Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Phenotypes
2.3. Genotyping, Imputation and Genomic Quality Control
2.4. Analyses
3. Results
3.1. Descriptive Statistics and Single-Nucleotide Polymorphism (SNP) Heritability
3.2. SNP-Based Results
3.3. MAGMA’s Gene-Based Results
3.4. MAGMA’s Gene Set-Based Results
3.5. MAGMA’s Tissue-Specific Upregulation of Genes Relevant in Rumination or Worry
3.6. Genes Mapped Both by Position and Functional Annotations, and Their Enrichment in MsigDB C2 and C5 Gene Sets
3.7. Explanatory Value of UK Biobank’s Risk SNPs in NewMood’s Phenotypes
3.8. Potential Overlap in Risk SNPs of “Rumination” or “Worry” between Suboptimal and Optimal Folate Intake Groups
4. Discussion
4.1. Time Perspective and Event-Specificity of Perseverative Negative Thinking
4.2. Genetic Determinants of Past-Focused Perseverative Negative Thinking
4.3. Genetic Determinants of Past-Focused Perseverative Negative Thinking in Case of Suboptimal Folate Intake
4.4. Genetic Determinants of Past-Focused Perseverative Negative Thinking in Case of Optimal Folate Intake
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denovan, A.; Dagnall, N.; Lofthouse, G. Neuroticism and somatic complaints: Concomitant effects of rumination and worry. Behav. Cogn. Psychother. 2019, 47, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Merino, H.; Ferreiro, F.; Senra, C. Cognitive vulnerability to emotional symptoms: Reconsidering the role of worry and rumination. J. Psychopathol. Behav. Assess. 2014, 36, 136–142. [Google Scholar] [CrossRef]
- Broeren, S.; Muris, P.; Bouwmeester, S.; van der Heijden, K.B.; Abee, A. The role of repetitive negative thoughts in the vulnerability for emotional problems in non-clinical children. J. Child Fam. Stud. 2011, 20, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Merino, H.; Senra, C.; Ferreiro, F. Are worry and rumination specific pathways linking neuroticism and symptoms of anxiety and depression in patients with generalized anxiety disorder, major depressive disorder and mixed anxiety-depressive disorder? PLoS ONE 2016, 11, e0156169. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, J.; Huibers, M.; Peeters, F.; Arntz, A.; van Os, J. Rumination and worrying as possible mediators in the relation between neuroticism and symptoms of depression and anxiety in clinically depressed individuals. Behav. Res. Ther. 2008, 46, 1283–1289. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Gerin, W.; Thayer, J.F. The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. J. Psychosom. Res. 2006, 60, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Alloy, L.B. A roadmap to rumination: A review of the definition, assessment, and conceptualization of this multifaceted construct. Clin. Psychol. Rev. 2009, 29, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 2018, 55, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Topper, M.; Molenaar, D.; Emmelkamp, P.M.; Ehring, T. Are rumination and worry two sides of the same coin? A structural equation modelling approach. J. Exp. Psychopathol. 2014, 5, 363–381. [Google Scholar] [CrossRef] [Green Version]
- du Pont, A.; Rhee, S.H.; Corley, R.P.; Hewitt, J.K.; Friedman, N.P. Are rumination and neuroticism genetically or environmentally distinct risk factors for psychopathology? J. Abnorm. Psychol. 2019, 128, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Eszlari, N.; Millinghoffer, A.; Petschner, P.; Gonda, X.; Baksa, D.; Pulay, A.J.; Rethelyi, J.M.; Breen, G.; Deakin, J.F.W.; Antal, P.; et al. Genome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of rumination. Transl. Psychiatry 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Eszlari, N.; Petschner, P.; Gonda, X.; Baksa, D.; Elliott, R.; Anderson, I.M.; Deakin, J.F.W.; Bagdy, G.; Juhasz, G. Childhood adversity moderates the effects of HTR2A epigenetic regulatory polymorphisms on rumination. Front. Psychiatry 2019, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Shaw, Z.A.; Hilt, L.M.; Starr, L.R. The developmental origins of ruminative response style: An integrative review. Clin. Psychol. Rev. 2019, 74, 101780. [Google Scholar] [CrossRef] [PubMed]
- Eszlari, N.; Kovacs, D.; Petschner, P.; Pap, D.; Gonda, X.; Elliott, R.; Anderson, I.M.; Deakin, J.F.W.; Bagdy, G.; Juhasz, G. Distinct effects of folate pathway genes MTHFR and MTHFD1L on ruminative response style: A potential risk mechanism for depression. Transl. Psychiatry 2016, 6, e745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, E.H. Folic acid, ageing, depression, and dementia. BMJ 2002, 324, 1512–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanhueza, C.; Ryan, L.; Foxcroft, D.R. Diet and the risk of unipolar depression in adults: Systematic review of cohort studies. J. Hum. Nutr. Diet. 2013, 26, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Bedson, E.; Bell, D.; Carr, D.; Carter, B.; Hughes, D.; Jorgensen, A.; Lewis, H.; Lloyd, K.; McCaddon, A.; Moat, S.; et al. Folate augmentation of treatment—Evaluation for depression (FolATED): Randomised trial and economic evaluation. Health Technol. Assess. 2014, 18, vii–viii. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakostas, G.I.; Shelton, R.C.; Zajecka, J.M.; Etemad, B.; Rickels, K.; Clain, A.; Baer, L.; Dalton, E.D.; Sacco, G.R.; Schoenfeld, D.; et al. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: Results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry 2012, 169, 1267–1274. [Google Scholar] [CrossRef]
- Taylor, M.J.; Carney, S.M.; Goodwin, G.M.; Geddes, J.R. Folate for depressive disorders: Systematic review and meta-analysis of randomized controlled trials. J. Psychopharmacol. 2004, 18, 251–256. [Google Scholar] [CrossRef]
- Roberts, E.; Carter, B.; Young, A.H. Caveat emptor: Folate in unipolar depressive illness, a systematic review and meta-analysis. J. Psychopharmacol. 2018, 32, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durga, J.; van Boxtel, M.P.; Schouten, E.G.; Bots, M.L.; Kok, F.J.; Verhoef, P. Folate and the methylenetetrahydrofolate reductase 677C-->T mutation correlate with cognitive performance. Neurobiol. Aging 2006, 27, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Nicholl, B.I.; Cullen, B.; Martin, D.; Ul-Haq, Z.; Evans, J.; Gill, J.M.; Roberts, B.; Gallacher, J.; Mackay, D.; et al. Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: Cross-sectional study of 172,751 participants. PLoS ONE 2013, 8, e75362. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.; Watanabe, K.; Stringer, S.; Posthuma, D.; van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 2018, 9, 905. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, M.; Jansen, P.R.; Stringer, S.; Watanabe, K.; de Leeuw, C.A.; Bryois, J.; Savage, J.E.; Hammerschlag, A.R.; Skene, N.G.; Munoz-Manchado, A.B.; et al. Meta-analysis of genome-wide association studies for neuroticism in 449, 484 individuals identifies novel genetic loci and pathways. Nat. Genet. 2018, 50, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Hullam, G.; Antal, P.; Petschner, P.; Gonda, X.; Bagdy, G.; Deakin, B.; Juhasz, G. The UKB envirome of depression: From interactions to synergistic effects. Sci. Rep. 2019, 9, 9723. [Google Scholar] [CrossRef]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Galante, J.; Adamska, L.; Young, A.; Young, H.; Littlejohns, T.J.; Gallacher, J.; Allen, N. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: Administration of the Oxford WebQ in UK Biobank. Br. J. Nutr. 2016, 115, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, O.P.; Srivastava, S. Handbook of Personality: Theory and Research; John, O.P., Ed.; Guilford Press: New York, NY, USA, 1999; Volume 2, pp. 102–139. [Google Scholar]
- Treynor, W.; Gonzalez, R.; Nolen-Hoeksema, S. Rumination reconsidered: A psychometric analysis. Cognit. Ther. Res. 2003, 27, 247–259. [Google Scholar] [CrossRef]
- Derogatis, L.R. BSI: Brief Symptom Inventory: Administration, Scoring, and Procedures Manual; National Computer Systems Pearson, Inc.: Minneapolis, MN, USA, 1993. [Google Scholar]
- Juhasz, G.; Dunham, J.S.; McKie, S.; Thomas, E.; Downey, D.; Chase, D.; Lloyd-Williams, K.; Toth, Z.G.; Platt, H.; Mekli, K.; et al. The CREB1-BDNF-NTRK2 pathway in depression: Multiple gene-cognition-environment interactions. Biol. Psychiatry 2011, 69, 762–771. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.K.; Loh, P.-R.; Finucane, H.K.; Ripke, S.; Yang, J.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galinsky, K.J.; Bhatia, G.; Loh, P.R.; Georgiev, S.; Mukherjee, S.; Patterson, N.J.; Price, A.L. Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and east Asia. Am. J. Hum. Genet. 2016, 98, 456–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, s13742-015. [Google Scholar] [CrossRef]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLOS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef] [PubMed]
- Human Genomics. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic risk score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Zetsche, U.; Burkner, P.C.; Schulze, L. Shedding light on the association between repetitive negative thinking and deficits in cognitive control—A meta-analysis. Clin. Psychol. Rev. 2018, 63, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Atmaca, M.; Tezcan, E.; Kuloglu, M.; Kirtas, O.; Ustundag, B. Serum folate and homocysteine levels in patients with obsessive-compulsive disorder. Psychiatry Clin. Neurosci. 2005, 59, 616–620. [Google Scholar] [CrossRef]
- Esnafoğlu, E.; Yaman, E. Vitamin B12, folic acid, homocysteine and vitamin D levels in children and adolescents with obsessive compulsive disorder. Psychiatry Res. 2017, 254, 232–237. [Google Scholar] [CrossRef]
- Saraswathy, K.N.; Ansari, S.N.; Kaur, G.; Joshi, P.C.; Chandel, S. Association of vitamin B12 mediated hyperhomocysteinemia with depression and anxiety disorder: A cross-sectional study among Bhil indigenous population of India. Clin. Nutr. ESPEN 2019, 30, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, I.; Tell, G.S.; Vollset, S.E.; Refsum, H.; Ueland, P.M. Folate, vitamin B12, homocysteine, and the MTHFR 677C->T polymorphism in anxiety and depression: The Hordaland homocysteine study. Arch. Gen. Psychiatry 2003, 60, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Rainka, M.; Aladeen, T.; Westphal, E.; Meaney, J.; Gengo, F.; Greger, J.; Capote, H. L-methylfolate calcium supplementation in adolescents and children: A retrospective analysis. J. Psychiatr. Pract. 2019, 25, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Tural, Ü.; Çorapçıoğlu, A.; Boşgelmez, Ş.; Köroğlu, G.; Ünver, H.; Duman, C.; Önder, E. Double blind controlled study of adding folic acid to fluoxetine in the treatment of OCD. Psychiatr. Danub. 2019, 31, 69–77. [Google Scholar] [CrossRef]
- Cronin, P.; McCarthy, M.J.; Lim, A.S.P.; Salmon, D.P.; Galasko, D.; Masliah, E.; De Jager, P.L.; Bennett, D.A.; Desplats, P. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2017, 13, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.L.; Coogan, A.N.; Siddiqui, A.; Donev, R.M.; Thome, J. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol. Psychiatry 2012, 17, 988–995. [Google Scholar] [CrossRef]
- Borglum, A.D.; Demontis, D.; Grove, J.; Pallesen, J.; Hollegaard, M.V.; Pedersen, C.B.; Hedemand, A.; Mattheisen, M.; Uitterlinden, A.; Nyegaard, M.; et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol. Psychiatry 2014, 19, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.; Gonzalez, S.; Villa, E.; Ramirez, M.; Zavala, J.; Armas, R.; Contreras, J.; Dassori, A.; Leach, R.J.; Flores, D.; et al. Identification of circadian gene variants in bipolar disorder in Latino populations. J. Affect. Disord. 2015, 186, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Partonen, T.; Treutlein, J.; Alpman, A.; Frank, J.; Johansson, C.; Depner, M.; Aron, L.; Rietschel, M.; Wellek, S.; Soronen, P.; et al. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med. 2007, 39, 229–238. [Google Scholar] [CrossRef]
- Milagro, F.I.; Gomez-Abellan, P.; Campion, J.; Martinez, J.A.; Ordovas, J.M.; Garaulet, M. CLOCK, PER2 and BMAL1 DNA methylation: Association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol. Int. 2012, 29, 1180–1194. [Google Scholar] [CrossRef]
- Koch, H.; Bespalov, A.; Drescher, K.; Franke, H.; Krügel, U. Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 2015, 40, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Krügel, U.; Köles, L.; Illés, P. Integration of neuronal and glial signalling by pyramidal cells of the rat prefrontal cortex; control of cognitive functions and addictive behaviour by purinergic mechanisms. Neuropsychopharmacol. Hung. 2013, 15, 206–213. [Google Scholar]
- Antypa, N.; Van der Does, A.J. Serotonin transporter gene, childhood emotional abuse and cognitive vulnerability to depression. Genes Brain Behav. 2010, 9, 615–620. [Google Scholar] [CrossRef]
- Beevers, C.G.; Wells, T.T.; McGeary, J.E. The BDNF Val66Met polymorphism is associated with rumination in healthy adults. Emotion 2009, 9, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, S.J.; Gerevich, Z. P2Y receptors in synaptic transmission and plasticity: Therapeutic potential in cognitive dysfunction. Neural Plast. 2016, 2016, 1207393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazary, J.; Juhasz, G.; Anderson, I.M.; Jacob, C.P.; Nguyen, T.T.; Lesch, K.P.; Reif, A.; Deakin, J.F.; Bagdy, G. Epistatic interaction of CREB1 and KCNJ6 on rumination and negative emotionality. Eur. Neuropsychopharmacol. 2011, 21, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhou, Q.; Cao, Y.; Shi, H.; Wu, H.; Zhang, B.; Huang, F.; Wu, X. P2Y(12) deficiency in mouse impairs noradrenergic system in brain, and alters anxiety-like neurobehavior and memory. Genes Brain Behav. 2019, 18, e12458. [Google Scholar] [CrossRef]
- Bottiglieri, T.; Laundy, M.; Crellin, R.; Toone, B.K.; Carney, M.W.; Reynolds, E.H. Homocysteine, folate, methylation, and monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry 2000, 69, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, G.; Harms, C.; Sobol, R.W.; Cardozo-Pelaez, F.; Linhart, H.; Winter, B.; Balkaya, M.; Gertz, K.; Gay, S.B.; Cox, D.; et al. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 7219–7230. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.; Grabowski, P.; Rehman, I. Alzheimer’s disease pathogenesis: Is there a role for folate? Mech. Ageing Dev. 2018, 174, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catala, G.N.; Bestwick, C.S.; Russell, W.R.; Tortora, K.; Giovannelli, L.; Moyer, M.P.; Lendoiro, E.; Duthie, S.J. Folate, genomic stability and colon cancer: The use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutat. Res. 2019, 843, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J.; Ryznar, R. One-carbon metabolism regulates embryonic stem cell fate through epigenetic DNA and histone modifications: Implications for transgenerational metabolic disorders in adults. Front. Cell Dev. Biol. 2019, 7, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ars, C.L.; Nijs, I.M.; Marroun, H.E.; Muetzel, R.; Schmidt, M.; Steenweg-de Graaff, J.; van der Lugt, A.; Jaddoe, V.W.; Hofman, A.; Steegers, E.A.; et al. Prenatal folate, homocysteine and vitamin B(12) levels and child brain volumes, cognitive development and psychological functioning: The generation R study. Br. J. Nutr. 2019, 122, S1–S9. [Google Scholar] [CrossRef] [Green Version]
- Denny, K.J.; Jeanes, A.; Fathe, K.; Finnell, R.H.; Taylor, S.M.; Woodruff, T.M. Neural tube defects, folate, and immune modulation. Birth Defects Res. Part A Clin. Mol. Teratol. 2013, 97, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Selhub, J.; Jacques, P.F.; Dallal, G.; Choumenkovitch, S.; Rogers, G. The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food Nutr. Bull. 2008, 29, S67–S73. [Google Scholar] [CrossRef] [Green Version]
- Hammons, A.L.; Summers, C.M.; Woodside, J.V.; McNulty, H.; Strain, J.J.; Young, I.S.; Murray, L.; Boreham, C.A.; Scott, J.M.; Mitchell, L.E.; et al. Folate/homocysteine phenotypes and MTHFR 677C>T genotypes are associated with serum levels of monocyte chemoattractant protein-1. Clin. Immunol. 2009, 133, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Stanger, O.; Fowler, B.; Piertzik, K.; Huemer, M.; Haschke-Becher, E.; Semmler, A.; Lorenzl, S.; Linnebank, M. Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: Review and treatment recommendations. Expert Rev. Neurother. 2009, 9, 1393–1412. [Google Scholar] [CrossRef] [Green Version]
- Huber, A.K.; Giles, D.A.; Segal, B.M.; Irani, D.N. An emerging role for eotaxins in neurodegenerative disease. Clin. Immunol. 2018, 189, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.A.; Hewedi, D.H.; Eissa, A.M.; Frydecka, D.; Misiak, B. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci. 2014, 8, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susser, E.; Hoek, H.W.; Brown, A. Neurodevelopmental disorders after prenatal famine: The story of the Dutch Famine Study. Am. J. Epidemiol. 1998, 147, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Campoy, C.; Azaryah, H.; Torres-Espínola, F.J.; Martínez-Zaldívar, C.; García-Santos, J.A.; Demmelmair, H.; Haile, G.; Györei, E.; Ramírez-Tortosa, M.D.C.; Reischl, E.; et al. Long-chain polyunsaturated fatty acids, homocysteine at birth and fatty acid desaturase gene cluster polymorphisms are associated with children’s processing speed up to age 9 years. Nutrients 2020, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- de Lau, L.M.; Refsum, H.; Smith, A.D.; Johnston, C.; Breteler, M.M. Plasma folate concentration and cognitive performance: Rotterdam scan study. Am. J. Clin. Nutr. 2007, 86, 728–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabensteiner, J.; Hofer, E.; Fauler, G.; Fritz-Petrin, E.; Benke, T.; Dal-Bianco, P.; Ransmayr, G.; Schmidt, R.; Herrmann, M. The impact of folate and vitamin B12 status on cognitive function and brain atrophy in healthy elderly and demented Austrians, a retrospective cohort study. Aging 2020, 12, 15478–15491. [Google Scholar] [CrossRef]
- Smith, A.D.; Smith, S.M.; de Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS ONE 2010, 5, e12244. [Google Scholar] [CrossRef]
- Cecchetti, L.; Lettieri, G.; Handjaras, G.; Leo, A.; Ricciardi, E.; Pietrini, P.; Pellegrini, S. Brain hemodynamic intermediate phenotype links vitamin B(12) to cognitive profile of healthy and mild cognitive impaired subjects. Neural Plast. 2019, 2019, 6874805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, A.; Takahashi, S.; Nakamura, Y.; Inamura, K.; Matsumoto, S.; Mochizuki, S.; Katou, M. Disruption of the ether-a-go-go K+ channel gene BEC1/KCNH3 enhances cognitive function. J. Neurosci. 2009, 29, 14637–14645. [Google Scholar] [CrossRef]
- David, M.; Richer, M.; Mamarbachi, A.M.; Villeneuve, L.R.; Dupré, D.J.; Hebert, T.E. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell. Signal. 2006, 18, 2172–2181. [Google Scholar] [CrossRef]
- Carroll, N.; Hughes, L.; McEntee, G.; Parle-McDermott, A. Investigation of the molecular response to folate metabolism inhibition. J. Nutr. Biochem. 2012, 23, 1531–1536. [Google Scholar] [CrossRef]
- Li, G.; Xia, M.; Abais, J.M.; Boini, K.; Li, P.L.; Ritter, J.K. Protective action of anandamide and its COX-2 metabolite against l-homocysteine-induced NLRP3 inflammasome activation and injury in podocytes. J. Pharmacol. Exp. Ther. 2016, 358, 61–70. [Google Scholar] [CrossRef] [Green Version]
- McKay, D.L.; Perrone, G.; Rasmussen, H.; Dallal, G.; Hartman, W.; Cao, G.; Prior, R.L.; Roubenoff, R.; Blumberg, J.B. The effects of a multivitamin/mineral supplement on micronutrient status, antioxidant capacity and cytokine production in healthy older adults consuming a fortified diet. J. Am. Coll. Nutr. 2000, 19, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Nakouzi, G.A.; Nadeau, J.H. Does dietary folic acid supplementation in mouse NTD models affect neural tube development or gamete preference at fertilization? BMC Genet. 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Yuan, M.M.; Yuan, L.; Huang, L.L.; Liao, J.H.; Yu, X.L.; Su, C.; Chen, Y.H.; Yang, Y.Y.; Yu, H.; et al. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. PLoS ONE 2018, 13, e0202910. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.L.; Ford, H.E.; Hancock, N.; et al. Validation of the Oxford webQ online 24-hour dietary questionnaire using biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
“Do You Worry Too Long after an Embarrassing Experience?” | “Are You a Worrier?” | |||
---|---|---|---|---|
SNP h2 | S.E. of SNP h2 | SNP h2 | S.E. of SNP h2 | |
Whole sample | 0.0286 | 0.0041 | 0.0339 | 0.0044 |
Suboptimal folate intake group | 0.0433 | 0.0256 | 0.023 | 0.0246 |
Optimal folate intake group | 0.0272 | 0.0046 | 0.0348 | 0.005 |
for “Rumination”, Suboptimal Folate | Rank for “Rumination” | Rank for “Worry” | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Gene Set | Number of Genes | p-Value | Optimal Folate | Whole Sample | Suboptimal Folate | Optimal Folate | Whole Sample |
1. | GO_mf:go_vascular_endothelial_growth_factor_binding | 7 | 4.55 × 10−6 | 8786 | 3400 | 14,266 | 4007 | 4642 |
2. | Curated_gene_sets:petrova_prox1_targets_dn | 56 | 4.17 × 10−5 | 9925 | 596 | 12,720 | 3257 | 8036 |
3. | GO_bp:go_response_to_nitric_oxide | 19 | 4.91 × 10−5 | 209 | 137 | 1869 | 296 | 641 |
4. | GO_bp:go_diaphragm_development | 9 | 1.64 × 10−4 | 12,105 | 7551 | 754 | 14,661 | 14,533 |
5. | GO_mf:go_platelet_derived_growth_factor_binding | 11 | 5.28 × 10−4 | 412 | 100 | 3414 | 7910 | 1621 |
6. | GO_bp:go_positive_regulation_of_centriole_replication | 6 | 5.28 × 10−4 | 6508 | 1879 | 8768 | 10,420 | 5176 |
7. | Curated_gene_sets:bandres_response_to_carmustin_without_mgmt_48hr_dn | 30 | 6.51 × 10−4 | 12,804 | 9844 | 483 | 14,015 | 14,062 |
8. | Curated_gene_sets:zhan_multiple_myeloma_subgroups | 31 | 8.33 × 10−4 | 6439 | 7505 | 9613 | 75 | 1219 |
9. | GO_bp:go_homocysteine_metabolic_process | 12 | 8.48 × 10−4 | 5316 | 745 | 7168 | 10,786 | 13,211 |
10. | GO_bp:go_ductus_arteriosus_closure | 5 | 9.93 × 10−4 | 12,033 | 6912 | 6821 | 9481 | 14,774 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eszlari, N.; Bruncsics, B.; Millinghoffer, A.; Hullam, G.; Petschner, P.; Gonda, X.; Breen, G.; Antal, P.; Bagdy, G.; Deakin, J.F.W.; et al. Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake. Nutrients 2021, 13, 4396. https://doi.org/10.3390/nu13124396
Eszlari N, Bruncsics B, Millinghoffer A, Hullam G, Petschner P, Gonda X, Breen G, Antal P, Bagdy G, Deakin JFW, et al. Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake. Nutrients. 2021; 13(12):4396. https://doi.org/10.3390/nu13124396
Chicago/Turabian StyleEszlari, Nora, Bence Bruncsics, Andras Millinghoffer, Gabor Hullam, Peter Petschner, Xenia Gonda, Gerome Breen, Peter Antal, Gyorgy Bagdy, John Francis William Deakin, and et al. 2021. "Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake" Nutrients 13, no. 12: 4396. https://doi.org/10.3390/nu13124396
APA StyleEszlari, N., Bruncsics, B., Millinghoffer, A., Hullam, G., Petschner, P., Gonda, X., Breen, G., Antal, P., Bagdy, G., Deakin, J. F. W., & Juhasz, G. (2021). Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake. Nutrients, 13(12), 4396. https://doi.org/10.3390/nu13124396