Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetation Classification and Indices
2.2. ML Models
2.2.1. Deriving 3D Standard Deviation
2.2.2. Multi-Layer Perceptron (MLP) Architecture and Inputs
- RGB: These models only included RGB values as model inputs;
- RGB_SIMPLE: These models included the RGB values as well as ExR, ExG, ExB, and ExRG vegetation indices; these four indices were included because each one is relatively simple, abundant in previously published literature, and efficient to calculate;
- ALL: These models included RGB and all stable vegetation indices listed in Table 1;
- SDRGB: These models included RGB and the 3D StDev computed using the X, Y, and Z coordinates of every point within a given radius;
- XYZRGB: These models included RGB and the XYZ coordinate values for every point.
2.2.3. ML Model Evaluation
2.3. Case Study: Elwha Bluffs, Washington, USA
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model Name | Inputs | Number of Nodes per Dense Layer |
---|---|---|
rgb_8 | RGB | 8 |
rgb_8_8 | RGB | 8, 8 |
rgb_8_8_8 | RGB | 8, 8, 8 |
rgb_16 | RGB | 16 |
rgb_16_16 | RGB | 16, 16 |
rgb_16_16_16 | RGB | 16, 16, 16 |
rgb_16_32 | RGB | 16, 32 |
rgb_16_32_64 | RGB | 16, 32, 64 |
rgb_16_32_64_128 | RGB | 16, 32, 64, 128 |
rgb_16_32_64_128_256 | RGB | 16, 32, 64, 128, 256 |
rgb_16_32_64_128_256_512 | RGB | 16, 32, 64, 128, 256, 512 |
rgb_simple_8 | RGB, ExR, ExG, ExB, ExGR | 8 |
rgb_simple_8_8 | RGB, ExR, ExG, ExB, ExGR | 8, 8 |
rgb_simple_8_8_8 | RGB, ExR, ExG, ExB, ExGR | 8, 8, 8 |
rgb_simple_16 | RGB, ExR, ExG, ExB, ExGR | 16 |
rgb_simple_16_16 | RGB, ExR, ExG, ExB, ExGR | 16, 16 |
rgb_simple_16_16_16 | RGB, ExR, ExG, ExB, ExGR | 16, 16, 16 |
rgb_simple_16_32 | RGB, ExR, ExG, ExB, ExGR | 16, 32 |
rgb_simple_16_32_64 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64 |
rgb_simple_16_32_64_128 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128 |
rgb_simple_16_32_64_128_256 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128, 256 |
rgb_simple_16_32_64_128_256_512 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128, 256, 512 |
all_8 | RGB, all vegetation indices | 8 |
all_8_8 | RGB, all vegetation indices | 8, 8 |
all_8_8_8 | RGB, all vegetation indices | 8, 8, 8 |
all_16 | RGB, all vegetation indices | 16 |
all_16_16 | RGB, all vegetation indices | 16, 16 |
all_16_16_16 | RGB, all vegetation indices | 16, 16, 16 |
all_16_32 | RGB, all vegetation indices | 16, 32 |
all_16_32_64 | RGB, all vegetation indices | 16, 32, 64 |
all_16_32_64_128 | RGB, all vegetation indices | 16, 32, 64, 128 |
all_16_32_64_128_256 | RGB, all vegetation indices | 16, 32, 64, 128, 256 |
all_16_32_64_128_256_512 | RGB, all vegetation indices | 16, 32, 64, 128, 256, 512 |
sdrgb_8_8_8 | RGB, SD | 8, 8, 8 |
sdrgb_16_16_16 | RGB, SD | 16, 16, 16 |
xyzrgb_8_8_8 | RGB, XYZ | 8, 8, 8 |
xyzrgb_16_16_16 | RGB, XYZ | 16, 16, 16 |
Model | Layers | Tunable Parameters | Training | Evaluation | ||
---|---|---|---|---|---|---|
Epochs | Time (s) | TrAcc | EvAcc | |||
rgb_16 | 1 | 81 | 7 | 545 | 91.5% | 92.1% |
rgb_16_32 | 2 | 641 | 11 | 884 | 93.9% | 93.8% |
rgb_16_32_64 | 3 | 2785 | 7 | 576 | 94.0% | 93.9% |
rgb_16_32_64_128 | 4 | 11,169 | 7 | 592 | 94.0% | 93.7% |
rgb_16_32_64_128_256 | 5 | 44,321 | 7 | 592 | 94.0% | 93.9% |
rgb_16_32_64_128_256_512 | 6 | 176,161 | 7 | 621 | 94.0% | 93.9% |
rgb_simple_16 | 1 | 145 | 7 | 741 | 91.6% | 92.3% |
rgb_simple_16_32 | 2 | 705 | 7 | 700 | 94.0% | 94.0% |
rgb_simple_16_32_64 | 3 | 2849 | 7 | 749 | 94.0% | 94.0% |
rgb_simple_16_32_64_128 | 4 | 11,233 | 10 | 1075 | 94.1% | 94.1% |
rgb_simple_16_32_64_128_256 | 5 | 44,385 | 9 | 1009 | 94.1% | 94.1% |
rgb_simple_16_32_64_128_256_512 | 6 | 176,225 | 11 | 1314 | 94.1% | 94.1% |
all_16 | 1 | 241 | 11 | 1648 | 93.1% | 93.5% |
all_16_32 | 2 | 801 | 7 | 1013 | 94.0% | 94.0% |
all_16_32_64 | 3 | 2945 | 7 | 1061 | 94.0% | 94.0% |
all_16_32_64_128 | 4 | 11,329 | 10 | 1505 | 94.1% | 94.1% |
all_16_32_64_128_256 | 5 | 44,481 | 13 | 2047 | 94.2% | 94.2% |
all_16_32_64_128_256_512 | 6 | 176,321 | 9 | 1455 | 94.2% | 94.2% |
rgb_16_16 | 2 | 353 | 8 | 624 | 93.5% | 93.9% |
rgb_simple_16_16 | 2 | 417 | 7 | 724 | 93.9% | 94.0% |
all_16_16 | 2 | 513 | 7 | 1033 | 94.0% | 94.0% |
rgb_16_16_16 | 3 | 625 | 7 | 513 | 93.9% | 93.9% |
rgb_simple_16_16_16 | 3 | 689 | 7 | 742 | 94.0% | 94.0% |
all_16_16_16 | 3 | 785 | 7 | 1018 | 94.0% | 94.0% |
rgb_8_8 | 2 | 113 | 11 | 850 | 85.7% | 89.5% |
rgb_simple_8_8 | 2 | 145 | 11 | 1154 | 92.6% | 93.9% |
all_8_8 | 2 | 193 | 7 | 1037 | 92.6% | 93.9% |
rgb_8_8_8 | 3 | 185 | 7 | 536 | 93.6% | 93.8% |
rgb_simple_8_8_8 | 3 | 217 | 7 | 733 | 93.9% | 94.0% |
all_8_8_8 | 3 | 265 | 7 | 1011 | 93.6% | 94.0% |
xyzrgb_8_8_8 | 3 | 209 | 6 | 589 | 50.0% | 50.0% |
xyzrgb_16_16_16 | 3 | 673 | 6 | 585 | 50.0% | 50.0% |
sdrgb_8_8_8 | 3 | 193 | 10 | 889 | 95.1% | 95.3% |
sdrgb_16_16_16 | 3 | 641 | 11 | 967 | 95.3% | 95.3% |
References
- Limber, P.W.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A Model Ensemble for Projecting Multidecadal Coastal Cliff Retreat During the 21st Century. J. Geophys. Res. Earth Surf. 2018, 123, 1566–1589. [Google Scholar] [CrossRef]
- Wernette, P.; Houser, C. Short Communication: Evidence for Geologic Control of Rip Channels along Prince Edward Island, Canada. Phys. Geogr. 2022, 43, 145–162. [Google Scholar] [CrossRef]
- George, E.; Lunardi, B.; Smith, A.; Lehner, J.; Wernette, P.; Houser, C. Short Communication: Storm Impact and Recovery of a Beach-Dune System in Prince Edward Island. Geomorphology 2021, 384, 107721. [Google Scholar] [CrossRef]
- Wernette, P.; Shortridge, A.; Lusch, D.P.; Arbogast, A.F. Accounting for Positional Uncertainty in Historical Shoreline Change Analysis without Ground Reference Information. Int. J. Remote Sens. 2017, 38, 3906–3922. [Google Scholar] [CrossRef]
- Grottoli, E.; Biausque, M.; Rogers, D.; Jackson, D.W.T.; Cooper, J.A.G. Structure-from-Motion-Derived Digital Surface Models from Historical Aerial Photographs: A New 3D Application for Coastal Dune Monitoring. Remote Sens. 2020, 13, 95. [Google Scholar] [CrossRef]
- Wernette, P.; Houser, C.; Lehner, J.; Evans, A.; Weymer, B. Investigating the Impact of Hurricane Harvey and Driving on Beach-Dune Morphology. Geomorphology 2020, 358, 107119. [Google Scholar] [CrossRef]
- Houser, C.; Bishop, M.; Wernette, P. Short Communication: Multi-Scale Topographic Anisotropy Patterns on a Barrier Island. Geomorphology 2017, 297, 153–158. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Ritchie, A.C.; Over, J.R.; Kranenburg, C.J.; Warrick, J.A.; Brown, J.A.; Wright, C.W.; Aretxabaleta, A.L.; Zeigler, S.L.; Wernette, P.A.; et al. Sound-Side Inundation and Seaward Erosion of a Barrier Island During Hurricane Landfall. JGR Earth Surf. 2023, 128, e2022JF006934. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D Mapping Efficacy of a Drone and Terrestrial Laser Scanner over a Temperate Beach-Dune Zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Sturdivant, E.; Lentz, E.; Thieler, E.R.; Farris, A.; Weber, K.; Remsen, D.; Miner, S.; Henderson, R. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery. Remote Sens. 2017, 9, 1020. [Google Scholar] [CrossRef]
- Di Paola, G.; Minervino Amodio, A.; Dilauro, G.; Rodriguez, G.; Rosskopf, C.M. Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences 2022, 12, 353. [Google Scholar] [CrossRef]
- Anderson, S.W. Uncertainty in Quantitative Analyses of Topographic Change: Error Propagation and the Role of Thresholding. Earth Surf. Process. Landf. 2019, 44, 1015–1033. [Google Scholar] [CrossRef]
- Young, A.P. Decadal-Scale Coastal Cliff Retreat in Southern and Central California. Geomorphology 2018, 300, 164–175. [Google Scholar] [CrossRef]
- Alessio, P.; Keller, E.A. Short-Term Patterns and Processes of Coastal Cliff Erosion in Santa Barbara, California. Geomorphology 2020, 353, 106994. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Obanawa, H. Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM. Sensors 2020, 20, 3403. [Google Scholar] [CrossRef]
- Kuhn, D.; Prufer, S. Coastal Cliff Monitoring and Analysis of Mass Wasting Processes with the Application of Terrestrial Laser Scanning: A Case Study of Rugen, Germany. Geomorphology 2014, 213, 153–165. [Google Scholar] [CrossRef]
- Young, A.P.; Guza, R.T.; Matsumoto, H.; Merrifield, M.A.; O’Reilly, W.C.; Swirad, Z.M. Three Years of Weekly Observations of Coastal Cliff Erosion by Waves and Rainfall. Geomorphology 2021, 375, 107545. [Google Scholar] [CrossRef]
- Young, A.P.; Guza, R.T.; O’Reilly, W.C.; Flick, R.E.; Gutierrez, R. Short-Term Retreat Statistics of a Slowly Eroding Coastal Cliff. Nat. Hazards Earth Syst. Sci. 2011, 11, 205–217. [Google Scholar] [CrossRef][Green Version]
- Wernette, P.; Miller, I.M.; Ritchie, A.W.; Warrick, J.A. Crowd-Sourced SfM: Best Practices for High Resolution Monitoring of Coastal Cliffs and Bluffs. Cont. Shelf Res. 2022, 245, 104799. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Schmidt, K.M.; Reid, M.E.; Logan, J. Characterizing the Catastrophic 2017 Mud Creek Landslide, California, Using Repeat Structure-from-Motion (SfM) Photogrammetry. Landslides 2019, 16, 1201–1219. [Google Scholar] [CrossRef]
- Weidner, L.; van Veen, M.; Lato, M.; Walton, G. An Algorithm for Measuring Landslide Deformation in Terrestrial Lidar Point Clouds Using Trees. Landslides 2021, 18, 3547–3558. [Google Scholar] [CrossRef]
- Kogure, T. Rocky Coastal Cliffs Reinforced by Vegetation Roots and Potential Collapse Risk Caused by Sea-Level Rise. Catena 2022, 217, 106457. [Google Scholar] [CrossRef]
- Agisoft LLC Agisoft Metashape 1.8.5—Professional Edition 2020. Available online: https://www.agisoft.com/ (accessed on 1 May 2020).
- Brodu, N.; Lague, D. 3D Terrestrial Lidar Data Classification of Complex Natural Scenes Using a Multi-Scale Dimensionality Criterion: Applications in Geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef]
- Weidner, L.; Walton, G.; Kromer, R. Classification Methods for Point Clouds in Rock Slope Monitoring: A Novel Machine Learning Approach and Comparative Analysis. Eng. Geol. 2019, 263, 105326. [Google Scholar] [CrossRef]
- CloudCompare 2019. Available online: https://www.danielgm.net/cc/ (accessed on 1 May 2020).
- Buscombe, D. Doodler—A Web Application Built with Plotly/Dash for Image Segmentation with Minimal Supervision; U.S. Geological Survey Software Release: Reston, VA, USA, 2022. [Google Scholar]
- Buscombe, D.; Goldstein, E.B.; Sherwood, C.R.; Bodine, C.; Brown, J.A.; Favela, J.; Fitzpatrick, S.; Kranenburg, C.J.; Over, J.R.; Ritchie, A.C.; et al. Human-in-the-Loop Segmentation of Earth Surface Imagery. Earth Space Sci. 2022. [Google Scholar] [CrossRef]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, R.; Yang, C.; Lin, Y. Urban Vegetation Segmentation Using Terrestrial LiDAR Point Clouds Based on Point Non-Local Means Network. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102580. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; de Castro, A.I.; Torres-Sánchez, J.; Triviño-Tarradas, P.; Jiménez-Brenes, F.M.; García-Ferrer, A.; López-Granados, F. Classification of 3D Point Clouds Using Color Vegetation Indices for Precision Viticulture and Digitizing Applications. Remote Sens. 2020, 12, 317. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gobbett, D.L.; González, L.A.; Bishop-Hurley, G.J.; McGavin, S.L. A Pilot Project Combining Multispectral Proximal Sensors and Digital Camerasfor Monitoring Tropical Pastures. Biogeosciences 2016, 13, 4673–4695. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Lu, J.; Eitel, J.U.H.; Engels, M.; Zhu, J.; Ma, Y.; Liao, F.; Zheng, H.; Wang, X.; Yao, X.; Cheng, T.; et al. Improving Unmanned Aerial Vehicle (UAV) Remote Sensing of Rice Plant Potassium Accumulation by Fusing Spectral and Textural Information. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102592. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine Vision Detection Parameters for Plant Species Identification. In Proceedings of the SPIE; Meyer, G.E., DeShazer, J.A., Eds.; SPIE: Boston, MA, USA, 1998; Volume 3543, pp. 327–335. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Neto, J.C. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum—Tillage Systems; University of Nebraska: Lincoln, NE, USA, 2004. [Google Scholar]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-Based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Mao, W.; Wang, Y.; Wang, Y. Real-Time Detection of Between-Row Weeds Using Machine Vision. In Proceedings of the 2003 American Society of Agricultural and Biological Engineers, Las Vegas, NV, USA, 27–30 July 2003; American Society of Agricultural and Biological Engineers: St. Josepth, MI, USA, 2003. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Plant Species Identification, Size, and Enumeration Using Machine Vision Techniques on near-Binary Images. In Proceedings of the SPIE: The International Society for Optical Engineering; DeShazer, J.A., Meyer, G.E., Eds.; SPIE: Boston, MA, USA, 1993; pp. 208–219. [Google Scholar]
- Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-Date UAV Visible Images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Zhao, X.; Zhang, J.; Feng, J. Greenness Identification Based on HSV Decision Tree. Inf. Process. Agric. 2015, 2, 149–160. [Google Scholar] [CrossRef]
- Ventura, D.; Napoleone, F.; Cannucci, S.; Alleaume, S.; Valentini, E.; Casoli, E.; Burrascano, S. Integrating Low-Altitude Drone Based-Imagery and OBIA for Mapping and Manage Semi Natural Grassland Habitats. J. Environ. Manag. 2022, 321, 115723. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Mallet, C.; Weinmann, M. Geometric Features and Their Relevance for 3D Point Cloud Classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-1/W1, 157–164. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic Point Cloud Interpretation Based on Optimal Neighborhoods, Relevant Features and Efficient Classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Alifu, H.; Vuillaume, J.-F.; Johnson, B.A.; Hirabayashi, Y. Machine-Learning Classification of Debris-Covered Glaciers Using a Combination of Sentinel-1/-2 (SAR/Optical), Landsat 8 (Thermal) and Digital Elevation Data. Geomorphology 2020, 369, 107365. [Google Scholar] [CrossRef]
- Çelik, O.İ.; Gazioğlu, C. Coast Type Based Accuracy Assessment for Coastline Extraction from Satellite Image with Machine Learning Classifiers. Egypt. J. Remote Sens. Space Sci. 2022, 25, 289–299. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C.; Li, L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments. Remote Sens. 2022, 14, 2885. [Google Scholar] [CrossRef]
- Kestur, R.; Meenavathi, M.B. Vegetation Mapping of a Tomato Crop Using Multilayer Perceptron (MLP) Neural Network in Images Acquired by Remote Sensing from a UAV. IJCA 2018, 182, 13–17. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems 2015. Available online: https://www.tensorflow.org/ (accessed on 1 May 2020).
- Chollet, F. Others Keras 2015. Available online: https://keras.io/ (accessed on 1 May 2020).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Geisz, J.K.; Wernette, P.A.; Esselman, P.C. Classification of Lakebed Geologic Substrate in Autonomously Collected Benthic Imagery Using Machine Learning. Remote Sens. 2024, 16, 1264. [Google Scholar] [CrossRef]
- Geisz, J.K.; Wernette, P.A.; Esselman, P.C.; Morris, J.M. Autonomously Collected Benthic Imagery for Substrate Prediction, Lake Michigan 2020–2021. U.S. Geol. Surv. Data Release 2024. [Google Scholar] [CrossRef]
- Gómez-Ríos, A.; Tabik, S.; Luengo, J.; Shihavuddin, A.; Krawczyk, B.; Herrera, F. Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation. Expert Syst. Appl. 2019, 118, 315–328. [Google Scholar] [CrossRef]
- Raphael, A.; Dubinsky, Z.; Iluz, D.; Netanyahu, N.S. Neural Network Recognition of Marine Benthos and Corals. Diversity 2020, 12, 29. [Google Scholar] [CrossRef]
- Shihavuddin, A.S.M.; Gracias, N.; Garcia, R.; Gleason, A.; Gintert, B. Image-Based Coral Reef Classification and Thematic Mapping. Remote Sens. 2013, 5, 1809–1841. [Google Scholar] [CrossRef]
- Stokes, M.D.; Deane, G.B. Automated Processing of Coral Reef Benthic Images: Coral Reef Benthic Imaging. Limnol. Oceanogr. Methods 2009, 7, 157–168. [Google Scholar] [CrossRef]
- Chen, R.; Wu, J.; Luo, Y.; Xu, G. PointMM: Point Cloud Semantic Segmentation CNN under Multi-Spatial Feature Encoding and Multi-Head Attention Pooling. Remote Sens. 2024, 16, 1246. [Google Scholar] [CrossRef]
- Wernette, P. Coastal Bluff Point Clouds Derived from SfM near Elwha River Mouth, Washington from 18 April 2016 to 8 May 2020. Dryad 2020. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D Scene Interpretation: A Framework Combining Optimal Neighborhood Size Selection with Relevant Features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–3, 181–188. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
Vegetation Index | Formula | Value Range (Lower, Upper) | Source |
---|---|---|---|
Excess Red (ExR) | (−1, 1.4) | [36] | |
Excess Green (ExG) | (−1, 2) | [35,40] | |
Excess Blue (ExB) | (−1, 1.4) | [39] | |
Excess Red Minus Green (ExGR) | (−2.4, 3) | [37] | |
Normal Green-Red Difference Index (NGRDI) | (−1, 1) | [45] | |
Modified Green Red Vegetation Index (MGRVI) | (−1, 1) | [46] | |
Green Leaf Index (GLI) | (−1, 1) | [47] | |
Red Green Blue Vegetation Index (RGBVI) | (−1, 1) | [46] | |
Kawashima Index (IKAW) | (−1, 1) | [33] | |
Green Leaf Algorithm (GLA) | (−1, 1) | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wernette, P.A. Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sens. 2024, 16, 2169. https://doi.org/10.3390/rs16122169
Wernette PA. Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sensing. 2024; 16(12):2169. https://doi.org/10.3390/rs16122169
Chicago/Turabian StyleWernette, Phillipe Alan. 2024. "Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds" Remote Sensing 16, no. 12: 2169. https://doi.org/10.3390/rs16122169
APA StyleWernette, P. A. (2024). Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sensing, 16(12), 2169. https://doi.org/10.3390/rs16122169