You are currently viewing a new version of our website. To view the old version click .
Remote Sensing
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

18 December 2025

Geometric Condition Assessment of Traffic Signs Leveraging Sequential Video-Log Images and Point-Cloud Data

,
,
,
and
1
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China
2
Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510530, China
3
Transportation Development Center, Zhengzhou 450047, China
*
Author to whom correspondence should be addressed.

Abstract

Traffic signs exposed to long-term outdoor conditions frequently exhibit deformation, inclination, or other forms of physical damage, highlighting the need for timely and reliable anomaly assessment to support road safety management. While point-cloud data provide accurate three-dimensional geometric information, their sparse distribution and lack of appearance cues make traffic sign extraction challenging in complex environments. High-resolution sequential video-log images captured from multiple viewpoints offer complementary advantages by providing rich color and texture information. In this study, we propose an integrated traffic sign detection and assessment framework that combines video-log images and mobile-mapping point clouds to enhance both accuracy and robustness. A dedicated YOLO-SIGN network is developed to perform precise detection and multi-view association of traffic signs across sequential images. Guided by these detections, a frustum-based point-cloud extraction strategy with seed-point density growing is introduced to efficiently isolate traffic sign panels and supporting poles. The extracted structures are then used for geometric parameterization and damage assessment, including inclination, deformation, and rotation. Experiments on 35 simulated scenes and nine real-world road scenarios demonstrate that the proposed method can reliably extract and evaluate traffic sign conditions in diverse environments. Furthermore, the YOLO-SIGN network achieves a localization precision of 91.16% and a classification mAP of 84.64%, outperforming YOLOv10s by 1.7% and 8.7%, respectively, while maintaining a reduced number of parameters. These results confirm the effectiveness and practical value of the proposed framework for large-scale traffic sign monitoring.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.