Nutrient Patterns and Body Composition Parameters of Black South African Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Dietary Intake
2.3. Body Composition
2.3.1. Simple Body Anthropometry
2.3.2. Dual-Energy X-ray Absorptiometry
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Nutrient Patterns of Population
3.3. Factors Associated with Varying Body Composition Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidell, J.C. Chapter 2—The Epidemiology of Obesity. In International Textbook of Obesity; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2001; pp. 23–29. [Google Scholar]
- Vorster, H.H.; Kruger, A.; Margetts, B.M. The nutrition transition in Africa: Can it be steered into a more positive direction? Nutrients 2011, 3, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cois, A.; Day, C. Obesity trends and risk factors in the South African adult population. BMC Obes. 2015, 2, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradidge, P.J.; Norris, S.A.; Jaff, N.G.; Crowther, N.J. Metabolic and Body Composition Risk Factors Associated with Metabolic Syndrome in a Cohort of Women with a High Prevalence of Cardiometabolic Disease. PLoS ONE 2016, 11, e0162247. [Google Scholar]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. The South African National Health and Nutrition Examination Survey SANHANES-1; HSRC Press: Cape Town, South Africa, 2013. [Google Scholar]
- Baxter, A.J.; Hons, B.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome—A review of epidemiologic evidence. Asia Pac. J. Clin. Nutr. 2006, 15, 134–142. [Google Scholar] [PubMed]
- Okafor, C.I. The metabolic syndrome in Africa: Current trends. Indian J. Endocrinol. Metab. 2012, 16, 56–66. [Google Scholar] [CrossRef]
- Berdanier, C.D.; Dwyer, J.; Feldman, E.B. Handbook of Nutrition and Food; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Homas-Valdés, S.; Tostes, M.d.G.V.; Anunciação, P.C.; da Silva, B.P.; Pinheiro, H.M. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 2007, 57, 3332–3343. [Google Scholar] [CrossRef]
- Kelly, O.J.; Gilman, J.C.; Kim, Y.; Ilich, J.Z. Micronutrient Intake in the Etiology, Prevention and Treatment of Osteosarcopenic Obesity. Curr. Aging Sci. 2016, 9, 260–278. [Google Scholar] [CrossRef]
- Hammad, S.S.; Eck, P.; Sihag, J.; Chen, X.; Connelly, P.W.; Lamarche, B.; Couture, P.; Guay, V.; Maltais-Giguère, J.; West, S.G.; et al. Common Variants in Lipid Metabolism–Related Genes Associate with Fat Mass Changes in Response to Dietary Monounsaturated Fatty Acids in Adults with Abdominal Obesity. J. Nutr. 2019, 149, 1749–1756. [Google Scholar] [CrossRef]
- Sugihiro, T.; Yoneda, M.; Ohno, H.; Oki, K.; Hattori, N. Associations of nutrient intakes with obesity and diabetes mellitus in the longitudinal medical surveys of Japanese Americans. J. Diabetes Investig. 2019, 10, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P. Nutrient patterns and their relationship with general and central obesity in US adults. Eur. J. Clin. Investig. 2017. [Google Scholar] [CrossRef]
- Pisa, P.T.; Pedro, T.M.; Kahn, K.; Tollman, S.M.; Pettifor, J.M.; Norris, S. Nutrient patterns and their association with socio-demographic, lifestyle factors and obesity risk in rural South African adolescents. Nutrients 2015, 7, 3464–3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakimoto, P.; Block, G. Dietary intake, dietary patterns, and changes with age: An epidemiological perspective. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56A, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puoane, T.; Steyn, K.; Bradshaw, D.; Laubscher, R.; Fourie, J.; Lambert, V.; Mbananga, N. Obesity in South Africa: The South African Demographic and Health Survey. Obes. Res. 2002, 10, 1038–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, L.; Norris, S.; Pettifor, J.; Yach, D.; Cameron, N. Cohort Profile: Mandela’s children: The 1990 birth to twenty study in South Africa. Int. J. Epidemiol. 2007, 36, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaff, N.G.; Norris, S.A.; Snyman, T.; Toman, M.; Crowther, N.J. Body composition in the Study of Women Entering and in Endocrine Transition (SWEET): A perspective of African women who have a high prevalence of obesity and HIV infection. Metabolism 2015, 64, 1031–1041. [Google Scholar] [CrossRef]
- Mundfrom, D.J.; Shaw, D.G.; Ke, T.L. Minimum Sample Size Recommendations for Conducting Factor Analyses. Int. J. Test. 2005, 5, 159–168. [Google Scholar] [CrossRef]
- Kline, P. An Easy Guide to Factor Analysis, 1st ed.; Routledge: London, UK, 1994. [Google Scholar]
- Zingoni, C.; Norris, S.A.; Griffiths, P.L.; Cameron, N. Studying a population undergoing nutrition transition: A practical case study of dietary assessment in urban South African adolescents. Ecol. Food Nutr. 2009, 48, 178–198. [Google Scholar] [CrossRef] [Green Version]
- Feely, A.B.; Musenge, E.; Pettifor, J.M.; Norris, S.A. Investigation into longitudinal dietary behaviours and household socio-economic indicators and their association with BMI Z-score and fat mass in South African adolescents: The Birth to Twenty (Bt20) cohort. Public Health Nutr. 2012, 16, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Wrottesley, S.V.; Micklesfield, L.K.; Hamill, M.M.; Goldberg, G.R.; Prentice, A.; Pettifor, J.M.; Norris, S.A.; Feeley, A.B. Dietary intake and body composition in HIV-positive and -negative South African women. Public Health Nutr. 2014, 17, 1603–1613. [Google Scholar] [CrossRef]
- Wrottesley, S.V.; Pisa, P.T.; Norris, S.A. The Influence of Maternal Dietary Patterns on Body Mass Index and GestationalWeight Gain in Urban Black South African Women. Nutrients 2017, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Steyn, N.P.; Senekal, M.; Norris, S.A.; Whati, L.; MacKeown, J.M.; Nel, J.H. How well do adolescents determine portion sizes of foods and beverages? Asia Pac. J. Clin. Nutr. 2006, 15, 35–42. [Google Scholar] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenhoven, M.; Kruger, M.; Gouws, E.; Faber, M. MRC Food Composition Tables, 3rd ed.; South African Medical Research Council: Cape Town, South Africa, 1991. [Google Scholar]
- Vorster, H.H.; Kruger, A.; Wentzel-Viljoen, E.; Kruger, H.S.; Margetts, B.M. Added sugar intake in South Africa: Findings from the Adult Prospective Urban and Rural Epidemiology cohort study. Am. J. Clin. Nutr. 2014, 99, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessri, M.; Lou, W.Y.; L’Abbé, M.R. Evaluation of different methods to handle misreporting in obesity research: Evidence from the Canadian national nutrition survey. Br. J. Nutr. 2016, 115, 147–159. [Google Scholar] [CrossRef] [Green Version]
- George, J.A.; Micklesfield, L.K.; Norris, S.A.; Crowther, N.J. The Association Between Body Composition, 25(OH)D, and PTH and Bone Mineral Density in Black African and Asian Indian Population Groups. J. Clin. Endocrinol. Metab. 2014, 99, 2146–2154. [Google Scholar] [CrossRef] [Green Version]
- Imboden, M.T.; Swartz, A.M.; Finch, H.W.; Harber, M.P.; Kaminsky, L.A. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLoS ONE 2017, 12, e0176161. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP: College Station, TX, USA, 2015. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Visser, M.; Van Zyl, T.; Hanekom, S.M.; Baumgartner, J.; van der Hoeven, M.; Taljaard-Krugell, C.; Smuts, C.M.; Faber, M. Nutrient patterns and their relation to anemia and iron status in 5- to 12-y-old children in South Africa. Nutrition 2019, 62, 194–200. [Google Scholar] [CrossRef]
- Chikowore, T.; Pisa, P.; van Zyl, T.; Feskens, E.; Wentzel-Viljoen, E.; Conradie, K. Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population. Nutrients 2017, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- South Africa Department of Health. Regulations Relating to the Fortification of Certain Foodstuffs, Section 15(1) of the Foodstuffs, Cosmetics and Disinfectants Act No. 54 of 1972; Government Notice No. R2003; South Africa Department of Health: Pretoria, South Africa, 2003.
- Bray, G.A.; Smith, S.R.; de Jonge, L.; Xie, H.; Rood, J.; Martin, C.K.; Most, M.; Brock, C.; Mancuso, S.; Redman, L.M. Effects of dietary protein on on Weight Gain, Energy Expenditure, and Body Composition During Overeating. J. Am. Med. Assoc. 2012, 307, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergnaud, A.C.; Norat, T.; Romaguera, D.; Mouw, T.; May, A.M.; Travier, N.; Luan, J.A.; Wareham, N.; Slimani, N.; Rinaldi, S.; et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am. J. Clin. Nutr. 2010, 92, 398–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, W.; Henneberg, M. Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: An ecological analysis. BMC Nutr. 2016, 2, 22. [Google Scholar]
- Veldhorst, M.; Smeets, A.J.P.G.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-induced satiety: Effects and mechanisms of different proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Subcommittee on Military Weight Management. Weight Management State of the Science and Oppurtunities for Military Programs; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Stelmach-Mardas, M.; Rodacki, T.; Dobrowolska-Iwanek, J.; Brzozowska, A.; Walkowiak, J.; Wojtanowska-Krosniak, A.; Zagrodzki, P.; Bechthold, A.; Mardas, M.; Boeing, H. Link between food energy density and body weight changes in obese adults. Nutrients 2016, 8, 229. [Google Scholar] [CrossRef]
- Wehling, H.; Lusher, J. People with a body mass index ≥30 under-report their dietary intake: A systematic review. J. Health Psychol. 2017, 24, 2042–2059. [Google Scholar] [CrossRef]
- Park, H.A.; Lee, J.S.; Kuller, L.H. Underreporting of dietary intake by body mass index in premenopausal women participating in the Healthy Women Study. Nutr. Res. Pract. 2007, 1, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.J. Practical guide to measuring physical activity. J. Acad. Nutr. Diet. 2014, 114, 199–208. [Google Scholar] [CrossRef] [Green Version]
Overall | Underweight and Normal Weight (N = 56) | Overweight and Obese (N = 441) | p Value | |
---|---|---|---|---|
Demographic Characteristics | ||||
Age (years) | 49 (45–53) | 47 (44–52) | 49 (45–53) | 0.162 |
Current smoker n (%) | 14 (2.8%) | 2 (3.6%) | 12 (2.7%) | 0.063 |
Physically active n (%) | 325 (65.4%) | 41 (73.2%) | 284 (64.4%) | 0.191 |
Employed n (%) | 295 (59.5%) | 29 (52.7%) | 266 (60.3%) | 0.280 |
Body Composition Indicators | ||||
Visceral Adipose Tissue (cm2) | 99.7 (74.1–127.6) | 42.3 (29.0–58.5) | 103.1 (83.9–131.5) | <0.001 |
Subcutaneous Adipose Tissue (cm2) | 455.8 (356.2–561.8) | 215.8 (168.9–266.0) | 482.0 (387.2–576.5) | <0.001 |
VAT/SAT ratio | 0.2 (0.2–0.3) | 0.2 (0.2–0.3) | 0.2 (0.2–0.3) | 0.171 |
Whole body fat mass index (FMI) (kg) | 32.0 (25.6–39.3) | 16.8 (12.8–19.4) | 33.1 (28.4–40.7) | <0.001 |
Whole body lean mass index (LMI) (kg) | 40.4 (35.8–44.8) | 31.1 (28.7–34.6) | 41.5 (37.2–45.4) | <0.001 |
Gynoid fat | 58.6 (47.2–70.8) | 32.7 (27.9–39.3) | 61.3 (51.7–72.5) | <0.001 |
Hip circumference (cm) | 117.5 (109.0–128.0) | 97.0 (91.5–101.3) | 119.0 (112.5–129.0) | <0.001 |
Waist circumference (cm) | 99.5 (90.0–108.0) | 77.0 (74.3–81.3) | 101.5 (93.0–110.0) | <0.001 |
Dietary Information | ||||
Total energy (kJ) | 9759 (7628–13271) | 10737 (8717–12659) | 9614 (7523–13354) | 0.291 |
% Carbohydrates | 53.5(48.8–58.4) | 54.4 (49.4–58.8) | 53.5 (48.8–58.3) | 0.598 |
% Protein | 11.6 (10.3–13.3) | 11.0 (9.7–12.4) | 11.8 (10.4–13.4) | 0.026 |
% Fat | 30.2 (25.9–34.3) | 31.3 (25.5–35.1) | 30.1 (26.0–34.2) | 0.756 |
Plant Protein Driven Nutrient Pattern | Animal Protein Driven Nutrient Pattern | Vitamin C, Sugar, and Potassium Driven Nutrient Pattern | |
---|---|---|---|
Plant protein | 0.921 | 0.121 | −0.017 |
Animal protein | 0.080 | 0.834 | 0.175 |
Saturated fat | 0.284 | 0.729 | 0.136 |
Monounsaturated fat | 0.352 | 0.695 | 0.062 |
Polyunsaturated fat | 0.443 | 0.549 | −0.059 |
Cholesterol | 0.009 | 0.776 | −0.003 |
Starch | 0.712 | 0.046 | −0.304 |
Total sugar | 0.050 | 0.095 | 0.721 |
Dietary fibre | 0.686 | 0.044 | 0.455 |
Calcium | −0.110 | 0.507 | 0.431 |
Iron | 0.785 | 0.413 | 0.170 |
Magnesium | 0.574 | 0.169 | 0.273 |
Phosphorus | 0.156 | 0.560 | 0.171 |
Potassium | 0.028 | 0.089 | 0.688 |
Zinc | 0.758 | 0.471 | 0.117 |
Retinol | 0.073 | 0.345 | 0.110 |
Beta carotene | 0.033 | −0.038 | 0.229 |
Thiamine | 0.861 | 0.341 | 0.158 |
Riboflavin | 0.415 | 0.630 | 0.314 |
Vitamin B6 | 0.906 | 0.199 | −0.019 |
Folate | 0.618 | 0.080 | 0.111 |
Vitamin B12 | 0.113 | 0.691 | 0.101 |
Vitamin C | 0.193 | 0.063 | 0.897 |
Vitamin D | 0.265 | 0.837 | −0.124 |
Vitamin E | 0.370 | 0.482 | 0.088 |
Explained variance % | 24.678 | 22.945 | 10.884 |
Cumulative explained variance % | 24.678 | 47.623 | 58.507 |
BMI | Visceral Adipose Tissue (VAT) | Subcutaneous Adipose Tissue (SAT) | VAT/SAT Ratio | Whole Body Fat Mass Index (FMI) | Whole Body Lean Mass Index (LMI) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adjusted β (95% CI) | p Value | Adjusted β (95% CI) | p Value | Adjusted β (95% CI) | p Value | Adjusted β (95% CI) | p Value | Adjusted β (95% CI) | p Value | Adjusted β (95% CI) | p Value | ||
Nutrient patterns | PCA1 | 0.65 (−0.17; 1.47) | 0.118 | 2.06 (−3.12; 7.23) | 0.434 | 20.45 (0.47; 40.43) | 0.045 | −0.01 (−0.01; 0.01) | 0.309 | 0.46 (−0.07; 0.99) | 0.088 | 0.20 (−0.12; 0.53) | 0.220 |
PCA2 | 1.29 (0.54; 2.04) | 0.001 | 9.88 (5.13;14.63) | <0.001 | 26.30 (7.97; 44.63) | 0.005 | 0.01 (0.00; 0.02) | 0.018 | 0.74 (0.25; 1.22) | 0.003 | 0.53 (0.23; 0.83) | 0.001 | |
PCA3 | 0.30 (−0.31; 0.91) | 0.328 | −1.09 (−4.97; 2.80) | 0.581 | −5.05 (−20.04; 9.94) | 0.508 | 0.00 (−0.01; 0.01) | 0.567 | 0.21 (−0.19; 0.60) | 0.300 | 0.08 (−0.16; 0.33) | 0.506 | |
EI-EER | Plausible | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Under reporting | 1.85 (−0.40; 4.10) | 0.107 | 5.41 (−8.83; 19.64) | 0.456 | 54.44 (−0.53; 106.41) | 0.064 | −0.00 (−0.04; 0.02) | 0.695 | 1.49 (0.03; 2.95) | 0.045 | 0.37 (−0.53; 1.26) | 0.421 | |
Over reporting | −3.51 (−5.18; −1.85) | <0.001 | −17.61 (−28.13; −7.09) | 0.001 | −76.15 (−116.77; −35.53) | <0.001 | −0.00 (−0.02; 0.02) | 0.972 | −195 (−3.03; −0.87) | <0.001 | −1.47 (−2.13; −0.80) | <0.001 | |
Physical activity | Inactive | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Physically Active | −1.51 (−2.76; −0.26) | 0.018 | −9.21 (−17.14; −1.28) | 0.023 | −37.76 (−68.37; −7.15) | 0.016 | −0.00 (−0.02; 0.01) | 0.671 | −0.91 (−1.73; −0.10) | 0.027 | −0.56 (−1.06; −0.06) | 0.028 | |
Employment | Unemployed | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
status | Employed | 1.41 (0.21; 2.62) | 0.023 | −2.10 (−9.79; 5.58) | 0.590 | 26.07 (−3.59; 55.73) | 0.085 | −0.02 (−0.03; −0.01) | 0.023 | 0.81 (0.03; 1.60) | 0.043 | 0.55 (0.06; 1.03) | 0.027 |
Education | Completed primary | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Attended high school | −0.33 (−2.31; 1.64) | 0.739 | −2.77 (−15.27; 9.74) | 0.643 | 12.35 (−35.92; 60.63) | 0.615 | −0.02 (−0.05; 0.04) | 0.096 | 0.07 (−1.21; 1.35) | 0.914 | −0.39 (−1.17; 0.40) | 0.336 | |
Completed high school | −2.13 (−4.28; 0.02) | 0.052 | −8.28 (−21.87; 5.31) | 0.232 | −23.53 (−76.04; 28.95) | 0.379 | −0.02 (−0.05; 0.001) | 0.132 | −1.00 (−2.39; 0.39) | 0.157 | −1.07 (−1.93; −0.22) | 0.014 | |
Cigarette use | Never smoked | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Ex-smoker | −2.00 (−4.38; 0.36) | 0.097 | 7.76 (−22.67; 7.16) | 0.307 | −31.28 (−88.88; 26.31) | 0.286 | 0.00 (−0.03; 0.03) | 0.909 | −1.56 (−3.10; −0.31) | 0.046 | −0.40 (−1.34; 0.55) | 0.406 | |
Current smoker | −0.24 (−4.00; 3.52) | 0.899 | −12.76 (−15.27; 9.74) | 0.290 | −23.53 (−76.01; 28.95) | 0.379 | −0.04 (−0.09; 0.01) | 0.145 | −0.32 (−2.76; 2.11) | 0.794 | 0.09 (−1.41; 1.59) | 0.905 | |
Alcohol | No | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Yes | −0.02 (−0.15; 0.10) | 0.714 | 0.54 (−0.27; 1.36) | 0.187 | −0.83 (−3.96; 2.30) | 0.603 | 0.00 (0.00; 0.00) | 0.026 | −0.01 (−0.09; 0.7) | 0.849 | −0.05 (−0.07; 0.04) | 0.566 | |
Age | 0.03 (−0.08; 0.15) | 0.569 | 1.68 (0.94; 2.42) | <0.001 | 2.61 (−0.27; 5.49) | 0.075 | 0.00 (0.00; 0.00) | 0.002 | 0.17 (−0.02; 0.35) | 0.073 | −0.03 (−0.07; 0.02) | 0.205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makura-Kankwende, C.B.T.; Gradidge, P.J.; Crowther, N.J.; Norris, S.A.; Chikowore, T. Nutrient Patterns and Body Composition Parameters of Black South African Women. Nutrients 2021, 13, 6. https://doi.org/10.3390/nu13010006
Makura-Kankwende CBT, Gradidge PJ, Crowther NJ, Norris SA, Chikowore T. Nutrient Patterns and Body Composition Parameters of Black South African Women. Nutrients. 2021; 13(1):6. https://doi.org/10.3390/nu13010006
Chicago/Turabian StyleMakura-Kankwende, Caroline B. T., Philippe J. Gradidge, Nigel J. Crowther, Shane A. Norris, and Tinashe Chikowore. 2021. "Nutrient Patterns and Body Composition Parameters of Black South African Women" Nutrients 13, no. 1: 6. https://doi.org/10.3390/nu13010006
APA StyleMakura-Kankwende, C. B. T., Gradidge, P. J., Crowther, N. J., Norris, S. A., & Chikowore, T. (2021). Nutrient Patterns and Body Composition Parameters of Black South African Women. Nutrients, 13(1), 6. https://doi.org/10.3390/nu13010006