Assessment of C-Band Polarimetric Radar for the Detection of Diesel Fuel in Newly Formed Sea Ice
Abstract
:1. Introduction
2. Methods
2.1. Description of Facility and Study Site Location
2.2. Timeline of Study
2.3. Scatterometer Measurements
2.4. Data Processing
2.5. Physical Sample Collection
3. Results
3.1. Experiment Overview
3.2. Scatterometer Results
3.3. Physical Results
4. Discussion
4.1. Meteorological Conditions and Physical Measurements
4.2. Scatterometer Measurements
4.2.1. Stage 1: Open Water
4.2.2. Stage 2: Thin Sea Ice
4.2.3. Stage 3: Emergence of Diesel on Sea Ice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comiso, J.C. Large Decadal Decline of the Arctic Multiyear Ice Cover. J. Climatol. 2012, 25, 1176–1193. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Dawson, J.; Pizzolato, L.; Howell, S.E.; Copland, L.; Johnston, M.E. Temporal and spatial patterns of ship traffic in the Canadian Arctic from 1990 to 2015. Arctic 2018, 71, 15–26. [Google Scholar] [CrossRef]
- Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H.; et al. Assessment of undiscovered oil and gas in the Arctic. Science 2009, 324, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Melia, N.; Haines, K.; Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 2016, 43, 9720–9728. [Google Scholar] [CrossRef]
- Arctic Council. AGREEMENT on Cooperation on Marine Oil Pollution Preparedness and Response in the Arctic. In Proceedings of the SAO Meeting, Whitehorse, NC, Canada, 22–23 October 2013. [Google Scholar]
- National Research Council; Transportation Research Board; Marine Board; Division on Earth and Life Studies; Polar Research Board; Ocean Studies Board; Committee on Responding to Oil Spills in the U.S. Arctic Marine Environment. Arctic Marine Environment; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Wilkinson, J.; Beegle-Krause, C.J.; Evers, K.U.; Hughes, N.; Lewis, A.; Reed, M.; Wadhams, P. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices. Ambio 2017, 46, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Desmond, D.S.; Saltymakova, D.; Neusitzer, T.D.; Firoozy, N.; Isleifson, D.; Barber, D.G.; Stern, G.A. Oil Behavior in Sea Ice: Changes in Chemical Composition and Resultant Effect on Sea Ice Dielectrics. Mar. Pollut. Bull. 2019, 142, 216–233. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.B.; Otosaka, I.; Stoffelen, A.; Verhoef, A. A Scatterometer Record of Sea Ice Extents and Backscatter: 1992–2016. Cryosphere 2018, 12, 2941–2953. [Google Scholar] [CrossRef]
- Isleifson, D.; Hwang, B.; Barber, D.G.; Scharien, R.K.; Shafai, L. C-Band Polarimetric Backscattering Signatures of Newly Formed Sea Ice During Fall Freeze-Up. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3256–3267. [Google Scholar] [CrossRef]
- Nandan, V.; Geldsetzer, T.; Islam, T.; Yackel, J.J.; Gill, J.P.S.; Fuller, M.C.; Gunn, G.; Duguay, C. Ku-, X-and C-band measured and modeled microwave backscatter from a highly saline snow cover on first-year sea ice. Remote Sens. Environ. 2016, 187, 62–75. [Google Scholar] [CrossRef]
- Ouchi, K. Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens. 2013, 5, 716–807. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Shokr, M.E.; Wilson, L.J.; Surdu-Miller, D.L. Effect of Radar Parameters on Sea lce Tonal and Textural Signatures Using Multi-Frequency Polarimetric SAR Data. Photogramm. Eng. Remote Sens. 1995, 6, 1463–1473. [Google Scholar]
- Gill, J.P.S.; Yackel, J.J. Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types. Can. J. Remote Sens. 2012, 38, 306–323. [Google Scholar] [CrossRef]
- Asihene, E.; Stern, G.; Barber, D.G.; Gilmore, C.; Isleifson, D. Toward the Discrimination of Oil Spills in Newly Formed Sea Ice Using C-Band Radar Polarimetric Parameters. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4300115. [Google Scholar] [CrossRef]
- Shokr, M.; Nirmal, S.K. Sea Ice: Physics and Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Onstott, R.G. SAR and scatterometer signatures of sea ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; pp. 73–104. [Google Scholar]
- Hallikainen, M.; Winebrenner, D. The physical basis for sea ice remote sensing. In Microwave Remove Sensing of Sea Ice; Carsey, F.D., Ed.; American Geoph: Washington, DC, USA, 1992; pp. 29–46. [Google Scholar]
- Drinkwater, M.R.; Kwok, R.; Rignot, E.; Israelsson, H.; Onstott, R.G.; Winebrenner, D.P. Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; Volume 68. [Google Scholar]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef]
- Wadhams, P. Ice in the Ocean; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Desmond, D.S.; Neusitzer, T.D.; Firoozy, N.; Isleifson, D.; Lemes, M.; Barber, D.G.; Stern, G.A. Examining the physical processes of corn oil (medium crude oil surrogate) in sea ice and its resultant effect on complex permittivity and normalized radar cross-section. Mar. Pollut. Bull. 2019, 142, 484–493. [Google Scholar] [CrossRef]
- Asihene, E.; Desmond, D.S.; Harasyn, M.L.; Landry, D.; Veenaas, C.; Mansoori, A.; Fuller, M.C.; Stern, G.; Barber, D.G.; Gilmore, C.; et al. Toward the Detection of Oil Spills in Newly Formed Sea Ice Using C-Band Multipolarization Radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4302615. [Google Scholar] [CrossRef]
- Huffines, E. Arctic Standards Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean; Pew Charitable Trusts: Philadelphia, PA, USA, 2013. [Google Scholar]
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. Total Petroleum Hydrocarbons. Environmental Fate, Toxicity, and Remediation; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Oggier, M.; Eicken, H.; Wilkinson, J.; Petrich, C.; O’Sadnick, M. Crude oil migration in sea-ice: Laboratory studies of constraints on oil mobilization and seasonal evolution. Cold Reg. Sci. Technol. 2020, 174, 102924. [Google Scholar] [CrossRef]
- Martin, S. A field study of brine drainage and oil entrainment in first year sea ice. J. Glaciol. 1979, 22, 473–502. [Google Scholar] [CrossRef]
- Saltymakova, D.; Desmond, D.S.; Isleifson, D.; Firoozy, N.; Neusitzer, T.D.; Xu, Z.; Lemes, M.; Barber, D.G.; Stern, G.A. Effect of dissolution, evaporation, and photooxidation on crude oil chemical composition, dielectric properties and its radar signature in the Arctic environment. Mar. Pollut. Bull. 2020, 151, 110629. [Google Scholar] [CrossRef] [PubMed]
- Firoozy, N.; Neusitzer, T.; Desmond, D.; Tiede, T.; Lemes, M.; Landy, J.; Mojabi, P.; Rysgaard, S.; Stern, G.; Barber, D. An electromagnetic detection case study on crude oil injection in a young sea ice environment. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4465–4475. [Google Scholar] [CrossRef]
- Isleifson, D.; Harasyn, M.L.; Landry, D.; Babb, D.; Asihene, E. Observations of Thin First Year Sea Ice Using a Suite of Surface Radar, LiDAR, and Drone Sensors. Can. J. Remote Sens. 2023, 49, 2226220. [Google Scholar] [CrossRef]
- Brekke, C.; Holt, B.; Jones, C.; Skrunes, S. Discrimination of Oil Spills from Newly Formed Sea Ice by Synthetic Aperture Radar. Remote Sens. Environ. 2014, 145, 1–14. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Johansson, A.M.; Brekke, C.; Spreen, G. Multi-frequency polarimetric SAR signatures of lead sea ice and oil spills. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1872–1875. [Google Scholar]
- Johansson, A.M.; Espeseth, M.M.; Brekke, C.; Holt, B. Can mineral oil slicks be distinguished from newly formed sea ice using synthetic aperture radar? IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 4996–5010. [Google Scholar] [CrossRef]
- Prinsenberg, S.J. Salinity and temperature distributions of Hudson Bay and James Bay. In Canadian Inland Seas; Martini, I.P., Ed.; Elsevier Oceanography Series: Guelph, ON, Canada, 1986; Volume 44, pp. 163–186. [Google Scholar]
- Isleifson, D.; Mead, J.B.; Fuller, M.C.; Hicks, L.; Desmond, D.; Asihene, E.; Stern, G.A.; Barber, D.G. A Multi frequency Suite of Polarimetric Scatterometers for Arctic Remote Sensing. In Proceedings of the URSI International Symposium on Electromagnetic Theory, Vancouver, BC, Canada, 22–26 May 2023. [Google Scholar]
- Mayvan, M.Z.; Asihene, E.; Desmond, D.; Hicks, L.; Polcwiartek, K.; Stern, G.A.; Isleifson, D. Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar. Remote Sens. 2024, 16, 379. [Google Scholar] [CrossRef]
- Grekov, A.N.; Grekov, N.A.; Sychov, E.N. Estimating quality of indirect measurements of sea water sound velocity by CTD data. Measurement 2021, 175, 109073. [Google Scholar] [CrossRef]
- Cox, G.F.N.; Weeks, W.F. Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 1983, 29, 306–316. [Google Scholar] [CrossRef]
- Elam, S.K.; Tokura, I.; Saito, K.; Altenkirch, R.A. Thermal Conductivity of Crude Oils. Exp. Therm. Fluid Sci. 1989, 2, 1–6. [Google Scholar] [CrossRef]
- Pringle, D.J.; Trodahl, H.J.; Haskell, T.G. Direct measurement of sea ice thermal conductivity: No surface reduction. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Sharqawy, M.H. New correlations for seawater and pure water thermal conductivity at different temperatures and salinities. Desalination 2013, 313, 97–104. [Google Scholar] [CrossRef]
- Neusitzer, T.D.; Firoozy, N.; Tiede, T.M.; Desmond, D.S.; Lemes, M.J.; Stern, G.A.; Rysgaard, S.; Mojabi, P.; Barber, D.G. Examining the impact of a crude oil spill on the permittivity profile and normalized radar cross section of young sea ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 921–936. [Google Scholar] [CrossRef]
- Golden, K.M. Brine percolation and the transport properties of sea ice. Ann. Glaciol. 2001, 33, 28–36. [Google Scholar] [CrossRef]
- Carswell, J.R.; Donnelly, W.J.; McIntosh, R.E.; Donelan, M.A.; Vandemark, D.C. Analysis of C and Ku-band Ocean Backscatter Measurements under Low-Wind Conditions. J. Geophys. Res. Oceans 1999, 104, 20687–20701. [Google Scholar] [CrossRef]
- Firoozy, N.; Neusitzer, T.; Chirkova, D.; Desmond, D.S.; Lemes, M.J.; Landy, J.; Mojabi, P.; Rysgaard, S.; Stern, G.; Barber, D.G. A controlled experiment on oil release beneath thin sea ice and its electromagnetic detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4406–4419. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Kwok, R.; Yueh, S.H.; Drinkwater, M.R. Polarimetric signatures of sea ice 2. Experimental Observations. J. Geophys. Res. 1995, 100, 13681–13698. [Google Scholar] [CrossRef]
Center Frequency | 5.5 GHz |
Polarization Modes | HH, VV, HV, VH |
Sweep Bandwidth | 500 MHz |
Transmitted Power | −6 dBm |
Range Resolution | 30 cm |
Antenna Half Power | 5.7° |
Cross Polarization Isolation | >28 dB |
Transition from Stage 1 to Stage 2 | Transition from Stage 2 to Stage 3 | |||||
---|---|---|---|---|---|---|
Incidence Angle | ΔVV [dB] | ΔHH [dB] | ΔHV [dB] | ΔVV [dB] | ΔHH [dB] | ΔHV [dB] |
20° | 7.52 | 9.49 | 3.78 | −11.85 | −11.22 | −2.90 |
25° | 12.18 | 7.07 | 12.32 | −7.10 | −7.97 | −11.09 |
S1 | S2 | S3 | S4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 7 March 0930 CST | 7 March 1500 CST | 8 March 1100 CST | 9 March 1100 CST | ||||||||
Sampling Site | 11 | 7 | 4 | 1 | 3 | 5 | 2 | 4 | 12 | 1 | 2 | 3 |
Sea ice thickness (cm) | 3.6 | 3.6 | 3.6 | 4.5 | 4.3 | 3.6 | 6.6 | 6.1 | 6.6 | 7.5 | 7.0 | 6.5 |
Sea ice surface temperature (°C) | −3.9 | −3.9 | −3.9 | −3.9 | −3.9 | −3.9 | −3.4 | −3.4 | −3.4 | −2.6 | −2.6 | −2.6 |
Sea ice core temperature (top) (°C) | −2.8 | −2.6 | −3.0 | −2.5 | −2.2 | −2.5 | −2.4 | −3.4 | −3.4 | −1.5 | −2.1 | −1.9 |
Sea ice core temperature (bottom) (°C) | - | - | - | - | - | - | −1.56 | −1.29 | −1.74 | −1.56 | −1.29 | −1.36 |
Sea ice surface scraping reference salinity (g/kg) | 40.6 | 32.8 | 39.8 | 27.2 | 12.7 | 25.9 | 7.4 | 10.1 | 17.9 | 25.0 | 24.6 | 22.0 |
Sea ice core (top) bulk reference salinity (g/kg) | 10.8 | 10.5 | 10.6 | 8.8 | 8.6 | 8.0 | 7.0 | 6.4 | 6.1 | 7.0 | 6.9 | 6.6 |
Sea ice core (bottom) bulk reference salinity (g/kg) | 8.2 | 7.8 | 8.3 | 7.3 | 7.1 | 7.1 | ||||||
Seawater reference salinity (g/kg) | 21.6 | 21.6 | 21.6 | 21.7 | 21.7 | 21.6 | 22.1 | 22.1 | 22.1 | 22.1 | 22.1 | 22.1 |
Brine ice core (top) Volume (mL) | 66.0 | 65.8 | 95.6 | 59.6 | 68.3 | 35.4 | 70.0 | 57.6 | 54.6 | 67.3 | 46.3 | 38.2 |
Brine ice core (bottom) Volume (mL) | - | - | - | - | - | - | 81.8 | 82.6 | 55.8 | 63.3 | 64.4 | 59.1 |
Sea ice surface diesel Volume (mL) | - | - | - | 0 | 0 | 0 | 19.2 | 21.9 | 18.0 | 0 | 0 | 0 |
Sea ice core diesel (top) volume (mL) | - | - | - | 0 | 0 | 0 | 13.00 | 0.9 | 5.0 | 0 | 0 | 0 |
Sea ice core diesel (bottom) volume (mL) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Seawater diesel volume (mL) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, L.; Zabihi Mayvan, M.; Asihene, E.; Desmond, D.S.; Polcwiartek, K.; Stern, G.A.; Isleifson, D. Assessment of C-Band Polarimetric Radar for the Detection of Diesel Fuel in Newly Formed Sea Ice. Remote Sens. 2024, 16, 2002. https://doi.org/10.3390/rs16112002
Hicks L, Zabihi Mayvan M, Asihene E, Desmond DS, Polcwiartek K, Stern GA, Isleifson D. Assessment of C-Band Polarimetric Radar for the Detection of Diesel Fuel in Newly Formed Sea Ice. Remote Sensing. 2024; 16(11):2002. https://doi.org/10.3390/rs16112002
Chicago/Turabian StyleHicks, Leah, Mahdi Zabihi Mayvan, Elvis Asihene, Durell S. Desmond, Katarzyna Polcwiartek, Gary A. Stern, and Dustin Isleifson. 2024. "Assessment of C-Band Polarimetric Radar for the Detection of Diesel Fuel in Newly Formed Sea Ice" Remote Sensing 16, no. 11: 2002. https://doi.org/10.3390/rs16112002
APA StyleHicks, L., Zabihi Mayvan, M., Asihene, E., Desmond, D. S., Polcwiartek, K., Stern, G. A., & Isleifson, D. (2024). Assessment of C-Band Polarimetric Radar for the Detection of Diesel Fuel in Newly Formed Sea Ice. Remote Sensing, 16(11), 2002. https://doi.org/10.3390/rs16112002