Evaluation of Suitable Habitats for Birds Based on MaxEnt and Google Earth Engine—A Case Study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Occurrence Point Based on Field Surveys and Drone Monitoring
2.3. Acquisition of Impact Factors Based on GEE
2.4. Screening of Impact Factors
2.5. Species Distribution Modeling and Evaluation
2.6. Technical Workflow Overview
3. Results
3.1. Evaluation of MaxEnt Model Optimization and Results
3.2. Relationship between the Selection of Suitable Habitat Areas and Impact Factors
3.3. Spatial Patterns of Suitable Habitats for Baer’s Pochard
3.4. Seasonal Changes in Suitable Habitat Areas for Baer’s Pochard
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity conservation: Challenges beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Su, Y.; Xu, W.; Cai, W.; Wang, X.; Lu, F.; Ouyang, Z. The effect of habitat changes along the urbanization gradient for breeding birds: An example from the Xiong’an New Area. PeerJ 2019, 7, e7961. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wen, Y.; Zou, L.; Wang, Z.; He, C.; Zou, C. The effects of a wetland restoration project on the Siberian crane (Grus leucogeranus) population and stopover habitat in Momoge National Nature Reserve, China. Ecol. Eng. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Ren, X.; Jackson, M.V.; Fuller, R.A.; Melville, D.S.; Amano, T.; Ma, Z. Effects of anthropogenic landscapes on population maintenance of waterbirds. Conserv. Biol. 2022, 36, e13808. [Google Scholar] [CrossRef]
- Liu, J.; Yi, C.; Tang, S.; Zhang, W.; Wen, K.; Qin, C.; Huang, L.; Liu, D.; Jiang, A. Impact of coastal island restoration engineering and subsequent tourism on migratory waterbirds: A 3-year case from Southern China. Restor. Ecol. 2023, 31, e13974. [Google Scholar] [CrossRef]
- Ning, Y.; Lei, J.; Song, X.; Han, S.; Zhong, Y. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chin. J. Plant Ecol. 2018, 42, 946–954. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, G.; Zhao, X.; Chen, H.; Si, Q.; Wu, J. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan, China. Ecol. Evol. 2021, 11, 13052–13067. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D. Rodrigues ASL Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Li, G.; Qin, W.; Li, S.; Gao, H.; Cai, Z.; Lin, G.; Zhang, T. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 6643–6654. [Google Scholar] [CrossRef]
- Lazo-Cancino, D.; Rivera, R.; Paulsen-Cortez, K.; Gonzalez-Berrios, N.; Rodriguez-Gutierrez, R.; Rodriguez-Serrano, E. The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). J. Arid. Environ. 2020, 173, 104016. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L.M. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol. Model. 2019, 392, 179–195. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Zhai, T.; Li, X. Climate change induced potential range shift of the crested ibis based on ensemble models. Acta Ecol. Sin. 2012, 32, 2361–2370. [Google Scholar] [CrossRef]
- Li, X.; Tian, H.; Yuan, W. Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Reg. Environ. Change 2013, 13, 843–852. [Google Scholar] [CrossRef]
- Waldrip, S.H.; Niven, R.K. Comparison between Bayesian and maximum entropy analyses of flow networks. Entropy 2017, 19, 58. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Moore, R.; Parsons, E. Beyond SDI, Bridging the Power of Cloud Based Computing Resources to Manage Global Environment Issues. In Proceedings of the INSPIRE Conference, Edinburgh, UK, 27 June–1 July 2011. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, Y.; Fei, Y.; Xie, C.; Hou, S. Mitochondrial genome of the critically endangered Baer’s Pochard, Aythya baeri, and its phylogenetic relationship with other Anatidae species. Sci. Rep. 2021, 11, 24302. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Li, J.; Deng, P.; Liu, D.; Zhang, G.; Dong, R. Study on the breeding ecology of Aythya baeri in Henan Chenqiao Wetland. J. Henan Agric. Univ. 2020, 54, 269–275. [Google Scholar]
- Wang, X.; Barter, M.; Cao, L.; Lei, J.; Fox, A.D. Serious contractions in wintering distribution and decline in abundance of Baer’s Pochard Aythya baeri. Bird Conserv. Int. 2012, 22, 121–127. [Google Scholar] [CrossRef]
- Hearn, R. The troubled Baer’s Pochard Aythya baeri: Cause for a little optimism? BirdingASIA 2015, 24, 78–83. [Google Scholar]
- Chang, Y.; Chang, C.; Li, Y.; Liu, M.; Lv, J.; Hu, Y. Predicting dynamics of the potential breeding habitat of Larus saundersi by MaxEnt model under changing land-use conditions in wetland nature reserve of Liaohe Estuary, China. Remote Sens. 2022, 14, 552. [Google Scholar] [CrossRef]
- Yuan, O.; Liu, S.; Chen, F.; Luo, J.; Hu, H. Habitat suitability evaluation of black-necked cranes based on multi-source remote sensing in Caohai National Nature Reserve, Guizhou. Acta Ecol. Sin. 2022, 42, 1947–1957. [Google Scholar]
- Hou, P.; Bai, J.; Chen, Y.; Hou, J.; Zhao, J.; Ma, Y.; Zhai, J. Analysis on the hotspot characteristics of bird diversity distribution along the continental coastline of China. Front. Mar. Sci. 2022, 9, 1007442. [Google Scholar] [CrossRef]
- Watson, K.B.; Galford, G.L.; Sonter, L.J.; Ricketts, T.H. Conserving ecosystem services and biodiversity: Measuring the tradeoffs involved in splitting conservation budgets. Ecosyst. Serv. 2020, 42, 101063. [Google Scholar] [CrossRef]
- Reperant, L.A.; Fučkar, N.S.; Osterhaus, A.D.M.E.; Dobsonet, A.P.; Kuiken, T. Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 C isotherm. PLoS Pathog. 2010, 6, e1000854. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Yang, Z.; Cui, B.; Gao, H.; Ding, Q. Some heavy metals distribution in wetland soils under different land use types along a typical plateau lake, China. Soil Tillage Res. 2010, 106, 344–348. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, J.; Huang, Y.; Gao, Y.; Zhang, S.; Tang, Y.; Yin, C.; Wang, Z. The ecological degradation and restoration of Baiyangdian Lake, China. J. Freshw. Ecol. 1998, 13, 433–446. [Google Scholar]
- Yan, S.; Wang, X.; Zhang, Y.; Liu, D.; Yi, Y.; Li, C.; Liu, Q.; Yang, Z. A hybrid PCA-GAM model for investigating the spatiotemporal impacts of water level fluctuations on the diversity of benthic macroinvertebrates in Baiyangdian Lake, North China. Ecol. Indic. 2020, 116, 106459. [Google Scholar] [CrossRef]
- The Overall Water Quality of Baiyangdian District Has Reached Class III and Entered the Ranks of National Good Lakes. Available online: https://www.gov.cn/xinwen/2022-01/10/content_5667462.htm (accessed on 10 January 2021).
- Wang, Y.X.; Wang, Y.L.; Han, Y.W.; Li, J. Review of surface water environmental quality standards (2): Introduction and analysis of foreign surface water environmental quality standards and benchmarks. Sichuan Environ. 2022, 41, 273–280. [Google Scholar]
- Li, C.; Cui, H. Evaluation of ecological status and protection countermeasures of Baiyangdian werland. J. Agric. Univ. Heibei 2013, 15, 101–104+108. [Google Scholar]
- Xing, Y. Estimation and Analysis of Ecological Service Function Value of Baiyangdian Wetland; Heibei University: Baoding, China, 2020. [Google Scholar]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Zhu, R.; Yang, Y.; Jin, H.; Zou, H. Nesting habitat suitability analysis of red-crowned crane in Zhalong Nature reserve based on MAXENT modeling. Acta Ecol. Sin. 2016, 36, 3758–3764. [Google Scholar]
- Hao, X.; Wu, Y. Prediction of suitable habitat for overwintering hooded cranes (Grus monacha) based on Maxent modeling. J. Anhui Agric. Univ. 2017, 44, 591–597. [Google Scholar]
- Sun, X.; Zhang, Q.; Wu, Q.; Chen, L.; Li, L.; Xu, Z.; Shaliwa, P. Habitat suitability for Bear’s Pochard (Aythya baeri) in Xianghai Reserve. J. Northeast. For. Univ. 2021, 49, 112–118. [Google Scholar]
- Liu, W.; Hu, C.; Yi, J.; Han, B.; Yu, D.; Xu, H. Status and Distribution of Potential Suitable Habitats of Bear’s Pochard Population. Wetl. Sci. 2020, 18, 387–396. [Google Scholar]
- Xia, S.; Hu, D.; Deng, Y.; Zhong, X.; Bai, W.; Zhang, J.; Wang, B.; Zhou, C. Habitat partitioning between sympatric Golden Pheasant and Temminck’ s Tragopan at different scales. Acta Ecol. Sin. 2019, 39, 1627–1638. [Google Scholar]
- You, Z.; Wang, M.; Lu, B.; Liu, W.; Yang, N. Predicting potential distribution of Crossoptilon auritum based on MaxEnt model. Chin. J. Ecol. 2022, 41, 2271–2277. [Google Scholar]
- He, K.; Lei, J.; Jia, Y.; Wu, E.; Sun, G.; Lu, C.; Zeng, Q.; Lei, G. Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River. Remote Sens. 2022, 14, 1883. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Zhu, G.; Yuan, X.; Fan, J.; Wang, M. Effects of model parameters in MaxEnt modeling of ecological niche and geographic distribution: Case study of the brown marmorated stink bug, Halyomorpha haly. J. Biosaf. 2018, 27, 118–123. [Google Scholar]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Wang, X.; Duan, Y.; Jin, L.; Wang, C.; Peng, M.; Li, Y.; Wang, X.; Ma, Y. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecokogica Sin. 2023, 43, 6590–6604. [Google Scholar]
- Warren, D.L.; Seifert, N.S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, H.; Lyu, Z. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. Chin. J. Appl. Ecol. 2017, 28, 4001–4006. [Google Scholar]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field validation of an invasive species Maxent model. Ecol. Inform. 2016, 36, 126–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Ramos, R.S.; Kumar, L.; Shabani, F.; Picanco, M.C. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric. Syst. 2019, 173, 524–535. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Liu, Z.; Yang, Y.; Khoso, A.G.; Wang, L.; Liu, D. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. J. Pest Sci. 2022, 95, 55–69. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Li, Y.; Xu, N.; Gao, Y.; Guo, L.; Huo, T.; Peng, C.; Meng, F. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Liu, Y.; Zeng, J.; Zeng, L.; He, R.; Guiang, M.M.; Li, Y.; Wu, H. Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Ind. Crops Prod. 2023, 196, 116515. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Xplore 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Conradsen, K.; Skriver, H. Statistical analysis of changes in Sentinel-1 time series on the Google Earth Engine. Remote Sens. 2020, 12, 46. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Wu, Q.; Xu, Z.; Deng, W. Suitability evaluation of overwintering habitat for the Bear’s Pochard in Henan Minquan wetland park. J. Northeast. Nor. Univ 2023, 55, 109–113. [Google Scholar]
- Wang, B.; Chen, Y.; Lv, C. Evaluating flood inundation impact on wetland vegetation FPAR of the Macquarie Marshes, Australia. Environ. Earth Sci. 2015, 74, 4989–5000. [Google Scholar] [CrossRef]
- Alibakhshi, S.; Groen, T.A.; Rautiainen, M.; Naimi, B. Remotely-Sensed early warning signals of a critical transition in a wetland ecosystem. Remote Sens. 2017, 9, 352. [Google Scholar] [CrossRef]
Type | Variables | Period | Unit |
---|---|---|---|
Topographic Factors | Elevation | Breeding/Migratory | m |
Slope | Breeding/Migratory | ° | |
Aspect | Breeding/Migratory | ° | |
Environmental Factors | Fractional Vegetation Cover (FVC) | Breeding/Migratory | — |
Landcover | Breeding/Migratory | — | |
Modified Normalized Difference Water Index (MNDWI) | Breeding/Migratory | — | |
Normalized Difference Built-up Index (NDBI) | Migratory | — | |
Wetness | Breeding | — | |
Human-impact Factors | Eucdist to Town | Breeding/Migratory | Km |
Eucdist to Road | Breeding/Migratory | Km | |
Eucdist to Water | Breeding/Migratory | Km | |
Eucdist to Water Transportation | Breeding/Migratory | Km | |
Eucdist to Fishing Operations | Breeding/Migratory | Km | |
Climatic Factors | Annual Mean Temperature | Breeding/Migratory | °C |
Isothermality | Breeding/Migratory | — | |
Mean Diurnal Range | Breeding | °C | |
Max Temperature of Warmest Month | Breeding | °C | |
Min Temperature of Coldest Month | Breeding | °C | |
Mean Temperature of Warmest Quarter | Breeding/Migratory | °C | |
Mean Temperature of Coldest Quarter | Breeding/Migratory | °C | |
Precipitation Seasonality | Breeding/Migratory | mm | |
Precipitation of Driest Month | Migratory | mm | |
Precipitation of Coldest Quarter | Breeding | mm | |
Precipitation of Warmest Quarter | Migratory | mm | |
Precipitation of Wettest Quarter | Breeding | mm | |
Temperature Annual Range | Migratory | — |
Period | Parameter Settings | Regularization Multiplier | Feature Combinations | AICc | Delta.AICc | Mean.OR10 |
---|---|---|---|---|---|---|
Breeding Period | Default | 1 | LQHP | 2272.73 | 99.89 | 0.31 |
Optimized | 1.5 | H | 2172.83 | 0 | 0.17 | |
Migration Period | Default | 1 | LQHP | 1501.64 | 56.46 | 0.23 |
Optimized | 2.5 | H | 1445.18 | 0 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Huo, D.; Yi, K.; Que, J.; Lu, Z.; Hou, J. Evaluation of Suitable Habitats for Birds Based on MaxEnt and Google Earth Engine—A Case Study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China. Remote Sens. 2024, 16, 64. https://doi.org/10.3390/rs16010064
Tian Z, Huo D, Yi K, Que J, Lu Z, Hou J. Evaluation of Suitable Habitats for Birds Based on MaxEnt and Google Earth Engine—A Case Study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China. Remote Sensing. 2024; 16(1):64. https://doi.org/10.3390/rs16010064
Chicago/Turabian StyleTian, Zengrui, Da Huo, Kunpeng Yi, Jialiang Que, Zhenguang Lu, and Jianhua Hou. 2024. "Evaluation of Suitable Habitats for Birds Based on MaxEnt and Google Earth Engine—A Case Study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China" Remote Sensing 16, no. 1: 64. https://doi.org/10.3390/rs16010064
APA StyleTian, Z., Huo, D., Yi, K., Que, J., Lu, Z., & Hou, J. (2024). Evaluation of Suitable Habitats for Birds Based on MaxEnt and Google Earth Engine—A Case Study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China. Remote Sensing, 16(1), 64. https://doi.org/10.3390/rs16010064