Dietary Intake and Representativeness of a Diverse College-Attending Population Compared with an Age-Matched US Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. HSH Study Population and Data Collection
2.3. NHANES Study Population and Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winpenny, E.M.; van Sluijs, E.M.F.; White, M.; Klepp, K.I.; Wold, B.; Lien, N. Changes in diet through adolescence and early adulthood: Longitudinal trajectories and association with key life transitions. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, J.; Diaz Rios, L.K.; Aldaz, K.J.; De La Cruz, N.; Vu, E.; Asad Asghar, S.; Kuse, Q.; Ortiz, R.M. We don’t have a lot of healthy options: Food environment perceptions of first-year, minority college students attending a food desert campus. Nutrients 2019, 11, 816. [Google Scholar] [CrossRef] [Green Version]
- Reuter, P.R.; Forster, B.L.; Brister, S.R. The influence of eating habits on the academic performance of university students. J. Am. Coll. Health 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Lenk, K.; Lust, K.; McGuire, C.M.; Porta, C.M.; Stebleton, M. Sociodemographic and health disparities among students screening positive for food insecurity: Findings from a large college health surveillance system. Prev. Med. Rep. 2021, 21, 101297. [Google Scholar] [CrossRef]
- Morris, M.A.; Wilkins, E.L.; Galazoula, M.; Clark, S.D.; Birkin, M. Assessing diet in a university student population: A longitudinal food card transaction data approach. Br. J. Nutr. 2020, 123, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.C.; Larson, N.I.; Barr-Anderson, D.; Neumark-Sztainer, D.; Story, M. Disparities in dietary intake, meal patterning, and home food environments among young adult nonstudents and 2- and 4-year college students. Am. J. Public Health 2009, 99, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Castetbon, K.; Vernay, M.; Malon, A.; Salanave, B.; Deschamps, V.; Roudier, C.; Oleko, A.; Szego, E.; Hercberg, S. Dietary intake, physical activity and nutritional status in adults: The French nutrition and health survey (ENNS, 2006–2007). Br. J. Nutr. 2009, 102, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Alawadhi, B.; Fallaize, R.; Franco, R.Z.; Hwang, F.; Lovegrove, J. Web-based dietary intake estimation to assess the reproducibility and relative validity of the eatwellq8 food frequency questionnaire: Validation study. JMIR Form. Res. 2021, 5, e13591. [Google Scholar] [CrossRef]
- Hercberg, S. Web-based studies: The future in nutritional epidemiology (and overarching epidemiology) for the benefit of public health? Prev. Med. 2012, 55, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Illner, A.K.; Freisling, H.; Boeing, H.; Huybrechts, I.; Crispim, S.P.; Slimani, N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int. J. Epidemiol. 2012, 41, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Kato, E.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Iwasaki, M.; Shinozawa, Y.; Umezawa, J.; Tanaka, J.; et al. Online version of the self-administered food frequency questionnaire for the Japan Public Health Center-based Prospective Study for the Next Generation (JPHC-NEXT) protocol: Relative validity, usability, and comparison with a printed questionnaire. J. Epidemiol. 2017, 27, 435–446. [Google Scholar] [CrossRef]
- Kristal, A.R.; Kolar, A.S.; Fisher, J.L.; Plascak, J.J.; Stumbo, P.J.; Weiss, R.; Paskett, E.D. Evaluation of web-based, self-administered, graphical food frequency questionnaire. J. Acad. Nutr. Diet. 2014, 114, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Brassard, D.; Fulgoni, V.L.; Robitaille, J.; Lemieux, S.; Lamarche, B. Examining the advantages of using multiple web-based dietary assessment instruments to measure population dietary intake: The PREDISE study. Curr. Dev. Nutr. 2019, 3, nzz014. [Google Scholar] [CrossRef]
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; Thompson, F.E.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, A.E.; Adams, L.M.; de Jonge, L.; Espina, V.; Espinoza, L.; Fischer, S.F.; Frankenfeld, C.L.; Hines, D.A.; Kornienko, O.; Lawrence, H.Y.; et al. Protocol for the Mason: Health Starts Here prospective cohort study of young adult college students. BMC Public Health 2021, 21, 897. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33980206 (accessed on 24 May 2021). [CrossRef] [PubMed]
- USDA. USDA Food and Nutrient Database for Dietary Studies 2017–2018; USDA: Washington, DC, USA, 2020.
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. 2016. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 2 October 2021).
- Millen, A.E.; Midthune, D.; Thompson, F.E.; Kipnis, V.; Subar, A.F. The National Cancer Institute Diet History Questionnaire: Validation of pyramid food servings. Am. J. Epidemiol. 2006, 163, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Tasevska, N.; Tucker, R.M.; Huerta, J.M.; Schoeller, D.A.; Ravelli, M.N. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 1, 90. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey—Weighting. 2020. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx#estimation-and-weighting-procedures (accessed on 2 October 2021).
- He, Z.; Wang, S.; Borhanian, E.; Weng, C. Assessing the Collective Population Representativeness of Related Type 2 Diabe-tes Trials by Combining Public Data from ClinicalTrials.gov and NHANES. Stud. Health Technol. Inform. 2015, 216, 569–573. [Google Scholar]
- Lafrenière, J.; Laramée, C.; Robitaille, J.; Lamarche, B.; Lemieux, S. Assessing the relative validity of a new, web-based, self-Administered 24 h dietary recall in a French-Canadian population. Public Health Nutr. 2018, 21, 2744–2752. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- Lipka, O.; Sarid, M.; Aharoni Zorach, I.; Bufman, A.; Hagag, A.A.; Peretz, H. Adjustment to Higher Education: A Comparison of Students With and Without Disabilities. Front. Psychol. 2020, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, L.; Ghiasvand, R.; Goodarzy, S.; Rabbani, Z.; Salehi, M.; Shiranian, A.; Askari, G.; Borzooe, A. Investigating and comparing energy and macronutrient intake in female aerobic athletes in two different socio-economic regions. J. Educ. Health Promot. 2012, 1, 40. [Google Scholar] [CrossRef]
- Davy, S.R.; Benes, B.A.; Driskell, J.A. Sex Differences in Dieting Trends, Eating Habits, and Nutrition Beliefs of a Group of Midwestern College Students. J. Am. Diet. Assoc. 2006, 106, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Dietz, W.H. Trends in energy intake among adults in the United States: Findings from NHANES. Am. J. Clin. Nutr. 2013, 97, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Kolodinsky, J.; Harvey-Berino, J.R.; Berlin, L.; Johnson, R.K.; Reynolds, T.W. Knowledge of Current Dietary Guidelines and Food Choice by College Students: Better Eaters Have Higher Knowledge of Dietary Guidance. J. Am. Diet. Assoc. 2007, 107, 1409–1413. [Google Scholar] [CrossRef]
- Yahia, N.; Brown, C.A.; Rapley, M.; Chung, M. Level of nutrition knowledge and its association with fat consumption among college students. BMC Public Health 2016, 16, 1047. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Marriott, B.P.; Williams, C.; Judelson, D.A.; Glickman, E.L.; Geiselman, P.J.; Dotson, L.; Mahoney, C.R. Patterns of dietary supplement use among college students. Clin. Nutr. 2015, 34, 976–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Stierman, B.; Gahche, J.J.; Potischman, N. Dietary Supplement Use Among Adults: United States, 2017–2018; NCHS Data Brief; CDC: Atlanta, GA, USA, 2021.
- Kim, H.J.; Giovannucci, E.; Rosner, B.; Willett, W.C.; Cho, E. Longitudinal and secular trends in dietary supplement use: Nurses’ health study and health professionals follow-up study, 1986–2006. J. Acad. Nutr. Diet. 2014, 114, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Lonn, E. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. J. Am. Med. Assoc. 2005, 293, 1338–1347. [Google Scholar] [CrossRef] [Green Version]
- Mursu, J.; Robien, K.; Harnack, L.J.; Park, K.; Jacobs, D.R. Dietary supplements and mortality rate in older women: The Iowa women’s health study. Arch. Intern. Med. 2011, 171, 1625–1633. [Google Scholar] [CrossRef]
- Desbouys, L.; De Ridder, K.; Rouche, M.; Castetbon, K. Food consumption in adolescents and young adults: Age-specific socio-economic and cultural disparities (Belgian Food Consumption Survey 2014). Nutrients 2019, 11, 1520. [Google Scholar] [CrossRef] [Green Version]
- Lassale, C.; Castetbon, K.; Laporte, F.; Deschamps, V.; Vernay, M.; Camilleri, G.M.; Faure, P.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. J. Acad. Nutr. Diet. 2016, 116, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Leme, A.C.; Baranowski, T.; Thompson, D.; Philippi, S.; O’Neil, C.; Fulgoni, V., III; Nicklas, T. Top food sources of percentage of energy, nutrients to limit and total gram amount consumed among US adolescents: National Health and Nutrition Examination Survey 2011–2014. Public Health Nutr. 2021, 22, 661–671. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Ilich, J.Z.; Brownbill, R.A.; Tamborini, L. Bone and nutrition in elderly women: Protein, energy, and calcium as main determinants of bone mineral density. Eur. J. Clin. Nutr. 2003, 57, 554–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HSH (n = 269) | NHANES (n = 835) | |
---|---|---|
Sex | Mean ± SE or N and % | Mean ± SE or n and % |
Male | 92 (34.2) | 403 (51.9) |
Female | 177 (65.8) | 432 (48.1) |
Age, y | ||
18 | 232 (88.2) | 139 (10.3) |
19–24 | 31 (11.8) | 696 (89.7) |
Mean body weight, lbs | ||
Male | 160.9 ± 4.1 | 184.7 ± 3.9 |
Female | 141.2 ± 2.5 | 160.9 ± 4.5 |
Race/ethnicity | ||
Non-Hispanic White | 103 (38.3) | 250 (52.6) |
Non-Hispanic Black | 33 (12.3) | 190 (14.0) |
Non-Hispanic Asian | 62 (23.1) | 82 (5.0) |
Hispanic | 37 (13.7) | 260 (24.4) |
Others | 34 (12.6) | 53 (3.8) |
BMI, kg/m2 | ||
Underweight (<18.5) | 22 (8.3) | 46 (5.1) |
Normal (18.5 to <25.0) | 162 (61.1) | 335 (38.1) |
Overweight (25.0 to <30.0) | 50 (18.9) | 191 (24.9) |
Obese (30.0 and higher) | 31 (11.7) | 263 (31.9) |
Employment | ||
Employed | 80 (29.85) | 528 (70.2) |
Unemployed | 188 (70.1) | 307 (29.8) |
Smoking | ||
Never * | 239 (89.2) | 675 (76.0) |
Ever | 29 (10.8) | 160 (24.0) |
Dietary Supplement | ||
Male | 25 (27.2) | – |
Female | 85 (48.0) | – |
Currently live on Campus | ||
Yes | 190 (73.6) | – |
No | 79 (29.4) | – |
Household Income | ||
Not enough to get by | 9 (3.3) | – |
Just enough to get by | 71 (26.6) | – |
Only have to worry about money for fun and extras | 139 (52.1) | – |
Never have to worry about money | 48 (18.0) | – |
Nutrients | HSH Cohort | NHANES | p-Value |
---|---|---|---|
Energy (kcal) | 1610 ± 52 | 2100 ± 42 | <0.001 |
Macronutrients by % total energy | |||
Carbohydrate (%) | 54.5 ± 0.6 | 47.0 ± 0.5 | <0.001 |
Fat (%) | 31.8 ± 0.4 | 35.7 ± 0.5 | <0.001 |
Protein (%) | 14.7 ± 0.3 | 16.0 ± 0.5 | <0.001 |
Macronutrient g/1000 kcal of intake | |||
Carbohydrate (g) | 136.3 ± 1.6 | 117.4 ± 1.2 | <0.001 |
Protein (g) | 36.7 ± 0.7 | 40.0 ± 1.1 | <0.001 |
Total fat (g) | 35.4 ± 0.5 | 39.7 ± 0.6 | <0.001 |
Monounsaturated fat (g) | 12.8 ± 0.2 | 13.3 ± 0.2 | 0.021 |
Polyunsaturated fat (g) | 7.5 ± 0.1 | 9.3 ± 0.4 | <0.001 |
Saturated fat (g) | 11.9 ± 0.2 | 13.2 ± 0.2 | <0.001 |
Cholesterol (mg) | 135.1 ± 5.4 | 143.7 ± 4.9 | 0.114 |
Fiber (g) | 10.3 ± 0.3 | 7.2 ± 0.2 | <0.001 |
Micronutrient density (/1000 kcal) | |||
Vitamin A (ug) | 543 ± 26 | 282± 16 | <0.001 |
Vitamin C (mg) | 74.1 ± 3.4 | 33.1 ± 1.4 | <0.001 |
Vitamin D (ug) | 4.9 ± 0.4 | 2.17 ± 0.2 | <0.001 |
Vitamin E (mg) | 7.1 ± 0.6 | 4.36 ± 0.3 | <0.001 |
Vitamin K (ug) | 132 ± 10 | 47 ± 3 | <0.001 |
Thiamin (mg) | 1.3 ± 0.3 | 0.80 ± 0.1 | 0.037 |
Riboflavin (mg) | 1.3 ± 0.1 | 0.98 ± 0.1 | <0.001 |
Niacin (mg) | 13.5 ± 0.4 | 13.4 ± 0.3 | 0.794 |
Vitamin B6 (mg) | 1.5 ± 0.7 | 1.1 ± 0.1 | <0.001 |
Folate (ug) | 284 ± 13 | 92 ± 2 | <0.001 |
Vitamin B12 (ug) | 20.1 ± 6.5 | 2.3 ± 0.1 | <0.001 |
Calcium (mg) | 610± 15 | 494 ± 15 | <0.001 |
Phosphorous (mg) | 669 ± 9 | 682 ± 18 | 0.172 |
Iron (mg) | 9.3 ± 1.0 | 6.7 ± 0.1 | 0.008 |
Magnesium (mg) | 176 ± 4 | 139 ± 4 | <0.001 |
Sodium (mg) | 1565 ± 25 | 1727 ± 15 | <0.001 |
Potassium (mg) | 1463 ± 25 | 1138 ± 19 | <0.001 |
Copper (mg) | 0.8 ± 0.1 | 0.6 ± 0.1 | <0.001 |
Selenium (ug) | 52 ± 1 | 58± 2 | <0.001 |
Mean ± SE (%en) | HSH | NHANES | p-Value |
---|---|---|---|
Grain products | 29.3 ± 0.9 | 36.0 ± 1.3 | <0.001 |
Grain mixtures, frozen meals, soups | 11.3 ± 0.6 | 16.9 ± 1.2 | <0.001 |
Pastas, rice, cooked cereals | 5.6 ± 0.4 | 2.3 ± 0.4 | <0.001 |
Crackers, snack products | 2.8 ± 0.2 | 3.4 ± 0.4 | 0.037 |
Cakes, cookies, pies, pastries, bars | 2.5 ± 0.2 | 4.5 ± 0.4 | <0.001 |
Pancakes, waffles, French toast, other grain products | 2.5 ± 0.2 | 0.6 ± 0.1 | <0.001 |
Yeast breads, rolls | 1.7 ± 0.2 | 4.6 ± 0.3 | <0.001 |
Cereals, not cooked | 1.6 ± 0.2 | 1.9 ± 0.3 | 0.134 |
Quick breads | 1.0 ± 0.1 | 2.0 ± 0.3 | <0.001 |
Vegetables | 9.1 ± 0.5 | 7.2 ± 0.4 | <0.001 |
White potatoes, starchy vegetables | 6.8 ± 0.4 | 5.2 ± 0.4 | <0.001 |
Dark-green vegetables | 0.9 ± 0.1 | 0.2 ± 0.04 | <0.001 |
Orange vegetables | 0.3 ± 0.1 | 0.2 ± 0.05 | 0.077 |
Tomatoes, tomato mixtures | 0.3 ± 0.1 | 0.5 ± 0.06 | <0.001 |
Other vegetables | 0.8 ± 0.1 | 1.14 ± 0.1 | <0.001 |
Fruits | 10.2 ± 0.6 | 3.3 ± 0.3 | <0.001 |
Citrus fruits, juices | 0.6 ± 0.3 | 0.9 ± 0.1 | <0.001 |
Dried fruits | 0.2 ± 0.1 | 0.03 ± 0.02 | <0.001 |
Other fruits | 6.2 ± 0.4 | 1.8 ± 0.2 | <0.001 |
Fruit juices and nectars excluding citrus | 3.2 ± 0.4 | 0.6 ± 0.1 | <0.001 |
Milk and milk products | 14.1 ± 0.7 | 8.4 ± 0.5 | <0.001 |
Milks, milk drinks, yogurts, infant formulas | 7.0 ± 0.6 | 3.5 ± 0.4 | <0.001 |
Milk desserts and sauces | 3.9 ± 0.3 | 1.3 ± 0.2 | <0.001 |
Creams and cream substitutes | 1.4 ± 0.2 | 0.6 ± 0.1 | <0.001 |
Cheeses | 1.9 ± 0.2 | 2.9 ± 0.3 | <0.001 |
Meat, poultry, fish, and mixtures | 15.5 ± 0.7 | 22.1 ± 0.9 | <0.001 |
Poultry | 4.9 ± 0.4 | 5.1 ± 0.5 | 0.507 |
Meat, poultry, fish mixtures | 3.8 ± 0.3 | 11.5 ± 0.9 | <0.001 |
Organ meats, frankfurters, sausages, lunchmeats | 2.5 ± 0.3 | 1.8 ± 0.2 | 0.001 |
Beef | 1.5 ± 0.2 | 1.2 ± 0.2 | 0.034 |
Pork | 0.5 ± 0.1 | 1.1 ± 0.2 | <0.001 |
Fish, shellfish | 1.0 ± 0.1 | 1.0 ± 0.2 | 0.781 |
Frozen meals, soups, gravies | 1.4 ± 0.1 | 0.3 ± 0.1 | <0.001 |
Eggs | 3.4 ± 0.4 | 2.5 ± 0.3 | 0.020 |
Eggs | 3.1 ± 0.3 | 0.9 ± 0.1 | <0.001 |
Egg substitutes | 0.3 ± 0.1 | 0.03 ± 0.02 | <0.001 |
Dry beans, peas, other legumes, nuts, and seeds | 2.4 ± 0.2 | 3.1 ± 0.8 | 0.004 |
Legumes | 1.2 ± 0.2 | 0.7 ± 0.1 | 0.003 |
Nuts, nut butters, nut mixtures | 1.2 ± 0.2 | 1.7 ± 0.3 | 0.006 |
Fats, oils, and salad dressings | 2.9 ± 0.2 | 2.1 ± 0.2 | 0.001 |
For use with a sandwich or vegetable | 1.6 ± 0.2 | 0.2 ± 0.04 | <0.001 |
Fats/Oils | 0.2 ± 0.1 | 0.5 ± 0.1 | <0.001 |
Salad dressings | 1.1 ± 0.1 | 1.4 ± 0.1 | 0.063 |
Sugars, sweets, and beverages | 11.1 ± 0.8 | 15.2 ± 0.7 | <0.001 |
Nonalcoholic beverages | 4.8 ± 0.4 | 7.4 ± 0.5 | <0.001 |
Sugars, sweets | 3.1 ± 0.4 | 2.7 ± 0.4 | 0.348 |
Noncarbonated water | 2.1 ± 0.4 | 0.03 ± 0.02 | <0.001 |
Alcoholic beverages | 1.1 ± 0.2 | 3.3 ± 0.5 | <0.001 |
Formulated nutrition beverages, energy drinks, sports drink | 2.0 ± 0.3 | 1.8 ± 0.03 | 0.467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, Z.H.; Frankenfeld, C.L.; de Jonge, L.; Kennedy, E.J.; Bertoldo, J.; Short, J.L.; Cheskin, L.J. Dietary Intake and Representativeness of a Diverse College-Attending Population Compared with an Age-Matched US Population. Nutrients 2021, 13, 3810. https://doi.org/10.3390/nu13113810
Rana ZH, Frankenfeld CL, de Jonge L, Kennedy EJ, Bertoldo J, Short JL, Cheskin LJ. Dietary Intake and Representativeness of a Diverse College-Attending Population Compared with an Age-Matched US Population. Nutrients. 2021; 13(11):3810. https://doi.org/10.3390/nu13113810
Chicago/Turabian StyleRana, Ziaul H., Cara L. Frankenfeld, Lilian de Jonge, Erika J. Kennedy, Jaclyn Bertoldo, Jerome L. Short, and Lawrence J. Cheskin. 2021. "Dietary Intake and Representativeness of a Diverse College-Attending Population Compared with an Age-Matched US Population" Nutrients 13, no. 11: 3810. https://doi.org/10.3390/nu13113810
APA StyleRana, Z. H., Frankenfeld, C. L., de Jonge, L., Kennedy, E. J., Bertoldo, J., Short, J. L., & Cheskin, L. J. (2021). Dietary Intake and Representativeness of a Diverse College-Attending Population Compared with an Age-Matched US Population. Nutrients, 13(11), 3810. https://doi.org/10.3390/nu13113810