The Dependence of Running Speed and Muscle Strength on the Serum Concentration of Vitamin D in Young Male Professional Football Players Residing in the Russian Federation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for Exclusion from the Study
- -
- The athlete received vitamin D supplements 30 days or less prior to first blood sampling.
- -
- The athlete suffered from acute respiratory viral infections or any other condition that resulted in absence from three or more training sessions 30 days or less prior to the examination.
- -
- The athlete could not maintain daily contact with the medical personnel distributing vitamin D3 supplements.
- -
- The athlete spent more than three days outside Moscow during the last three months.
- -
- The athlete was expelled from the academy during the study.
- -
- The athlete refused to take part in speed and power testing.
2.2. Laboratory Testing
2.3. Description of the Sprint Tests
2.4. Description of the Standing Long Jump Test
2.5. Supplementation with Vitamin D
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Porta, A.; Mady, L.J.; Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 2011, 347, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakos, S. Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Arch. Biochem. Biophys. 2012, 523, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, J.; Srai, S.K.; Biber, J.; Murer, H.; Unwin, R.J.; Debnam, E.S. Intestinal phosphate absorption and the effect of vitamin D: A comparison of rats with mice. Exp. Physiol. 2006, 91, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Castillo, L.; Korycka-Dahl, M.; DeLuca, H.F. Role of vitamin D metabolites in phosphate transport of rat intestine. J. Nutr. 1974, 104, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.M.F.; Allain, T.J. Muscle strength and vitamin D in older people. Gerontology 2006, 52, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holiack, M.F. Vitamin d-effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 2013, 5, 111–148. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2015, 96, 365–408. [Google Scholar] [CrossRef]
- Demay, M.B. Mechanism of vitamin D receptor action. Ann. N. Y. Acad. Sci. 2006, 1068, 204–213. [Google Scholar] [CrossRef]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The nonskeletal effects of vitamin D: An endocrine society scientific statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Kazantzidis, A.; Ryan, M.J.; Barber, N.; Sempos, C.T.; Durazo-Arvizu, R.A.; Jorde, R.; Grimnes, G.; Eiriksdottir, G.; Gudnason, V.; et al. Seasonal changes in vitamin D-effective UVB availability in Europe and associations with population serum 25-hydroxyvitamin D. Nutrients 2016, 8, 533. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Van Schoor, N.M.; Gielen, E.; Boonen, S.; Mathieu, C.; Vanderschueren, D.; Lips, P. Optimal vitamin D status: A critical analysis on the basis of evidence-based medicine. J. Clin. Endocrinol. Metab. 2013, 98, E1283–E1304. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Russell, J.; Cobley, J.N.; Owens, D.J.; Wilson, G.; Gregson, W.; Fraser, W.D.; Morton, J.P. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: Implications for skeletal muscle function. J. Sports Sci. 2013, 31, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Ksiazek, A.; Dziubek, W.; Pietraszewska, J.; Słowińska-Lisowska, M. Relationship between 25(oh)d levels and athletic performance in elite polish judoists. Biol. Sport 2018, 35, 191–196. [Google Scholar]
- Lombardi, G.; Vitale, J.A.; Logoluso, S.; Logoluso, G.; Cocco, N.; Cocco, G.; Cocco, A.; Banfi, G. Circannual rhythm of plasmatic vitamin D levels and the association with markers of psychophysical stress in a cohort of italian professional soccer players. Chronobiol. Int. 2017, 34, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.; Grantham, J.; Racinais, S.; Chalabi, H. Vitamin d deficiency is endemic in middle eastern sportsmen. Public Health Nutr. 2010, 13, 1528–1534. [Google Scholar] [CrossRef]
- Morton, J.P.; Iqbal, Z.; Drust, B.; Burgess, D.; Close, G.L.; Brukner, P.D. Seasonal variation in vitamin D status in professional soccer players of the English premier league. Appl. Physiol. Nutr. Metab. 2012, 37, 798–802. [Google Scholar] [CrossRef]
- Kopeć, A.; Solarz, K.; Majda, F.; Słowińska-Lisowska, M.; Mȩdraś, M. An evaluation of the levels of vitamin D and bone turnover markers after the summer and winter periods in polish professional soccer players. J. Hum. Kinet. 2013, 38, 135–140. [Google Scholar] [CrossRef]
- Hamilton, B.; Whiteley, R.; Farooq, A.; Chalabi, H. Vitamin d concentration in 342 professional football players and association with lower limb isokinetic function. J. Sci. Med. Sport 2014, 17, 139–143. [Google Scholar] [CrossRef]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin D and muscle function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.A.; Das, G.; Berry, J.L.; Roberts, S.A.; Rawer, R.; Adams, J.E.; Mughal, Z. Vitamin D status and muscle function in post-menarchal adolescent girls. J. Clin. Endocrinol. Metab. 2009, 94, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, U.; Gupta, N.; Kalaivani, M.; Singh, U.; Guleria, R.; Jagannathan, N.R.; Goswami, R. Effect of cholecalciferol and calcium supplementation on muscle strength and energy metabolism in vitamin D-deficient Asian indians: A randomized, controlled trial. Clin. Endocrinol. 2010, 73, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Dietrich, T.; Orav, E.J.; Hu, F.B.; Zhang, Y.; Karlson, E.W.; Dawson-Hughes, B. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥60 y. Am. J. Clin. Nutr. 2004, 80, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Gerdhem, P.; Ringsberg, K.A.M.; Obrant, K.J.; Akesson, K. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos. Int. 2005, 16, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.S.; Parker, B.A.; Capizzi, J.A.; Clarkson, P.M.; Pescatello, L.S.; White, M.C.; Thompson, P.D. 25(oh) vitamin D is associated with greater muscle strength in healthy men and women. Med. Sci. Sports Exerc. 2013, 45, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Frisch, S.; Koertke, H.; Kuhn, J.; Dreier, J.; Obermayer-Pietsch, B.; Wehr, E.; Zittermann, A. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 2011, 43, 223–225. [Google Scholar] [CrossRef]
- Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(oh)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 2011, 152, 2976–2986. [Google Scholar] [CrossRef]
- Stratos, I.; Li, Z.; Herlyn, P.; Rotter, R.; Behrendt, A.K.; Mittlmeier, T.; Vollmar, B. Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. Am. J. Pathol. 2013, 182, 895–904. [Google Scholar] [CrossRef]
- Chiang, C.M.; Ismaeel, A.; Griffis, R.B.; Weems, S. Effects of vitamin D supplementation on muscle strength in athletes: A systematic review. J. Strength Cond. Res. 2017, 31, 566–574. [Google Scholar] [CrossRef]
- Von Hurst, P.R.; Beck, K.L. Vitamin D and skeletal muscle function in athletes. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Farrokhyar, F.; Sivakumar, G.; Savage, K.; Koziarz, A.; Jamshidi, S.; Ayeni, O.R.; Peterson, D.; Bhandari, M. Effects of vitamin D supplementation on serum 25-hydroxyvitamin D concentrations and physical performance in athletes: A systematic review and meta-analysis of randomized controlled trials. Sports Med. 2017, 47, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. Vitamin d and exercise performance in professional soccer players. PLoS ONE 2014, 9, e101659. [Google Scholar] [CrossRef] [PubMed]
- Jastrzȩbska, M.; Kaczmarczyk, M.; Jastrzȩbski, Z. Effect of vitamin D supplementation on training adaptation in well-trained soccer players. J. Strength Cond. Res. 2016, 30, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Brännström, A.; Yu, J.G.; Jonsson, P.; Åkerfeldt, T.; Stridsberg, M.; Svensson, M. Vitamin D in relation to bone health and muscle function in young female soccer players. Eur. J. Sport Sci. 2017, 17, 249–256. [Google Scholar] [CrossRef]
- Fitzgerald, J.S.; Peterson, B.J.; Warpeha, J.M.; Johnson, S.C.; Ingraham, S.J. Association between vitamin D status and maximal-intensity exercise performance in junior and collegiate hockey players. J. Strength Cond. Res. 2015, 29, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr. 2005, 135, 2739S–2748S. [Google Scholar] [CrossRef]
- Carlberg, C.; Haq, A. The concept of the personal vitamin D response index. J. Steroid Biochem. Mol. Biol. 2018, 175, 12–17. [Google Scholar] [CrossRef]
- Razzaque, M.S. Magnesium: Are We Consuming Enough? Nutrients 2018, 2, 1863. [Google Scholar] [CrossRef]
- Fitzgerald, J.S.; Peterson, B.J.; Wilson, P.B.; Rhodes, G.S.; Ingraham, S.J. Vitamin D status is associated with adiposity in male ice hockey players. Med. Sci. Sports Exerc. 2014, 47, 655–661. [Google Scholar] [CrossRef]
- Freeman, J.; Wilson, K.; Spears, R.; Shalhoub, V.; Sibley, P. Performance evaluation of four 25-hydroxyvitamin D assays to measure 25-hydroxyvitamin D2. Clin. Biochem. 2015, 48, 1097–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Testing Groups | Mean Age, Years | Body Height, cm | Body Weight, kg | BMI, kg/m2 | Body Fat Mass, % | Lean Body Mass, % |
---|---|---|---|---|---|---|
Group 1 | 13.96 ± 1.4 | 171.9 ± 9.92 | 60.6 ± 9.72 | 20.4 ± 1.45 | 15.5 ± 4.14 | 56.7 ± 7.39 |
Group 2 | 14.8 ± 1.6 | 172.6 ± 10.07 | 63.5 ± 11.94 | 20.9 ± 2.05 | 15.6 ± 3.38 | 58.4 ± 1.95 |
p-Value | 0.054 | 0.827 | 0.359 | 0.266 | 0.973 | 0.567 |
Testing Groups | 5 m Sprint, Seconds | 15 m Sprint, Seconds | 30 m Sprint, Seconds | Standing Long Jump, Meters |
---|---|---|---|---|
Group 1 | 1.04 ± 0.07 | 2.49 ± 0.15 | 4.45 ± 0.28 | 2.34 ± 0.17 |
Group 2 | 1.06 ± 0.19 | 2.46 ± 0.16 | 4.38 ± 0.26 | 2.38 ± 0.18 |
p-value | 0.682 | 0.382 | 0.413 | 0.347 |
Testing Period | 5 m Sprint, Seconds | 15 m Sprint, Seconds | 30 m Sprint, Seconds | Standing Long Jump, Meters |
---|---|---|---|---|
Pre-treatment | 1.04 ± 0.07 | 2.49 ± 0.15 | 4.45 ± 0.28 | 2.34 ± 0.17 |
Post-treatment | 1.01 ± 0.06 | 2.44 ± 0.15 | 4.35 ± 0.31 | 2.36 ± 0.19 |
p-value | 0.018 | 0.001 | 0.016 | 0.330 |
Testing Period | Body Height, cm | Body Weight, kg | BMI, kg/m2 | Body Fat Mass, kg | Lean Body Mass, kg |
---|---|---|---|---|---|
Pre-treatment | 171.9 ± 9.92 | 60.6 ± 9.72 | 20.4 ± 1.45 | 15.5 ± 4.14 | 56.7 ± 7.39 |
Post-treatment | 173.3 ± 8.89 | 62.6 ± 9.66 | 20.7 ± 1.62 | 16.1 ± 4.3 | 58.18 ± 1.48 |
p-value | <0.001 | <0.001 | 0.008 | 0.247 | 0.203 |
Running Speed Tests | Statistics | Vitamin D | Height | BMI |
---|---|---|---|---|
Sprint 5 m | Pearson correlation p-value | 0.077 0.714 | −0.333 0.104 | −0.252 0.225 |
Sprint 15 m | Pearson correlation p-value | −0.043 0.84 | −0.219 0.292 | −0.119 0.571 |
Sprint 30 m | Pearson correlation p-value | 0.125 0.553 | 0.101 0.63 | −0.219 0.292 |
Weight | Lean body mass | |||
Sprint 5 m | Spearman correlation p-value | −0.369 0.07 | 0.389 0.05 | |
Sprint 15 m | Spearman correlation p-value | −0.257 0.215 | −0.17 0.933 | |
Sprint 30 m | Spearman correlation p-value | −0.05 0.812 | 0.213 0.297 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezuglov, E.; Tikhonova, A.; Zueva, A.; Khaitin, V.; Lyubushkina, A.; Achkasov, E.; Waśkiewicz, Z.; Gerasimuk, D.; Żebrowska, A.; Nikolaidis, P.T.; et al. The Dependence of Running Speed and Muscle Strength on the Serum Concentration of Vitamin D in Young Male Professional Football Players Residing in the Russian Federation. Nutrients 2019, 11, 1960. https://doi.org/10.3390/nu11091960
Bezuglov E, Tikhonova A, Zueva A, Khaitin V, Lyubushkina A, Achkasov E, Waśkiewicz Z, Gerasimuk D, Żebrowska A, Nikolaidis PT, et al. The Dependence of Running Speed and Muscle Strength on the Serum Concentration of Vitamin D in Young Male Professional Football Players Residing in the Russian Federation. Nutrients. 2019; 11(9):1960. https://doi.org/10.3390/nu11091960
Chicago/Turabian StyleBezuglov, Eduard, Aleksandra Tikhonova, Anastasiya Zueva, Vladimir Khaitin, Anastasiya Lyubushkina, Evgeny Achkasov, Zbigniew Waśkiewicz, Dagmara Gerasimuk, Aleksandra Żebrowska, Pantelis Theodoros Nikolaidis, and et al. 2019. "The Dependence of Running Speed and Muscle Strength on the Serum Concentration of Vitamin D in Young Male Professional Football Players Residing in the Russian Federation" Nutrients 11, no. 9: 1960. https://doi.org/10.3390/nu11091960