 ± 7.1 | <0.001 |
Cereal products (g/d) | 166.2 ± 45.7 | 186.6 ± 41.7 | 140.5 ± 36.9 | <0.001 |
Whole grain (g/d) | 20.0 ± 18.6 | 20.1 ± 19.7 | 19.9 ± 17.2 | 0.949 |
Fruits and vegetables (g/d) | 299.7 ± 108.9 | 268.9 ± 95.4 | 338.5 ± 112.8 | <0.001 |
Fruits (g/d) | 133.4 ± 69.3 | 122.6 ± 68.3 | 147.1 ± 68.4 | 0.002 |
Vegetables (g/d) | 166.3 ± 60.8 | 146.3 ± 45.7 | 191.4 ± 68.0 | <0.001 |
Dairy products (g/d) | 186.4 ± 103.8 | 172.1 ± 102.7 | 204.4 ± 102.7 | 0.007 |
LIC (µg/g) in Men (N = 169) | LIC (µg/g) in Women (N = 134) | |||||
---|---|---|---|---|---|---|
β & CI | p-Value | Adj. R2 | β & CI | p-Value | Adj. R2 | |
Carbohydrates (g/d) | −0.590 (−1.413; 0.233) | 0.159 | 0.103 | −0.970 (−1.992; 0.053) | 0.063 | 0.355 |
Protein (g/d) | −0.494 (−2.97; 1.987) | 0.695 | 0.093 | −1.040 (−3.239; 1.159) | 0.351 | 0.342 |
Fat (g/d) | −0.049 (−2.425; 2.326) | 0.967 | 0.092 | 0.315 (−2.186; 2.816) | 0.804 | 0.338 |
Alcohol (Ethanol) (g/d) | 1.698 (0.002; 3.394) | 0.050 | 0.113 | 5.615 (2.687; 8.543) | <0.001 | 0.404 |
Fiber (g/d) | −1.789 (−7.233; 3.654) | 0.517 | 0.094 | −5.818 (−10.835; −0.801) | 0.023 | 0.364 |
Sugars (mg/d) | −0.000 (−0.001; 0.000) | 0.165 | 0.103 | −0.000 (−0.001; 0.000) | 0.460 | 0.340 |
Saturated fatty acids (mg/d) | −0.002 (−0.007; 0.003) | 0.385 | 0.096 | −0.001 (−0.006; 0.003) | 0.583 | 0.339 |
Monounsaturated fatty acids (mg/d) | 0.002 (−0.004; 0.007) | 0.554 | 0.094 | 0.003 (−0.003; 0.008) | 0.381 | 0.341 |
Polyunsaturated fatty acids (mg/d) | 0.002 (−0.007; 0.012) | 0.653 | 0.093 | 0.002 (−0.009; 0.013) | 0.711 | 0.338 |
Omega-3-fatty acids (mg/d) | 0.019 (−0.038; 0.076) | 0.509 | 0.095 | 0.001 (−0.039; 0.041) | 0.949 | 0.338 |
Omega-6-fatty acids (mg/d) | 0.002 (−0.008; 0.012) | 0.711 | 0.093 | 0.002 (−0.010; 0.015) | 0.691 | 0.338 |
Omega-6: Omega-3 ratio | −0.604 (−25.471; 0.134) | 0.540 | 0.094 | 2.423 (−10.513; 1.536) | 0.712 | 0.338 |
Sodium (mg/d) | −0.018 (−0.067; 0.032) | 0.487 | 0.095 | −0.007 (−0.058; 0.044) | 0.781 | 0.338 |
Potassium (mg/d) | 0.018 (−0.042; 0.079) | 0.547 | 0.094 | −0.058 (−0.111; −0.005) | 0.034 | 0.360 |
Calcium (mg/d) | −0.018 (−0.148; 0.112) | 0.781 | 0.093 | −0.014 (−0.118; 0.091) | 0.793 | 0.338 |
Magnesium (mg/d) | 0.186 (−0.338; 0.709) | 0.484 | 0.095 | −0.505 (−1.055; 0.045) | 0.071 | 0.354 |
Phosphorus (mg/d) | 0.023 (−0.116; 0.163) | 0.743 | 0.093 | −0.059 (−0.182; 0.064) | 0.344 | 0.342 |
Chloride (mg/d) | −0.007 (−0.043; 0.029) | 0.685 | 0.093 | −0.006 (−0.043; 0.030) | 0.729 | 0.338 |
Iron (µg/d) | 0.004 (−0.014; 0.023) | 0.632 | 0.093 | −0.011 (−0.027; 0.006) | 0.198 | 0.346 |
Zinc (µg/d) | −0.003 (−0.022; 0.016) | 0.761 | 0.093 | −0.006 (−0.021; 0.009) | 0.441 | 0.341 |
Vitamin A-Retinol equivalent (µg/d) | 0.003 (−0.028; 0.034) | 0.837 | 0.092 | −0.020 (−0.046; 0.005) | 0.119 | 0.350 |
Vitamin C—ascorbic acid(µg/d) | −0.000 (−0.001; 0.001) | 0.808 | 0.092 | −0.000 (−0.001; 0.000) | 0.485 | 0.340 |
Meat (g/d) | −0.152 (−0.713; 0.410) | 0.594 | 0.094 | −0.203 (−0.882; 0.475) | 0.555 | 0.339 |
Red meat (g/d) | −0.006 (−1.631; 1.516) | 0.942 | 0.092 | 0.280 (−1.856; 2.417) | 0.796 | 0.338 |
Cereal products (g/d) | −0.020 (−0.633; 0.592) | 0.948 | 0.092 | −0.310 (−0.84; 0.23) | 0.258 | 0.344 |
Whole grain (g/d) | −0.184 (−1.189; 0.822) | 0.719 | 0.093 | −0.585 (−1.267; 0.296) | 0.191 | 0.346 |
Fruits and vegetables (g/d) | −0.018 (−0.229; 0.193) | 0.868 | 0.092 | −0.097 (−0.239; 0.045) | 0.177 | 0.347 |
Fruits (g/d) | −0.217 (−0.503; 0.070) | 0.137 | 0.104 | −0.179 (−0.403; 0.044) | 0.114 | 0.350 |
Vegetables (g/d) | 0.420 (−0.011; 0.852) | 0.056 | 0.112 | −0.070 (−0.307; 0.168) | 0.563 | 0.339 |
Dairy products (g/d) | −0.068 (−0.264; 0.128) | 0.494 | 0.095 | −0.123 (−0.292; 0.045) | 0.150 | 0.348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filler, J.; von Krüchten, R.; Wawro, N.; Maier, L.; Lorbeer, R.; Nattenmüller, J.; Thorand, B.; Bamberg, F.; Peters, A.; Schlett, C.L.; et al. Association of Habitual Dietary Intake with Liver Iron—A Population-Based Imaging Study. Nutrients 2022, 14, 132. https://doi.org/10.3390/nu14010132
Filler J, von Krüchten R, Wawro N, Maier L, Lorbeer R, Nattenmüller J, Thorand B, Bamberg F, Peters A, Schlett CL, et al. Association of Habitual Dietary Intake with Liver Iron—A Population-Based Imaging Study. Nutrients. 2022; 14(1):132. https://doi.org/10.3390/nu14010132
Chicago/Turabian StyleFiller, Jule, Ricarda von Krüchten, Nina Wawro, Lisa Maier, Roberto Lorbeer, Johanna Nattenmüller, Barbara Thorand, Fabian Bamberg, Annette Peters, Christopher L. Schlett, and et al. 2022. "Association of Habitual Dietary Intake with Liver Iron—A Population-Based Imaging Study" Nutrients 14, no. 1: 132. https://doi.org/10.3390/nu14010132
APA StyleFiller, J., von Krüchten, R., Wawro, N., Maier, L., Lorbeer, R., Nattenmüller, J., Thorand, B., Bamberg, F., Peters, A., Schlett, C. L., Linseisen, J., & Rospleszcz, S. (2022). Association of Habitual Dietary Intake with Liver Iron—A Population-Based Imaging Study. Nutrients, 14(1), 132. https://doi.org/10.3390/nu14010132