Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Fire Event: Timeline and Characteristics
2.3. Field-Validated Reference Data
2.4. Sentinel-1 Input Data
2.5. SAR-Based Algorithm for Detecting Fire-Induced Forest Loss
2.6. Validation Procedures and Accuracy Metrics
- True Positives (TP): Pixels identified as burned by both BOCD and dNBR.
- False Positives (FP): Pixels detected as burned by BOCD but not by dNBR.
- False Negatives (FN): Pixels marked as burned by dNBR but missed by BOCD.
- True Negatives (TN): Pixels classified as unburned by both sensors.
3. Results
3.1. BOCD Results
3.2. Fire Detection Using Optical Products
3.2.1. MODIS and VIIRS Burned Area and Active Fire Products
3.2.2. Sentinel-2 dNBR Analysis for Fire Severity
3.3. Spatial & Temporal Performance
4. Discussion
4.1. Performance of Single-Pol and -BOCD Algorithms
4.2. Comparing SAR-Based and Optical Detection Methods
4.3. Limitations of pol-BOCD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatti, L.; Cunha, C.; Marani, L.; Cassol, H.; Messias, C.; Arai, E.; Denning, A.; Soler, L.; Almeida, C.; Setzer, A.; et al. Increased Amazon carbon emissions mainly from decline in law enforcement. Nature 2023, 621, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Zuazo, V.D.; Rodriguez, C.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Bottino, M.; Nobre, P.; Giarolla, E.; Silva, M.; Capistrano, V.; Malagutti, M.; Tamaoki, J.; Oliveira, B.; Nobre, C. Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Sci. Rep. 2024, 14, 5131. [Google Scholar] [CrossRef]
- Asner, G.P.; Loarie, S.; Heyder, U. Combined effects of climate and land-use change on the future of humid tropical forests. Conserv. Lett. 2010, 3, 395–403. [Google Scholar] [CrossRef]
- Leite-Filho, A.; Pontes, V.; Costa, M. Effects of Deforestation on the Onset of the Rainy Season and the Duration of Dry Spells in Southern Amazonia. J. Geophys. Res. Atmos. 2019, 124, 5268–5281. [Google Scholar] [CrossRef]
- Smith, C.; Baker, J.; Spracklen, D. Tropical deforestation causes large reductions in observed precipitation. Nature 2023, 615, 270–275. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. J. Geophys. Res. Biogeosciences 2012, 117, G01036. [Google Scholar] [CrossRef]
- Nepstad, D.; Klink, C.; Uhl, C.; Guimarães Vieira, I.; Lefebvre, P.; Pedlowski, M.; Matricardi, E.; Negreiros, G.; Brown, F.; Amaral, E.; et al. Land-use in Amazonia and the cerrado of Brazil. Ciência Cult. 1997, 49, 73–86. [Google Scholar]
- Chen, Y.; Velicogna, I.; Famiglietti, J.S.; Randerson, J.T. Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J. Geophys. Res. Biogeosciences 2013, 118, 495–504. [Google Scholar] [CrossRef]
- Aragão, L.E.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Junior, C.H.L.S.; Arai, E.; Aguiar, A.P.D.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Tavares, P.A.; Ferreira, J.; Silva, C.V.J.; Berenguer, E.; Barlow, J. Exploring the Role of Deforestation and Cropland Expansion in Driving a Fire-Transition in the Brazilian Amazon. Land 2022, 11, 2274. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.; Heilman, W. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. For. Ecol. Manag. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- Faria, B.D.; Marano, G.; Piponiot, C.; Silva, C.; Dantas, V.; Rattis, L.; Rech, A.; Collalti, A. Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. Forests 2020, 12, 8. [Google Scholar] [CrossRef]
- Balch, J.; Brando, P.; Nepstad, D.; Coe, M.; Silvério, D.; Massad, T.; Davidson, E.; Lefebvre, P.; Oliveira-Santos, C.; Silva, W.; et al. The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience 2015, 65, 893–905. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Ban, Y. Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models. ISPRS J. Photogramm. Remote Sens. 2023, 196, 228–240. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; Werf, G.; San, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Roy, D.; Boschetti, L.; Trigg, S. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.; Quayle, B.; Justice, C. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Quintano, C.; Fernandez-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Crowley, M.; Cardille, J.; White, J.; Wulder, M. Multi-sensor, multi-scale, Bayesian data synthesis for mapping within-year wildfire progression. Remote Sens. Lett. 2018, 10, 302. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Theron, A.; Vhengani, L.; Kemp, J. A Simple Normalized Difference Approach to Burnt Area Mapping Using Multi-Polarisation C-Band SAR. Remote Sens. 2017, 9, 764. [Google Scholar] [CrossRef]
- Tanase, M.; Santoro, M.; Riva, J.; Perez-Cabello, F.; Toan, T.L. Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn Severity in Mediterranean Pine Forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663–3675. [Google Scholar] [CrossRef]
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Ballère, M.; Koleck, T.; Le Toan, T. Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sens. 2018, 10, 1250. [Google Scholar] [CrossRef]
- Mermoz, S.; Bouvet, A.; Koleck, T.; Ballère, M.; Le Toan, T. Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data. Remote Sens. 2021, 13, 4877. [Google Scholar] [CrossRef]
- Doblas, J.; Reis, M.S.; Belluzzo, A.P.; Quadros, C.B.; Moraes, D.R.V.; Almeida, C.A.; Maurano, L.E.P.; Carvalho, A.F.A.; Sant’Anna, S.J.S.; Shimabukuro, Y.E. DETER-R: An Operational Near-Real Time Tropical Forest Disturbance Warning System Based on Sentinel-1 Time Series Analysis. Remote Sens. 2022, 14, 3658. [Google Scholar] [CrossRef]
- Mullissa, A.; Saatchi, S.; Silva, R.; Erickson, T.; Provost, N.; Osborn, F.; Ashary, A.; Moon, V.; Melling, D. LUCA: A Sentinel-1 SAR-Based Global Forest Land Use Change Alert. Remote Sens. 2024, 16, 2151. [Google Scholar] [CrossRef]
- Imperatore, P.; Azar, R.; Calò, F.; Stroppiana, D.; Brivio, P.; Lanari, R.; Pepe, A. Effect of the Vegetation Fire on Backscattering: An Investigation Based on Sentinel-1 Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4478–4492. [Google Scholar] [CrossRef]
- Belenguer-Plomer, M.; Tanase, M.; Fernandez-Carrillo, A.; Chuvieco, E. Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sens. Environ. 2019, 233, 111345. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.; Wulder, M. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Jimeno-Llorente, L.; Marcos, E.; Fernandez-Guisuraga, J.M. The Effects of Fire Severity on Vegetation Structural Complexity Assessed Using SAR Data Are Modulated by Plant Community Types in Mediterranean Fire-Prone Ecosystems. Fire 2023, 6, 450. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; Aponte, C.; de la Riva, J. Polarimetric Properties of Burned Forest Areas at C- and L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 267–276. [Google Scholar] [CrossRef]
- Belenguer-Plomer, M.; Chuvieco, E.; Tanase, M. Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean Burned Areas. Remote Sens. 2019, 11, 2661. [Google Scholar] [CrossRef]
- Bottani, M.; Ferro-Famil, L.; Doblas, J.; Mermoz, S.; Bouvet, A.; Koleck, T. Advanced Bayesian Method for Timely Small-Scale Forest Loss Detection in the Brazilian Amazon and Cerrado with Sentinel-1 Time-Series. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-3-2024, 43–49. [Google Scholar] [CrossRef]
- Bottani, M.; Ferro-Famil, L. Bayesian Approach for Deforestation Detection from Sentinel-1 Polarimetric SAR Time Series. In Proceedings of the GRETSI 2025, Strasbourg, France, 25–29 August 2025. [Google Scholar]
- Cancio, A.; Guerrero-Moreno, M.; da Silva, E.C.; Oliveira, F.A.; Dias-Silva, K.; Koura Jr, J.F.; Vieira, T.A.; Calvao, L.; Juen, L.; Oliveira-Junior, J.M.B. The impacts of fire use in the Brazilian Amazon: A bibliometric analysis. Int. J. Wildland Fire 2025, 34, WF24182. [Google Scholar] [CrossRef]
- Veríssimo, A.; Barreto, P.; Mattos, M.; Tarifa, R.; Uhl, C. Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: The case of Paragominas. For. Ecol. Manag. 1992, 55, 169–199. [Google Scholar] [CrossRef]
- Nunes, S.; Barlow, J.; Gardner, T.; Siqueira, J.; Sales, M.; Jr, C.S. A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environ. Conserv. 2014, 1, 193–203. [Google Scholar] [CrossRef]
- Tritsch, I.; Sist, P.; Narvaes, I.; Mazzei, L.; Blanc, L.; Bourgoin, C.; Cornu, G.; Gond, V. Multiple Patterns of Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil. Forests 2016, 7, 315. [Google Scholar] [CrossRef]
- Mattos, M.; Uhl, C. Economic and ecological perspectives on ranching in the Eastern Amazon. World Dev. 1994, 22, 145–158. [Google Scholar] [CrossRef]
- Toniolo, A.; Uhl, C. Economic and ecological perspectives on agriculture in the Eastern Amazon. World Dev. 1995, 23, 959–973. [Google Scholar] [CrossRef]
- Piketty, M.; Poccard-Chapuis, R.; Drigo, I.; Coudel, E.; Plassin, S.; Laurent, F.; Thalês, M. Multi-level Governance of Land Use Changes in the Brazilian Amazon: Lessons from Paragominas, State of Pará. Forests 2015, 6, 1516–1536. [Google Scholar] [CrossRef]
- Viana, C.; Coudel, E.; Barlow, J.; Ferreira, J.; Gardner, T.; Parry, L. How Does Hybrid Governance Emerge? Role of the Elite in Building a Green Municipality in the Eastern Brazilian Amazon. Environ. Policy Gov. 2016, 26, 337–350. [Google Scholar] [CrossRef]
- Uhl, C.; Buschbacher, R.J.; Serrão, E.A.S. Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. J. Ecol. 1988, 76, 663–681. [Google Scholar] [CrossRef]
- Osis, R.; Laurent, F.; René, P.C. Spatial determinants and future land use scenarios of Paragominas municipality, an old agricultural frontier in Amazonia. J. Land Use Sci. 2019, 14, 258–279. [Google Scholar] [CrossRef]
- Laurent, F.; René, P.C.; Plassin, S.; Martinez, G. Soil texture derived from topography in North-eastern Amazonia. J. Maps 2016, 13, 109–115. [Google Scholar] [CrossRef]
- Mistry, J.; Bilbao, B.; Berardi, A. Community owned solutions for fire management in tropical ecosystems: Case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Biol. Sci. 2016, 371, 20150174. [Google Scholar] [CrossRef] [PubMed]
- Maclean, K.; Hankins, D.L.; Christianson, A.C.; Oliveras, I.; Bilbao, B.A.; Costello, O.; Langer, E.; Robinson, C.J. Revitalising Indigenous cultural fire practice: Benefits and partnerships. Trends Ecol. Evol. 2023, 38, 899–902. [Google Scholar] [CrossRef]
- Adams, R.P.; MacKay, D.J. Bayesian Online Changepoint Detection. arXiv 2007, arXiv:0710.3742. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.; Humber, M.; Justice, C. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Arino, O.; Casadio, S.; Serpe, D. Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens. Environ. 2012, 116, 226–238. [Google Scholar] [CrossRef]
dNBR: Burned | dNBR: Non-Burned | |
---|---|---|
-BOCD: Burned | 75.4% | 2.1% |
-BOCD: Non-burned | 9.7% | 12.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottani, M.; Ferro-Famil, L.; Poccard-Chapuis, R.; Polidori, L. Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil. Remote Sens. 2025, 17, 2822. https://doi.org/10.3390/rs17162822
Bottani M, Ferro-Famil L, Poccard-Chapuis R, Polidori L. Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil. Remote Sensing. 2025; 17(16):2822. https://doi.org/10.3390/rs17162822
Chicago/Turabian StyleBottani, Marta, Laurent Ferro-Famil, René Poccard-Chapuis, and Laurent Polidori. 2025. "Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil" Remote Sensing 17, no. 16: 2822. https://doi.org/10.3390/rs17162822
APA StyleBottani, M., Ferro-Famil, L., Poccard-Chapuis, R., & Polidori, L. (2025). Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil. Remote Sensing, 17(16), 2822. https://doi.org/10.3390/rs17162822