Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Approval
2.2. Participants
2.3. Study Design and Experimental Procedure
2.4. Physical Activity and Eating Habits
2.4.1. Physical Activity Index
2.4.2. Dietary Habits Index
2.5. Blood Sample Collection and Processing
2.6. Laboratory Analysis
2.7. Statistical Analysis
2.7.1. Permutation Test for Paired Data
2.7.2. Intra-Class Correlation (ICC)
3. Results
3.1. Fasting Serum Parameters
3.2. Fasting GIH Levels
3.3. ICC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehfeld, J.F. Gastrointestinal hormones and their targets, Microb. Endocrinol. Microbiota-Gut-Brain Axis Health Dis. 2014, 817, 157–175. [Google Scholar]
- Ahmed, M.; Ahmed, S. Functional, diagnostic and therapeutic aspects of gastrointestinal hormones. Gastroenterol. Res. 2019, 12, 233. [Google Scholar] [CrossRef]
- Woods, S.C.; D’Alessio, D.A. Central control of body weight and appetite. J. Clin. Endocrinol. Metab. 2008, 93, s37–s50. [Google Scholar] [CrossRef] [Green Version]
- Reinehr, T.; Roth, C.L. The gut sensor as regulator of body weight. Endocrine 2015, 49, 35–50. [Google Scholar] [CrossRef]
- Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.-R.; Heymsfield, S.B. Obesity: Pathophysiology and management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yao, J.; Ji, G.; Qian, L.; Wang, J.; Zhang, G.; Tian, J.; Nie, Y.; Zhang, Y.E. Obesity: Pathophysiology and intervention. Nutrients 2014, 6, 5153–5183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cercato, C.; Fonseca, F.A. Cardiovascular risk and obesity. Diabetol. Metab. Syndr. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- Sowers, J.R. Obesity as a cardiovascular risk factor. Am. J. Med. 2003, 115, 37–41. [Google Scholar] [CrossRef]
- Bueter, M.; Le Roux, C.W. Gastrointestinal hormones, energy balance and bariatric surgery. Int. J. Obes. 2011, 35, S35–S39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, D.E.; Weigle, D.S.; Frayo, R.S.; Breen, P.A.; Ma, M.K.; Dellinger, E.P.; Purnell, J.Q. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 2002, 346, 1623–1630. [Google Scholar] [CrossRef]
- Meek, C.L.; Lewis, H.B.; Reimann, F.; Gribble, F.M.; Park, A.J. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 2016, 77, 28–37. [Google Scholar] [CrossRef]
- Laurenius, A.; Larsson, I.; Bueter, M.; Melanson, K.J.; Bosaeus, I.; Forslund, H.B.; Lönroth, H.; Fändriks, L.; Olbers, T. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int. J. Obes. 2012, 36, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Saboya, C.; Ramalho, A. Relationship of Body Composition Measures and Metabolic Basal Rate with Gastrointestinal Hormones in Weight Regain 5 Years After Gastric Bypass. Obes. Surg. 2020, 30, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Santo, M.A.; Riccioppo, D.; Pajecki, D.; Kawamoto, F.; De Cleva, R.; Antonangelo, L.; Marçal, L.; Cecconello, I. Weight regain after gastric bypass: Influence of gut hormones. Obes. Surg. 2016, 26, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Grandl, G.; Novikoff, A.; DiMarchi, R.; Tschöp, M.H.; Müller, T.D. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr. Physiol. 2011, 10, 99–124. [Google Scholar]
- Le Roux, C.W.; Astrup, A.; Fujioka, K.; Greenway, F.; Lau, D.C.W.; Van Gaal, L.; Ortiz, R.V.; Wilding, J.P.H.; Skjøth, T.V.; Manning, L.S. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: A randomised, double-blind trial. Lancet 2017, 389, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Ortiz, R.V.; Jensen, C.B. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Belinova, L.; Kahleova, H.; Malinska, H.; Topolcan, O.; Windrichova, J.; Oliyarnyk, O.; Kazdova, L.; Hill, M.; Pelikanova, T. The effect of meal frequency in a reduced-energy regimen on the gastrointestinal and appetite hormones in patients with type 2 diabetes: A randomised crossover study. PLoS ONE 2017, 12, e0174820. [Google Scholar]
- Levin, F.; Edholm, T.; Schmidt, P.T.; Gryback, P.; Jacobsson, H.; Degerblad, M.; Hoybye, C.; Holst, J.J.; Rehfeld, J.F.; Hellstrom, P.M. Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J. Clin. Endocrinol. Metab. 2006, 91, 3296–3302. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Borg, C.M.; Murphy, K.G.; Vincent, R.P.; Ghatei, M.A.; Bloom, S.R. Supraphysiological doses of intravenous PYY3-36 cause nausea, but no additional reduction in food intake. Ann. Clin. Biochem. 2008, 45, 93–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, A.-B.; Grybäck, P.; Holst, J.J.; Hilsted, L.; Hellström, P.M.; Jacobsson, H.; Schmidt, P.T. Differential effect of PYY1-36 and PYY3-36 on gastric emptying in man. Regul. Pept. 2009, 158, 57–62. [Google Scholar] [CrossRef]
- Parker, B.A.; Doran, S.; Wishart, J.; Horowitz, M.; Chapman, I.M. Effects of small intestinal and gastric glucose administration on the suppression of plasma ghrelin concentrations in healthy older men and women. Clin. Endocrinol. 2005, 62, 539–546. [Google Scholar] [CrossRef]
- Gutzwiller, J.-P.; Degen, L.; Matzinger, D.; Prestin, S.; Beglinger, C. Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men. Am. J. Physiol. Integr. Comp. Physiol. 2004, 287, R562–R567. [Google Scholar] [CrossRef] [Green Version]
- Deane, A.M.; Nguyen, N.Q.; Stevens, J.E.; Fraser, R.J.L.; Holloway, R.H.; Besanko, L.K.; Burgstad, C.; Jones, K.L.; Chapman, M.J.; Rayner, C.K. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J. Clin. Endocrinol. Metab. 2010, 95, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Schober, G.; Lange, K.; Steinert, R.E.; Hutchison, A.T.; Luscombe-Marsh, N.D.; Landrock, M.F.; Horowitz, M.; Seimon, R.V.; Feinle-Bisset, C. Contributions of upper gut hormones and motility to the energy intake-suppressant effects of intraduodenal nutrients in healthy, lean men–a pooled-data analysis. Physiol. Rep. 2016, 4, e12943. [Google Scholar] [CrossRef]
- Steinert, R.E.; Poller, B.; Castelli, M.C.; Drewe, J.; Beglinger, C. Oral administration of glucagon-like peptide 1 or peptide YY 3-36 affects food intake in healthy male subjects. Am. J. Clin. Nutr. 2010, 92, 810–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouhal, H.; Sellami, M.; Saeidi, A.; Slimani, M.; Abbassi-Daloii, A.; Khodamoradi, A.; El Hage, R.; Hackney, A.C.; Abderrahman, A.B. Effect of physical exercise and training on gastrointestinal hormones in populations with different weight statuses. Nutr. Rev. 2019, 77, 455–477. [Google Scholar] [CrossRef]
- Livovsky, D.M.; Pribic, T.; Azpiroz, F. Food, eating, and the gastrointestinal tract. Nutrients 2020, 12, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef] [PubMed]
- Halaas, J.L.; Friedman, J.M. Leptin and its receptor: Obesity and the adipocyte. J. Endocrinol. 1997, 155, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.B.S. Acute and chronic effects of leptin on glucose utilization in lean mice. Biochem. Biophys. Res. Commun. 1998, 245, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Considine, R.V.; Caro, J.F. Leptin in humans: Current progress and future directions. Clin. Chem. 1996, 42, 843–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorens, B. Glucagon-like peptide-1 and control of insulin secretion. Diabète Métabolisme 1995, 21, 311–318. [Google Scholar] [PubMed]
- Lee, J.; Hong, S.-W.; Rhee, E.-J.; Lee, W.-Y. GLP-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes Metab. J. 2012, 36, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Khandekar, N.; Berning, B.A.; Sainsbury, A.; Lin, S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol. Cell. Endocrinol. 2015, 418, 33–41. [Google Scholar] [CrossRef]
- Rehfeld, J.F. The new biology of gastrointestinal hormones. Physiol. Rev. 1998, 78, 1087–1108. [Google Scholar] [CrossRef] [Green Version]
- Nixon, G.F.; Steffeck, J.C. Reliability of the state-trait anxiety inventory. Psychol. Rep. 1977, 40, 357–358. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Frey, I.; Berg, A.; Grathwohl, D.; Keul, J. Freiburg Questionnaire of physical activity--development, evaluation and application. Soz. -Und Praventivmedizin 1999, 44, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kühner, C.; Bürger, C.; Keller, F.; Hautzinger, M. Reliability and validity of the revised Beck Depression Inventory (BDI-II). Results from German samples. Nervenarzt 2007, 78, 651–656. [Google Scholar] [CrossRef]
- Flöel, A.; Witte, A.V.; Lohmann, H.; Wersching, H.; Ringelstein, E.B.; Berger, K.; Knecht, S. Lifestyle and memory in the elderly. Neuroepidemiology 2008, 31, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- Winkler, G.; Döring, A. Validation of a short qualitative food frequency list used in several German large scale surveys. Z. Ernahrungswiss 1998, 37, 234–241. [Google Scholar] [CrossRef]
- R Core Team, Version 3.6.1. R: A Language and Environment for Statistical Computing; Software package; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Hadley, W. Ggplot2: Elegrant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- R.C. Team; M.R.C. Team; Suggests, M.; Matrix, S. Package “Stats.,” RA Language Environment Statistical Computing. Vienna, Austria R Found. Stat. Comput. 2013. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi4heGguenzAhVZL6YKHSgsBbcQFnoECAIQAQ&url=http%3A%2F%2Fsoftlibre.unizar.es%2Fmanuales%2Faplicaciones%2Fr%2Ffullrefman.pdf&usg=AOvVaw0XaFywybTamB2zIuqIJDJ3 (accessed on 17 September 2021).
- Gordon, M.; Lumley, T.; Gordon, M.M. Package ‘forestplot’: Advanced Forest Plot Using ‘grid’ Graphics. 2019. Available online: https://rdrr.io/cran/forestplot/ (accessed on 17 September 2021).
- Ernst, M.D. Permutation methods: A basis for exact inference. Stat. Sci. 2004, 19, 676–685. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamer, M.; Lemon, J.; Gamer, M.M.; Robinson, A.; Kendall’s, W. Package ‘irr,’ Var. Coefficients Interrater Reliab. Agreem 2012, 22. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwin7eL_uenzAhWPOZQKHcx5BLEQFnoECAgQAQ&url=https%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Firr%2Firr.pdf&usg=AOvVaw1qRUq0JrGGCI1tW514AYLF (accessed on 17 September 2021).
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods. 1996, 1, 30. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, Y.; Schultz, R.D.; Li, N.; He, Z.; Zhang, Z.; Caron, A.; Zhu, Q.; Sun, K.; Xiong, W. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019, 30, 706–719. [Google Scholar] [CrossRef]
- Arulmozhi, D.K.; Portha, B. GLP-1 based therapy for type 2 diabetes. Eur. J. Pharm. Sci. 2006, 28, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Pleil, J.D.; Wallace, M.A.G.; Stiegel, M.A.; Funk, W.E. Human biomarker interpretation: The importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J. Toxicol. Environ. Health Part B 2018, 21, 161–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundkvist, A.; Myte, R.; Palmqvist, R.; Harlid, S.; Van Guelpen, B. Plasma ghrelin is probably not a useful biomarker for risk prediction or early detection of colorectal cancer. Gut 2019, 68, 373–374. [Google Scholar] [CrossRef]
- Ravussin, E.; Tschöp, M.; Morales, S.; Bouchard, C.; Heiman, M.L. Plasma ghrelin concentration and energy balance: Overfeeding and negative energy balance studies in twins. J. Clin. Endocrinol. Metab. 2001, 86, 4547. [Google Scholar] [CrossRef]
- Nair, N.S.; Brennan, I.M.; Little, T.J.; Gentilcore, D.; Hausken, T.; Jones, K.L.; Wishart, J.M.; Horowitz, M.; Feinle-Bisset, C. Day-to-day reproducibility of, and relationships between, energy intake, gastric emptying and plasma CCK and GLP-1 in healthy lean males. Appetite 2007, 49, 315. [Google Scholar] [CrossRef]
- Stattin, P.; Lukanova, A.; Biessy, C.; Söderberg, S.; Palmqvist, R.; Kaaks, R.; Olsson, T.; Jellum, E. Obesity and colon cancer: Does leptin provide a link? Int. J. Cancer 2004, 109, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Chia, V.M.; Newcomb, P.A.; White, E.; Zheng, Y.; Potter, J.D.; Lampe, J.W. Reproducibility of serum leptin, insulin-like growth factor-I, and insulin-like growth factor-binding protein-3 measurements. Horm. Res. Paediatr. 2008, 69, 295–300. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Nicolson, M.; Hirsch, J.; Murphy, E.; Chu, F.; Leibel, R.L. Effects of weight change on plasma leptin concentrations and energy expenditure. J. Clin. Endocrinol. Metab. 1997, 82, 3647–3654. [Google Scholar] [CrossRef]
- Wing, R.R.; Sinha, M.K.; Considine, R.V.; Lang, W.; Caro, J.F. Relationship between weight loss maintenance and changes in serum leptin levels. Horm. Metab. Res. 1996, 28, 698–703. [Google Scholar] [CrossRef]
- Ghomraoui, F.A.; Alotaibi, S.T.; Alharthi, M.A.; Asiri, S.S.; Almadi, M.A.; Alharbi, O.R.; Azzam, N.A.; Aljebreen, A.M.; Saeed, M.; Hajkhder, B. Plasma ghrelin and leptin in patients with inflammatory bowel disease and its association with nutritional status. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2017, 23, 199. [Google Scholar] [CrossRef]
- Hancox, R.J.; Landhuis, C.E. Correlation between measures of insulin resistance in fasting and non-fasting blood. Diabetol. Metab. Syndr. 2011, 3, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouhal, H.; Bagheri, R.; Triki, R.; Saeidi, A.; Wong, A.; Hackney, A.C.; Laher, I.; Suzuki, K.; Ben Abderrahman, A. Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity. Int. J. Environ. Res. Public Health 2020, 17, 5600. [Google Scholar] [CrossRef] [PubMed]
Variable | N | Baseline | Follow-Up | p |
---|---|---|---|---|
Small blood count and CRP | ||||
Red blood cells (Tpt/L) | 17 | 4.70 (4.1, 5.00) c | 4.70 (4.5, 4.8) c | 0.99 |
White blood cells (Gpt/L) | 17 | 5.43 (4.89, 6.56) c | 4.81 (4.39, 6.27) c | 0.17 |
Platelets (Gpt/L) | 17 | 241.00 (202.00, 267.00) c | 233.00 (217.00, 274.00) c | 0.32 |
Hemoglobin (mmol/L) | 17 | 8.50 (7.6, 8.9) c | 8.30 (7.9, 8.7) c | 0.99 |
Hematocrit | 17 | 0.40 (0.37, 0.43) c | 0.40 (0.38, 0.42) | 0.73 |
MCH (fmol) | 17 | 1.78 (1.75, 1.84) c | 1.78 (1.74, 1.88)c | 0.99 |
MCV (fl) | 17 | 87.50 (84.60, 89.30) c | 85.90 (83.6, 88.80) c | 0.50 |
MCHC (mmol/L) | 17 | 20.40 (20.10, 21.00) c | 20.80 (20.40, 21.20) c | 0.28 |
RDW (%) | 17 | 12.60 (12.00, 14.70) c | 12.20 (11.90, 14.60) c | 0.73 |
CRP (mg/L) a | 17 | 0.35 (0.24, 0.79) c | 0.50 (0.21, 1.01) c | 0.91 |
Kidney and Liver Function | ||||
Creatinine | 17 | 73.00 (61.00, 80.00) c | 70.00 (61.00, 83.00) c | 0.72 |
eGRF | 17 | >60 | >60 | - |
GGT | 17 | 0.36 (0.35, 0.41) c | 0.35 (0.31, 0.44) c | 0.59 |
Diet | ||||
Dietary habits index | 17 | 82.00 (79.00, 88.00) c | 83.00 (81.00, 90.00) c | 0.66 |
Alcohol consumption (drinks/last 3 days) d | 17 | 1.33 (0, 3.17) c | 1.67 (0, 3.50) c | 0.72 |
Lifestyle | ||||
Daily physical activity (h/week) | 17 | 1.54 (0.03, 2.81) c | 1.34 (0.17, 5.53) c | 0.20 |
Leisure physical activity (h/week) | 17 | 4.00 (1.00, 9.00) c | 5.67 (2.00, 8.00) c | 0.61 |
Athletic physical activity (h/week) | 17 | 2.00 (0.63, 5.50) c | 2.00 (0.00, 3.50) c | 0.82 |
Total physical activity index (h/week) | 17 | 11.54 (4.57, 16.70) c | 10.53 (8.53, 13.52) c | 0.68 |
Energy consumption daily physical activity (kcal/week) | 16 b | 165.29 (19.48, 430.22) c | 251.99 (64.70, 1364.77) c | 0.25 |
Energy consumption leisure activity (kcal/week) | 16 b | 252.00 (87.13, 723.63) c | 371.50 (122.63, 730.50) c | 0.93 |
Energy consumption athletic physical activity (kcal/week) | 16 b | 866.50 (408.63, 1506.50) c | 710.50 (68.00, 1073.25) c | 0.74 |
Energy consumption total physical activity (kcal/week) | 16 b | 1475.88 (687.40, 3200.02) c | 1583.27 (933.06, 3855.55) c | 0.51 |
Weight (kg) | 16 b | 67.00 (57.00, 76.25) c | 68.00 (59.25, 76.25) c | <0.05 * |
BMI (kg/m2) | 16 b | 21.18 (20.46, 23.08) c | 22.44 (21.19, 23.77) c | <0.01 ** |
Sleep duration (h/week) | 17 | 49.00 (42.00, 56.00) c | 52.50 (49.00, 56.00) c | 0.27 |
Serum Parameter | BL | FU | p |
---|---|---|---|
Glucose (mmol/L) | 4.90 ± 0.66 | 5.22 ± 0.54 | 0.123 |
HbA1c (%) | 5.37 ± 0.19 | 5.41 ± 0.26 | 0.501 |
Total cholesterol (mmol/L) | 4.79 ± 0.81 | 5.02 ± 1.11 | 0.212 |
Triglyceride (mmol/L) | 1.11 ± 0.51 | 1.08 ± 0.44 | 0.604 |
LDL/HDL Ratio a | 1.55 ± 0.46 | 1.66 ± 0.46 | 0.077 |
GIH Levels | BL | FU | p |
---|---|---|---|
Ghrelin (pg/mL) | 771.92 (662.63, 898.21) | 804.76 (751.65, 867.29) | 0.719 |
Leptin (pg/mL) | 5056.90 (3704.31, 8132.15) | 6407.82 (3639.22, 13,352.38) | 0.076 |
GLP1 (pg/mL) | 168.78 (203.21, 315.32) | 134.00 (15.07, 294.95) | 0.438 |
PP (pg/mL) | 37.29 (12.49, 289.28) | 27.47 (9.37, 188.52) | 0.011 |
GIH Levels | ICC | 95% CIICC | Adjusted ICC | 95% CIadICC |
---|---|---|---|---|
Ghrelin | 0.99 | 0.98, 1 | 0.99 | 0.98, 1 |
Leptin | 0.51 | 0.09, 0.79 | 0.42 | 0, 0.82 |
GLP1 | 0.79 | 0.52, 0.92 | 0.88 | 0.66, 0.96 |
PP | 0.89 | 0.72, 0.96 | 0.84 | 0.73, 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wortha, S.M.; Wüsten, K.A.; Witte, V.A.; Bössel, N.; Keßler, W.; Vogelgesang, A.; Flöel, A. Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity. Nutrients 2021, 13, 3809. https://doi.org/10.3390/nu13113809
Wortha SM, Wüsten KA, Witte VA, Bössel N, Keßler W, Vogelgesang A, Flöel A. Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity. Nutrients. 2021; 13(11):3809. https://doi.org/10.3390/nu13113809
Chicago/Turabian StyleWortha, Silke M., Katharina A. Wüsten, Veronica A. Witte, Nicole Bössel, Wolfram Keßler, Antje Vogelgesang, and Agnes Flöel. 2021. "Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity" Nutrients 13, no. 11: 3809. https://doi.org/10.3390/nu13113809
APA StyleWortha, S. M., Wüsten, K. A., Witte, V. A., Bössel, N., Keßler, W., Vogelgesang, A., & Flöel, A. (2021). Gastrointestinal Hormones in Healthy Adults: Reliability of Repeated Assessments and Interrelations with Eating Habits and Physical Activity. Nutrients, 13(11), 3809. https://doi.org/10.3390/nu13113809