Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = cluster landslides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 250
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 - 1 Aug 2025
Viewed by 286
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 260
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

19 pages, 7782 KiB  
Article
Two Novel Multidimensional Data Analysis Approaches Using InSAR Products for Landslide Prone Areas
by Hamit Beran Gunce and Bekir Taner San
Appl. Sci. 2025, 15(14), 8024; https://doi.org/10.3390/app15148024 - 18 Jul 2025
Viewed by 256
Abstract
Successfully detecting ground deformation, especially landslides, using InSAR has not always been possible. Improvements to existing InSAR tools are needed to address this issue. This study develops and evaluates two novel approaches that use multidimensional InSAR products to detect surface displacements in the [...] Read more.
Successfully detecting ground deformation, especially landslides, using InSAR has not always been possible. Improvements to existing InSAR tools are needed to address this issue. This study develops and evaluates two novel approaches that use multidimensional InSAR products to detect surface displacements in the landslide-prone region of Büyükalan, Antalya. Multi-temporal InSAR analysis of Sentinel-1 data (2015–2020) is performed using LiCSAR–LiCSBAS, followed by two novel approaches: multi-dimensional InSAR research and analysis (MIRA) and Crosta’s InSAR application (InCROSS). Cumulative LOS velocity maps reveal deformation rates of −1.1 cm/year to 1.0 cm/year for descending tracks and −3.8 cm/year to 3.8 cm/year for ascending tracks. Vertical displacements range from −1.9 cm/year to 2.3 cm/year and east–west components from −2.8 cm/year to 2.9 cm/year. MIRA uses an n-Dimensional Visualizer and SVM classifier to identify deformation clusters, and InCROSS applies PCA to enhance deformation features. MIRA increases the deformation detection capacity compared to conventional InSAR products, and InCROSS integrates these products. A comparison of the results reveals 80.48% consistency between them. Overall, the integration of InSAR with statistical and multidimensional analysis significantly enhances the detection and interpretation of ground deformation patterns in landslide-prone areas. Full article
Show Figures

Figure 1

35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 446
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

27 pages, 6169 KiB  
Article
Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
by Hua Xia, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang and Hongxia Luo
Land 2025, 14(7), 1472; https://doi.org/10.3390/land14071472 - 15 Jul 2025
Viewed by 261
Abstract
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address [...] Read more.
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities. Full article
Show Figures

Figure 1

25 pages, 12949 KiB  
Article
Enhanced Landslide Visualization and Trace Identification Using LiDAR-Derived DEM
by Jie Lv, Chengzhuo Lu, Minjun Ye, Yuting Long, Wenbing Li and Minglong Yang
Sensors 2025, 25(14), 4391; https://doi.org/10.3390/s25144391 - 14 Jul 2025
Viewed by 455
Abstract
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR [...] Read more.
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR technology. Firstly, a high-precision LiDAR-DEM is constructed using preprocessed LiDAR point cloud data, and visual images are generated using visualization methods, including hillshade, slope, openness, and Sky View Factor (SVF). Secondly, pixel-level image fusion methods are applied to the visual images to obtain enhanced display images of the landslide terrain. Finally, a threshold is determined through a fractal model, and the Mean-Shift algorithm is utilized for clustering and denoising to extract landslide traces. The results indicate that employing pixel-level image fusion technology, which combines the advantageous features of multiple terrain visualization images, effectively enhances the display of landslide micro-topography. Moreover, based on the enhanced display images, the fractal model and the Mean-Shift algorithm are applied for denoising to extract landslide traces. Compared to orthophotos, this method can effectively and accurately extract landslide traces. The findings of this study provide valuable references for the enhanced display and trace recognition of landslide terrain in densely vegetated areas within complex mountainous areas, thereby providing technical support for emergency investigations of landslide disasters. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 504
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

24 pages, 18258 KiB  
Article
An Integrated Approach for Emergency Response and Long-Term Prevention for Rainfall-Induced Landslide Clusters
by Wenxin Zhao, Yajun Li, Yunfei Huang, Guowei Li, Fukang Ma, Jun Zhang, Mengyu Wang, Yan Zhao, Guan Chen, Xingmin Meng, Fuyun Guo and Dongxia Yue
Remote Sens. 2025, 17(14), 2406; https://doi.org/10.3390/rs17142406 - 12 Jul 2025
Viewed by 314
Abstract
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation [...] Read more.
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation for rainfall-induced shallow landslides. The workflow includes (1) rapid landslide detection based on time-series image fusion and threshold segmentation on the Google Earth Engine (GEE) platform; (2) numerical simulation of landslide runout using the R.avaflow model; (3) landslide susceptibility assessment based on event-driven inventories and machine learning; and (4) delineation of high-risk slopes by integrating simulation outputs, susceptibility results, and exposed elements. Applied to Qugaona Township in Zhouqu County, Bailong River Basin, the framework identified 747 landslides. The R.avaflow simulations captured the spatial extent and depositional features of landslides, assisting post-disaster operations. The Gradient Boosting-based susceptibility model achieved an accuracy of 0.870, with 8.0% of the area classified as highly susceptible. In Cangan Village, high-risk slopes were delineated, with 31.08%, 17.85%, and 22.42% of slopes potentially affecting buildings, farmland, and roads, respectively. The study recommends engineering interventions for these areas. Compared with traditional methods, this approach demonstrates greater applicability and provides a more comprehensive basis for managing rainfall-induced landslide hazards. Full article
Show Figures

Figure 1

21 pages, 1323 KiB  
Article
Disaster Chain Evolution and Risk Mitigation in Non-Coal Underground Mines with Fault Zones: A Complex Network Approach
by Songtao Yu, Yuxian Ke, Qian Kang, Wenzhe Jin, Haifeng Zhong, Danyan Cheng, Fading Wu and Hongwei Deng
Sustainability 2025, 17(12), 5520; https://doi.org/10.3390/su17125520 - 16 Jun 2025
Viewed by 374
Abstract
The prevention and control of disasters in underground mines is a key task to ensure sustainable mining production and the development of society. The disaster chain brings cascading and clustering characteristics to disasters and leads to the expansion of their impacts and losses. [...] Read more.
The prevention and control of disasters in underground mines is a key task to ensure sustainable mining production and the development of society. The disaster chain brings cascading and clustering characteristics to disasters and leads to the expansion of their impacts and losses. It brings great difficulties to disaster prevention and control. This paper focuses on the disaster chain of a non-coal underground mine. It analyzes disaster events triggered by artificial mining activities based on a literature review, expert investigation, and field research. Subsequently, it constructs a complex network model of disaster chains containing 44 disaster nodes and 136 connecting edges. Then it performed a quantitative analysis of the complex network model, and studied complex network model parameters including degree, number of subnets, intermediate centrality, node importance, average path length, edge betweenness, connectivity, and edge vulnerability. On that basis, this paper reveals that the top five key nodes of the disaster chain are surface subsidence (H4), industrial site destruction (H7), well flooding (H21), equipment damage (H8), and living area damage (H11). It also reveals that the top five key edges of the disaster chain are mine water inrush (H6)→well flooding (H21), surface subsidence (H4)→industrial site destruction (H7), underground space failure (H3)→industrial site destruction (H7), gob collapse (H2)→surface subsidence (H4), and gob collapse (H2)→landslide (H5). Finally, this paper proposes specific chain-breaking disaster mitigation measures. Implementing these actions can play a pivotal role in mitigating the impact of mine disasters, preserving lives, and sustaining regional prosperity. Full article
(This article belongs to the Special Issue Sustainable Disaster Management: Theory and Practice)
Show Figures

Figure 1

26 pages, 8541 KiB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Composite Ecological Sensitivity in the Western Sichuan Plateau, China Based on Multi-Process Coupling Mechanisms
by Defen Chen, Yuchi Zou, Junjie Zhu, Wen Wei, Dan Liang, Weilai Zhang and Wuxue Cheng
Sustainability 2025, 17(11), 4941; https://doi.org/10.3390/su17114941 - 28 May 2025
Viewed by 405
Abstract
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating [...] Read more.
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating cluster analysis, Sen–Mann–Kendall trend detection, and OWA-based scenario simulations to assess composite ecological sensitivity dynamics. The optimal geodetector was further applied to quantitatively determine the driving mechanisms underlying these sensitivity dynamics. The research showed the following findings: (1) From 2000 to 2020, the ecological environment of the Western Sichuan Plateau exhibited a phased pattern characterized by significant improvement, partial rebound, and overall stabilization. The composite ecological sensitivity grading index showed a declining trend, indicating a gradual reduction in ecological vulnerability. The effectiveness of ecological restoration projects became evident after 2010, with the area of medium- to high-sensitivity zones decreasing by 24.29% at the regional scale compared to the 2010 baseline. (2) The spatial pattern exhibited a gradient-decreasing characteristic from west to east. Scenario simulations under varying decision-making behaviors prioritized Jiuzhaigou, Xiaojin, Jinchuan, Danba, and Yajiang counties as ecologically critical. (3) Driving force analysis revealed a marked increase in the explanatory power of freeze-thaw erosion, with its q-value rising from 0.49 to 0.80. Moreover, its synergistic effect with landslide disasters spans 74.19% of county-level units. Dominant drivers ranked: annual temperature range (q = 0.32) > distance to faults (q = 0.17) > slope gradient (q = 0.16), revealing a geomorphic-climatic-tectonic interactive mechanism. This study provided methodological innovations and decision-making support for sustainable environmental development in plateau transitional zones. Full article
Show Figures

Figure 1

24 pages, 34699 KiB  
Article
The Study on Landslide Hazards Based on Multi-Source Data and GMLCM Approach
by Zhifang Zhao, Zhengyu Li, Penghui Lv, Fei Zhao and Lei Niu
Remote Sens. 2025, 17(9), 1634; https://doi.org/10.3390/rs17091634 - 5 May 2025
Viewed by 800
Abstract
The southwest region of China is characterized by numerous rugged mountains and valleys, which create favorable conditions for landslide disasters. The landslide-influencing factors show different sensitivities regionally, which induces the occurrence of disasters to different degrees, especially in small sample areas. This study [...] Read more.
The southwest region of China is characterized by numerous rugged mountains and valleys, which create favorable conditions for landslide disasters. The landslide-influencing factors show different sensitivities regionally, which induces the occurrence of disasters to different degrees, especially in small sample areas. This study constructs a framework for the identification, analysis, and evaluation of landslide hazards in complex mountainous regions within small sample areas. This study utilizes small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technology and high-resolution optical imagery for a comprehensive interpretation to identify landslide hazards. A geodetector is employed to analyze disaster-inducing factors, and machine-learning models such as random forest (RF), gradient boosting decision tree (GBDT), categorical boosting (CatBoost), logistic regression (LR), and stacking ensemble strategies (Stacking) are applied for landslide sensitivity evaluation. GMLCM stands for geodetector–machine-learning-coupled modeling. The results indicate the following: (1) 172 landslide hazards were identified, primarily concentrated along the banks of the Lancang River. (2) A geodetector analysis shows that the key disaster-inducing factors for landslides include a digital elevation model (DEM) (1321–1857 m), rainfall (1181–1290 mm/a), the distance from roads (0–1285 m), and geological rock formation (soft rock formation). (3) Based on the application of the K-means clustering algorithm and the Bayesian optimization algorithm, the GD-CatBoost model shows excellent performance. High-sensitivity zones were predominantly concentrated along the Lancang River, accounting for 24.2% in the study area. The method for identifying landslide hazards and small-sample sensitivity evaluation can provide guidance and insights for landslide monitoring and harnessing in similar geological environments. Full article
Show Figures

Figure 1

21 pages, 5407 KiB  
Article
Quantification and Analysis of Factors Influencing Territorial Spatial Conflicts in the Gully Region of the Loess Plateau: A Case Study of Qingyang City, Gansu Province, China
by Meijuan Zhang and Xianglong Tang
Sustainability 2025, 17(8), 3552; https://doi.org/10.3390/su17083552 - 15 Apr 2025
Cited by 1 | Viewed by 514
Abstract
The gullied Loess Plateau, a region characterized by the overlapping of ecological fragility and energy abundance in China, requires urgent analysis of its territorial spatial conflict mechanisms to harmonize human–environment relationships. This study integrated multi-temporal remote sensing data (1990–2020) to develop a Comprehensive [...] Read more.
The gullied Loess Plateau, a region characterized by the overlapping of ecological fragility and energy abundance in China, requires urgent analysis of its territorial spatial conflict mechanisms to harmonize human–environment relationships. This study integrated multi-temporal remote sensing data (1990–2020) to develop a Comprehensive Spatial Conflict Index (CSCI) and applied the Optimal Parameter-based Geographical Detector (OPGD) to unravel the driving mechanisms of territorial spatial evolution in Qingyang City, Gansu Province. The results revealed that: (1) Territorial spaces exhibit a transition pattern of ecological restoration, urban expansion, and agricultural contraction. Forest and grassland ecological spaces increased by 1.42 percentage points (to 13.14%) and 1.26 percentage points (to 49.29%), respectively, while industrial-mining production spaces expanded sevenfold (0.01% to 0.08%), and agricultural production spaces decreased by 3.36 percentage points. (2) Spatial conflicts transitioned through three phases: ① A low-intensity stabilization phase (1990–2000), with 90.55% of areas under weak and moderately weak conflict (CSCI ≤ 0.4); ② A moderate conflict contraction phase (2000–2010), where weak conflict zones surged by 28.18 percentage points (13.06% → 41.24%), with moderate and moderately weak spatial conflict (0.2–0.6) decreasing by 28.27 percentage points (86.06% → 57.79%); ③ A moderately strong to strong expansion phase (2010–2020), with moderate and moderately strong conflict areas rising to 16.82%. Strong conflict zones (CSCI ≥ 0.8) expanded to 0.61%, spatially clustered in the Xifeng urban area and the Malian–Pu River corridor, showing significant positive correlations with gully density (>3.5 km∙km−2) and nighttime light index (NL). (3) The interaction between NDVI and land use intensity (LUI) dominated conflict patterns (q = 0.2583). In northern energy development zones (Huanxian County), LUI and precipitation (PRE) synergistically intensified landslide risks, while facility agriculture in central plateau farmlands (Ningxian County) triggered groundwater overexploitation. The coupling of road density (RND) and population (POP) factors (q = 0.1892) formed a transportation–population axial belt compression. Policy interventions exhibited spatial heterogeneity: the Grain-for-Green Program increased weak conflict zones by 28.18 percentage points, whereas wind power development in the Huanxian–Huachi northern belt escalated moderately strong to strong conflict zones by 3.6 percentage points. A three-dimensional governance framework integrating geomorphological adaptation, development phasing, and ecological compensation is proposed to optimize territorial spatial planning in the gullied Loess Plateau. Full article
Show Figures

Figure 1

20 pages, 10355 KiB  
Article
Spatial Coupling and Resilience Differentiation Characteristics of Landscapes in Populated Karstic Areas in Response to Landslide Disaster Risk: An Empirical Study from a Typical Karst Province in China
by Huanhuan Zhou, Sicheng Wang, Mingming Gao and Guangli Zhang
Land 2025, 14(4), 847; https://doi.org/10.3390/land14040847 - 13 Apr 2025
Viewed by 389
Abstract
Landslides pose a significant threat to the safety and stability of settlements in karst regions worldwide. The long-standing tight balance state of settlement funding and infrastructure makes it difficult to allocate disaster prevention resources effectively against landslide impacts. There is an urgent need [...] Read more.
Landslides pose a significant threat to the safety and stability of settlements in karst regions worldwide. The long-standing tight balance state of settlement funding and infrastructure makes it difficult to allocate disaster prevention resources effectively against landslide impacts. There is an urgent need to fully leverage the landscape resources of karst settlements and develop landslide risk prevention strategies that balance economic viability with local landscape adaptability. However, limited research has explored the differential resilience characteristics and patterns of landslide disaster risk and settlement landscapes from a spatial coupling perspective. This study, based on landslide disaster and disaster-adaptive landscape data from a typical karst province in China, employs the frequency ratio-random forest model and weighted variance method to construct landslide disaster risk (LDR) and disaster-adaptive landscape (DAL) base maps. The spatial characteristics of urban, urban–rural transition zones, and rural settlements were analyzed, and the resilience differentiation and driving factors of the LDR–DAL coupling relationship were assessed using bivariate spatial autocorrelation and geographical detector models. The key findings are as follows: (1) Urban and peri-urban settlements exhibit a high degree of spatial congruence in the differentiation of LDR and DAL, whereas rural settlements exhibit distinct divergence; (2) the Moran’s I index for LDR and DAL is 0.0818, indicating that urban and peri-urban settlements predominantly cluster in H-L and L-L types, whereas rural settlements primarily exhibit H-H and L-H patterns; (3) slope, soil organic matter, and profile curvature are key determinants of LDR–DAL coupling, with respective influence strengths of 0.568, 0.555, and 0.384; (4) in karst settlement development, augmenting local vegetation in residual mountain areas and parks can help maintain forest ecosystem stability, effectively mitigating landslide risks and enhancing disaster-adaptive capacity by 6.77%. This study helps alleviate the contradiction between high LDR and weak disaster-adaptive resources in the karst region of Southwest China, providing strategic references for global karst settlements to enhance localized landscape adaptation to landslide disasters. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

24 pages, 12115 KiB  
Article
Deformation-Related Data Mining and Movement Patterns of the Huangtupo Landslide in the Three Gorges Reservoir Area of China
by Zhexian Liao, Jinge Wang, Gang Chen and Yizhe Li
Appl. Sci. 2025, 15(7), 4018; https://doi.org/10.3390/app15074018 - 5 Apr 2025
Viewed by 420
Abstract
Large reservoir-induced landslides pose a persistent threat to the safety of the Three Gorges Project and the Yangtze River shipping channel. A comprehensive multi-field monitoring system has been established to observe potential landslide areas within the Three Gorges Reservoir Area. The tasks of [...] Read more.
Large reservoir-induced landslides pose a persistent threat to the safety of the Three Gorges Project and the Yangtze River shipping channel. A comprehensive multi-field monitoring system has been established to observe potential landslide areas within the Three Gorges Reservoir Area. The tasks of effectively utilizing these extensive datasets and exploring the underlying correlation among various monitoring objects have become critical for understanding landslide movement patterns, assessing stability, and informing disaster prevention measures. This study focuses on the No. 1 riverside sliding mass of the Huangtupo landslide, a representative large-scale landslide in the Three Gorges Area. We specifically analyze the deformation characteristics at multiple monitoring points on the landslide surface and within underground tunnels. The analysis reveals a progressive increase in deformation rates from the rear to the front and from west to east. Representative monitoring points were selected from the front, middle, and rear sections of the landslide, along with four hydrological factors, including two reservoir water factors and two rainfall factors. These datasets were classified using the K-means clustering algorithm, while the FP-Growth algorithm was employed to uncover correlations between landslide deformation and hydrological factors. The results indicate significant spatial variability in the impacts of reservoir water levels and rainfall on the sliding mass. Specifically, reservoir water levels influence the overall deformation of the landslide, with medium-to-low water levels (146.32 to 163.23 m) or drawdowns (−18.70 to −2.16 m/month) accelerating deformation, whereas high water levels (165.37 to 175.10 m) or rising water levels (4.45 to 17.33 m/month) tend to mitigate it. In contrast, rainfall has minimal effects on the front of the landslide but significantly impacts the middle and rear areas. Given that landslide deformation is primarily driven by periodic fluctuations in reservoir water levels at the front, the movement pattern of the landslide is identified as retrogressive. The association rules derived from this study were validated using field monitoring data, demonstrating that the data mining method, in contrast to traditional statistical methods, enables the faster and more intuitive identification of reservoir-induced landslide deformation patterns and underlying mechanisms within extensive datasets. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop