Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,177)

Search Parameters:
Keywords = time series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 723 KiB  
Article
Multivariate Modeling of Some Datasets in Continuous Space and Discrete Time
by Rigele Te and Juan Du
Entropy 2025, 27(8), 837; https://doi.org/10.3390/e27080837 (registering DOI) - 6 Aug 2025
Abstract
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. [...] Read more.
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. In this work, we propose several classes of multivariate spatio-temporal covariance matrix functions to model underlying stochastic processes whose discrete temporal margins correspond to well-known autoregressive and moving average (ARMA) models. We derive sufficient and/or necessary conditions under which these functions yield valid covariance matrices. By leveraging established methodologies from time series analysis and spatial statistics, the proposed models are straightforward to identify and fit in practice. Finally, we demonstrate the utility of these multivariate covariance functions through an application to Kansas weather data, using co-kriging for prediction and comparing the results to those obtained from traditional spatio-temporal models. Full article
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 (registering DOI) - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

20 pages, 2612 KiB  
Article
Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM
by Xiaoqing Zhou, Xiaoran Ma and Haifeng Wang
Processes 2025, 13(8), 2482; https://doi.org/10.3390/pr13082482 (registering DOI) - 6 Aug 2025
Abstract
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the [...] Read more.
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the Particle Optimization Algorithm (POA) and Variational Mode Decomposition (VMD) with the Long Short-Term Memory (LSTM) network. First, POA is employed to optimize VMD by adaptively determining the optimal parameter combination [k, α], enabling the decomposition of the original PM2.5 time series into subcomponents while reducing data noise. Subsequently, an LSTM model is constructed to predict each subcomponent individually, and the predictions are aggregated to derive hourly PM2.5 concentration forecasts. Empirical analysis using datasets from Beijing, Tianjin, and Tangshan demonstrates the following key findings: (1) LSTM outperforms traditional machine learning models in time series forecasting. (2) The proposed model exhibits superior effectiveness and robustness, achieving optimal performance metrics (e.g., MAE: 0.7183, RMSE: 0.8807, MAPE: 4.01%, R2: 99.78%) in comparative experiments, as exemplified by the Beijing dataset. (3) The integration of POA with serial decomposition techniques effectively handles highly volatile and nonlinear data. This model provides a novel and reliable tool for PM2.5 concentration prediction, offering significant benefits for governmental decision-making and public awareness. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

26 pages, 2638 KiB  
Article
How Explainable Really Is AI? Benchmarking Explainable AI
by Giacomo Bergami and Oliver Robert Fox
Logics 2025, 3(3), 9; https://doi.org/10.3390/logics3030009 (registering DOI) - 6 Aug 2025
Abstract
This work contextualizes the possibility of deriving a unifying artificial intelligence framework by walking in the footsteps of General, Explainable, and Verified Artificial Intelligence (GEVAI): by considering explainability not only at the level of the results produced by a specification but also considering [...] Read more.
This work contextualizes the possibility of deriving a unifying artificial intelligence framework by walking in the footsteps of General, Explainable, and Verified Artificial Intelligence (GEVAI): by considering explainability not only at the level of the results produced by a specification but also considering the explicability of the inference process as well as the one related to the data processing step, we can not only ensure human explainability of the process leading to the ultimate results but also mitigate and minimize machine faults leading to incorrect results. This, on the other hand, requires the adoption of automated verification processes beyond system fine-tuning, which are essentially relevant in a more interconnected world. The challenges related to full automation of a data processing pipeline, mostly requiring human-in-the-loop approaches, forces us to tackle the framework from a different perspective: while proposing a preliminary implementation of GEVAI mainly used as an AI test-bed having different state-of-the-art AI algorithms interconnected, we propose two other data processing pipelines, LaSSI and EMeriTAte+DF, being a specific instantiation of GEVAI for solving specific problems (Natural Language Processing, and Multivariate Time Series Classifications). Preliminary results from our ongoing work strengthen the position of the proposed framework by showcasing it as a viable path to improve current state-of-the-art AI algorithms. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

20 pages, 1925 KiB  
Article
Beyond Polarity: Forecasting Consumer Sentiment with Aspect- and Topic-Conditioned Time Series Models
by Mian Usman Sattar, Raza Hasan, Sellappan Palaniappan, Salman Mahmood and Hamza Wazir Khan
Information 2025, 16(8), 670; https://doi.org/10.3390/info16080670 - 6 Aug 2025
Abstract
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating [...] Read more.
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating rich contextual information from text. Using state-of-the-art transformer models on the Sentiment140 dataset, our framework extracts three concurrent signals from each tweet: sentiment polarity, aspect-based scores (e.g., ‘price’ and ‘service’), and topic embeddings. These features are aggregated into a daily multivariate time series. We then employ a SARIMAX model to forecast future sentiment, using the extracted aspect and topic data as predictive exogenous variables. Our results, validated on the historical Sentiment140 Twitter dataset, demonstrate the framework’s superior performance. The proposed multivariate model achieved a 26.6% improvement in forecasting accuracy (RMSE) over a traditional univariate ARIMA baseline. The analysis confirmed that conversational aspects like ‘service’ and ‘quality’ are statistically significant predictors of future sentiment. By leveraging the contextual drivers of conversation, the MFSF framework provides a more accurate and interpretable tool for businesses and policymakers to proactively monitor and anticipate shifts in public opinion. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

9280 KiB  
Proceeding Paper
Dynamical Modeling of Floods Using Surface Water Level Time Series
by Johan S. Duque, Jorge Zapata, Lucia de Leon, Alexander Gutierrez and Leonardo Santos
Eng. Proc. 2025, 101(1), 13; https://doi.org/10.3390/engproc2025101013 - 5 Aug 2025
Abstract
We present a dynamical systems approach to modeling nonlinear flood dynamics using 20 years of water level data from Durazno, Uruguay. Flood events are identified, and their periodicity and temporal distribution are analyzed in relation to rain gauge precipitation. Phase space reconstruction enables [...] Read more.
We present a dynamical systems approach to modeling nonlinear flood dynamics using 20 years of water level data from Durazno, Uruguay. Flood events are identified, and their periodicity and temporal distribution are analyzed in relation to rain gauge precipitation. Phase space reconstruction enables data-driven neural network modeling and quantification of the relationship between water level and soil moisture. Bifurcation diagrams define basin-specific flood thresholds, offering a mechanistic framework for improved flood forecasting and risk assessment. Full article
Show Figures

Figure 1

29 pages, 3268 KiB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
23 pages, 85184 KiB  
Article
MB-MSTFNet: A Multi-Band Spatio-Temporal Attention Network for EEG Sensor-Based Emotion Recognition
by Cheng Fang, Sitong Liu and Bing Gao
Sensors 2025, 25(15), 4819; https://doi.org/10.3390/s25154819 - 5 Aug 2025
Abstract
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs [...] Read more.
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs a 3D tensor to encode band–space–time correlations of sensor data, explicitly modeling frequency-domain dynamics and spatial distributions of EEG sensors across brain regions. A multi-scale CNN-Inception module extracts hierarchical spatial features via diverse convolutional kernels and pooling operations, capturing localized sensor activations and global brain network interactions. Bi-directional GRUs (BiGRUs) model temporal dependencies in sensor time-series, adept at capturing long-range dynamic patterns. Multi-head self-attention highlights critical time windows and brain regions by assigning adaptive weights to relevant sensor channels, suppressing noise from non-contributory electrodes. Experiments on the DEAP dataset, containing multi-channel EEG sensor recordings, show that MB-MSTFNet achieves 96.80 ± 0.92% valence accuracy, 98.02 ± 0.76% arousal accuracy for binary classification tasks, and 92.85 ± 1.45% accuracy for four-class classification. Ablation studies validate that feature fusion, bidirectional temporal modeling, and multi-scale mechanisms significantly enhance performance by improving feature complementarity. This sensor-driven framework advances affective computing by integrating spatio-temporal dynamics and multi-band interactions of EEG sensor signals, enabling efficient real-time emotion recognition. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 2669 KiB  
Article
Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery
by Luca Viale, Alessandro Paolo Daga, Ilaria Ronchi and Salvatore Caronia
Machines 2025, 13(8), 688; https://doi.org/10.3390/machines13080688 - 5 Aug 2025
Abstract
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. [...] Read more.
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation. Full article
Show Figures

Figure 1

22 pages, 5921 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

23 pages, 4325 KiB  
Article
Groundwater Level Estimation Using Improved Transformer Model: A Case Study of the Yellow River Basin
by Tianming Zhou, Chun Fu, Yezhong Liu and Libin Xiang
Water 2025, 17(15), 2318; https://doi.org/10.3390/w17152318 - 4 Aug 2025
Abstract
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer [...] Read more.
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer deep learning model to estimate groundwater levels, with a benchmark comparison against the long short-term memory (LSTM) model. These models were applied to estimate groundwater levels in the Yellow River Basin, where approximately 1100 monitoring wells are located. Monthly average groundwater level data from the period 2018–2023 were collected from these wells. The two models were used to estimate groundwater levels for the period 2003–2017 by incorporating remote sensing information. The Transformer model was enhanced to simultaneously capture features from both historical temporal data and surrounding spatial data, while automatically enhancing key features, effectively improving estimation accuracy and robustness. At the basin-averaged scale, the enhanced Transformer model outperformed the LSTM model: R2 increased by approximately 17.5%, while RMSE and MAE decreased by approximately 12.4% and 10.9%, respectively. The proportion of poorly predicted samples decreased by an average of approximately 12.1%. The estimation model established in this study contributes to improving the quantitative analysis capability of long-term groundwater level variations in the Yellow River Basin. This could be helpful for water resource development planning in this densely populated region and likely has broad applicability in other river basins. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

Back to TopTop