Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. In Situ Meteorological Stations Ta Data
3.1.1. AEMET Ta Data
3.1.2. Ta Data in PERMASNOW’s Stations
3.2. MODIS Land Surface Temperature Data
LST Filtering
3.3. Methodology
4. Data Analysis and Results
4.1. Ta
4.2. Comparison between MODIS LST and Ta
5. Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Ta and Ta-20 cm
Appendix B. Comparison between Ta of Different Stations: Correction of the Bad Calibrated Ta Data
Appendix C. Quality of the MODIS LST Data and Applied Filters
LST QC Codes (Read ←) | Key (from Wan (2006); Table 14) | Point Color in Figure A6 |
---|---|---|
00000010 | 10 = LST not produced due to cloud effects | -(No data) |
11000101 | 01 = LST produced, other quality, recommend examination of more detailed QA 01 = other quality data 00 = average emissivity error <= 0.01 11 = average LST error > 3 K | Blue |
10000101 | 10 = average LST error <= 3 K | Brown |
01000101 | 01 = average LST error <= 2 K | Green |
01000001 | 00 = good data quality 01 = average LST error <= 2 K | Orange |
00000101 | 01 = other quality data 00 = average LST error <= 1 K | - |
00000000 | 00 = LST produced, good quality, not necessary to examine more detailed QA | Pink |
References
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- King, J.C. Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol. 1994, 14, 357–369. [Google Scholar] [CrossRef]
- Marshall, G.J.; Lagun, V.; Lachlan-Cope, T.A. Changes in Antarctic Peninsula tropospheric temperatures from 1956 to 1999: A synthesis of observations and reanalysis data. Int. J. Climatol. 2002, 22, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.; Marshall, G.; Connolley, W.; Parkinson, C.; Mulvaney, R.; Hodgson, D.; King, J.; Pudsey, C.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Stastna, V. Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland Islands during 1950–2003. Polar Sci. 2010, 4, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Kejna, M.; Araźny, A.; Sobota, I. Climatic change on King George Island in the years 1948–2011. Pol. Polar Res. 2013, 34, 213–235. [Google Scholar] [CrossRef]
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H.; et al. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 317–382. [Google Scholar]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef]
- O’Donnell, R.; Lewis, N.; McIntyre, S.; Condon, J. Improved Methods for PCA-Based Reconstructions: Case Study Using the Steig et al. (2009) Antarctic Temperature Reconstruction. J. Clim. 2011, 24, 2099–2115. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, M.; Navarro, F.; Hrbáček, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced Facility Instrument for Studies of the Earth as a System. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Ramos, M. Automatic device to measure the active permafrost layer near the Spanish Antarctic Station. Terra Antarct. 1995, 2, 61–63. [Google Scholar]
- Ramos, M. Topographic Distribution of Short-wave Radiation in the surroundings of the Spanish Antarctic Station Austral summers. Terra Antart. 1997, 4, 5–10. [Google Scholar]
- Ramos, M. Active Layer in the vicinity of the Spanish Antarctic Station. Terra Antart. 1998, 5, 189–193. [Google Scholar]
- Ramos, M.; Vieira, G.; Blanco, J.J.; Gruber, S.; Hauck, C.; Hidalgo, M.A.; Tome, D. Thermal active layer monitoring in two different sites on Livingston Island during the last seven years: A comparative study. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, June 29–July 3 2008; pp. 1463–1467. [Google Scholar]
- Ramos, M.; Hasler, A.; Vieira, G.; Hauck, C.; Gruber, S. Drilling and installation of boreholes for permafrost thermal monitoring on Livingston Island in the maritime Antarctic. Permafr. Periglac. Processes 2009, 20, 57–64. [Google Scholar] [CrossRef]
- Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A.A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D.A.; Goryachkin, S.; et al. Thermal State of Permafrost and Active-layer Monitoring in the Antarctic: Advances During the International Polar Year 2007-2009. Permafr. Periglac. Processes 2010, 21, 182–197. [Google Scholar] [CrossRef] [Green Version]
- de Pablo, M.A.; Blanco, J.J.; Molina, A.; Ramos, M.; Quesada, A.; Vieira, G. Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. Antarct. Sci. 2013, 25, 167–180. [Google Scholar] [CrossRef]
- de Pablo, M.A.; Ramos, M.; Molina, A. Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth 2014, 5, 721–739. [Google Scholar] [CrossRef] [Green Version]
- de Pablo, M.A.; Ramos, M.; Molina, A. Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. Catena 2017, 149, 538–547. [Google Scholar] [CrossRef]
- Ramos, M.; Vieira, G.; de Pablo, M.A.; Molina, A.; Abramov, A.; Goyanes, G. Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). Catena 2017, 149, 519–528. [Google Scholar] [CrossRef]
- De Pablo, M.A.; Ramos, M.; Molina, A.; Vieira, G.; Hidalgo, M.A.; Prieto, M.; Jiménez, J.J.; Fernández, S.; Recondo, C.; Calleja, J.F.; et al. Frozen ground and snow cover monitoring in the South Shetland Islands, Antarctica: Instrumentation, effects on ground thermal behaviour and future research. Cuad. Investig. Geográfica 2016, 42, 475–495. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, M.A.; Jiménez, J.J.; Ramos, M.; Prieto, M.; Molina, A.; Vieira, G.; Hidalgo, M.A.; Fernández, S.; Recondo, C.; Calleja, J.F.; et al. Frozen Ground and Snow Cover Monitoring in Livingston and Deception Islands, Antarctica: Preliminary Results of the-PERMASNOW Project. Cuad. Investig. Geográfica 2020, 46, 187–222. [Google Scholar] [CrossRef] [Green Version]
- Calleja, J.F.; Corbea-Pérez, A.; Fernández, S.; Recondo, C.; Peón, J.; de Pablo, M.Á. Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors 2019, 19, 3569. [Google Scholar] [CrossRef] [Green Version]
- Corbea-Pérez, A.; Calleja, J.F.; Recondo, C.; Fernández, S. Evaluation of the MODIS (C6) Daily Albedo Products for Livingston Island, Antarctic. Remote Sens. 2021, 13, 2357. [Google Scholar] [CrossRef]
- Recondo, C.; Peón, J.J.; Zapico, E.; Pendás, E. Empirical models for estimating daily surface water vapour pressure, air temperature, and humidity using MODIS and spatiotemporal variables. Applications to peninsular Spain. Int. J. Remote Sens. 2013, 34, 8051–8080. [Google Scholar] [CrossRef]
- Hall, D.; Box, J.; Casey, K.; Hook, S.; Shuman, C.; Steffen, K. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ. 2008, 112, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Koenig, L.S.; Hall, D.K. Comparison of satellite, thermochron and air temperatures at Summit, Greenland, during the winter of 2008/09. J. Glaciol. 2010, 56, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Langer, M.; Boike, J. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ. 2011, 115, 908–922. [Google Scholar] [CrossRef]
- Westermann, S.; Langer, M.; Boike, J. Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sens. Environ. 2012, 118, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale. Remote Sens. 2013, 5, 2348–2367. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, M.; Zhao, J. A Comparison of MODIS LST Retrievals with in Situ Observations from AWS over the Lambert Glacier Basin, East Antarctica. Int. J. Geosci. 2013, 04, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Fréville, H.; Brun, E.; Picard, G.; Tatarinova, N.; Arnaud, L.; Lanconelli, C.; Reijmer, C.; van den Broeke, M. Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosph. 2014, 8, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Katurji, M.; Appelhans, T.; Müller, M.U.; Nauss, T.; Roudier, P.; Zawar-Reza, P. Mapping Daily Air Temperature for Antarctica Based on MODIS LST. Remote Sens. 2016, 8, 732. [Google Scholar] [CrossRef] [Green Version]
- Peón, J.; Recondo, C.; Calleja, J.F. Improvements in the estimation of daily minimum air temperature in peninsular Spain using MODIS land surface temperature. Int. J. Remote Sens. 2014, 35, 5148–5166. [Google Scholar] [CrossRef]
- Hachem, S.; Duguay, C.R.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Bañón, M.; Vasallo, F. Aemet en la Antártida. Climatología y Meteorología Sinóptica en Las Estaciones Meteorológicas en Las Estaciones Meteorológicas Españolas en la Antártida; AEMET: Madrid, Spain, 2015.
- Hobbs, G.J. The Geology of the South. Shetland Islands: IV. The Geology of Livingston Island; British Antarctic Survey: London, UK, 1968; Volume 47. [Google Scholar]
- Smellie, J.L.; Pankhurst, R.; Thomson, M.R.A.; Davies, R.E.S. The Geology of the South Shetland Islands: VI. Stratigraphy, Geochemistry and Evolution; British Antarctic Survey: Cambridge, UK, 1984; Volume 87, ISBN 0856651087. [Google Scholar]
- Tokarski, A.K. The Late Cretaceous-Cenozoic structural history of King George Island, South Shetland Islands, and its plate-tectonic setting. In Geological Evolution of Antarctica; Thomson, M.R., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 493–497. [Google Scholar]
- Santanach, P.; Pallás, R.; Sàbat, F.; Muñoz, J. La fracturación en la Isla Livingston, Islas Shetland del Sur. In Simposios: III Congreso geológico de España y VIII Congreso Latinoamericano de Geología; Universidad de Salamanca: Salamanca, Spain, 1992; pp. 141–151. [Google Scholar]
- Willan, R.C.R. Preliminary field observations on peperites and hydrothermal veins and breccias on Livingston Island, South Shetland Islands. Antarct. Sci. 1992, 4, 109–110. [Google Scholar] [CrossRef]
- Willan, R.C.R. Structural setting and timing of hydrothermal veins and breccias on Hurd Peninsula, South Shetland Islands: A possible volcanic-related epithermal system in deformed turbidites. Geol. Mag. 1994, 131, 465–483. [Google Scholar] [CrossRef]
- López-Martínez, J.; Martinez de Pison, E.; Arche, A. Geomorphology of Hurd Peninsula, Livingston Island, South Shetland Islands. In Recent Progress in Antarctic Earth Science; Yoshida, Y., Kaminuma, K., Shiraishi, K., Eds.; Terrapub: Tokyo, Japan, 1992; pp. 751–756. [Google Scholar]
- López-Martínez, J.; Vilaplana, J.; Martínez de Pisón, E.; Calvet, J.; Arche, A.; Serrat, D.; Pallàs, R. Geomorphology of selected areas in Livingston Island, South Shetland Islands. In Simposios: III Congreso geológico de España y VIII Congreso Latinoamericano de Geología. Vol. 3: Geología de la Antártida Occidental.; López-Martínez, J., Ed.; Universidad de Salamanca: Salamanca, Spain, 1992; pp. 271–281. ISBN 84-600-8114-1. [Google Scholar]
- López-Martínez, J.; Serrano, E.; Schmid, T.; Mink, S.; Linés, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 2012, 155, 62–79. [Google Scholar] [CrossRef]
- Lopez-Martinez, J.; Schmid, T.; Serrano, E.; Mink, S.; Nieto, A.; Guillaso, S. Geomorphology and surface landforms distribution in selected ice-free areas in the South Shetland Islands, Northern Antarctic Peninsula region. Cuad. Investig. Geográfica 2016, 42, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Pallàs, R.; Vilaplana, J.M.; Sàbat, F. Geomorphological and neotectonic features of Hurd Peninsula, Livingston Island, South Shetland Islands. Antarct. Sci. 1995, 7, 395–406. [Google Scholar] [CrossRef]
- Bockheim, J.G. Permafrost distribution in the southern circumpolar region and its relation to the environment: A review and recommendations for further research. Permafr. Periglac. Processes 1995, 6, 27–45. [Google Scholar] [CrossRef]
- Bañón, M. Personal Communication; AEMET: Madrid, Spain, 2017.
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [CrossRef]
- NASA LP DAAC, 2016, MODIS Land Surface Temperature and Emissivity (LST/E) Daily L3 Global 1 km Grid SIN Products (MOD11A1.005/MYD11A1.005). Version 5. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a1 (accessed on 20 April 2018).
- NASA NSIDC, 2016, MODIS Snow Cover Daily L3 Global 500 m Grid (MOD10A1.005/MYD10A1.005). Version 5.NASA National Snow and Ice Data Center Distributed Active Archive (NSIDC). Available online: http://nsidc.org/data/docs/daac/modis_v5/mod10a1_modis_terra_snow_daily_global_500m_grid.gd.html (accessed on 20 April 2018).
- Hall, D.K.; Salomonson, V.V.; Riggs, G.A. MODIS Snow Products. User Guide to Collection 5; NASA: National Snow and Ice Data Center Distributed Active Archive Center: Washington, DC, USA, 2006. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD, Version 3.3). Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (accessed on 20 April 2018).
- Wan, Z. Collection-5. MODIS Land Surface Temperature Products Users’ Guide, September 2006. Available online: http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf (accessed on 20 April 2018).
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons, Ltd.: Chichester, UK, 2007; ISBN 978-047051024-7. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Toreti, A.; Kuglitsch, F.G.; Xoplaki, E.; Della-Marta, P.M.; Aguilar, E.; Prohom, M.; Luterbacher, J. A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series. Int. J. Climatol. 2011, 31, 630–632. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Watts, D.G. Spectral Analysis and Its Applications, 5th ed.; Emerson-Adams Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Earth Obervation Research Center JAXA ALOS Global Digital Surface Model “ALOS World 3D—30m (AW3D30)”. Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (accessed on 21 June 2021).
- Kang, J.; Tan, J.; Jin, R.; Li, X.; Zhang, Y. Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information. Remote Sens. 2018, 10, 1112. [Google Scholar] [CrossRef] [Green Version]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Chang, C.; Laird, D.; Mausbach, M.; Hurburgh, C. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
AEMET Station | Latitude | Longitude | h (m) | Operation Dates |
---|---|---|---|---|
Juan Carlos I (JCI1) | 62°39′47′’S | 60°23′16′’W | 12 | 16 February 1988 30/December/2009 |
(JCI2) | 62°39′48′’S | 60°23′19′’W | 13 | 31/December/2009 Present |
Johnsons Glacier (JG) | 62°40′16′’S | 60°21′51′’W | 178 | 1/December/2006 24 January 2015 |
Hurd Glacier (HG) | 62°41′48′’S | 60°24′44′’W | 93 | 25 January 2015 Present |
Our Team’s Station | Latitude | Longitude | h (m) | Operation Dates |
---|---|---|---|---|
Incinerador (INC1) | 62°39′47”S | 60°23′16”W | 12 | 25 February 2000 20 January 2006 |
(INC2) | 62°39′53”S | 60°23′08”W | 34 | 23 January 2006 Present |
Reina Sofía (SOF) | 62°40′16”S | 60°22′46”W | 271 | 25 February 2000 Present |
Collado Ramos (CR) | 62°40′03”S | 60°23′32”W | 117 | 2 February 2006 Present |
Station | Time Period | % Days- LST Data | % Days- Ta Data | % Days-“Good” LST Data |
---|---|---|---|---|
JCI1 | Terra: 3-May.-2000/ 30-Dec.-2009 3529 days | 35 (Terra-Day) 26 (Terra-Night) | 73 | 4 (Terra-Day) 1 (Terra-Night) |
Aqua: 8-Jul.-2002/ 30-Dec.-2009 2716 days | 36 (Aqua-Day) 25 (Aqua-Night) | 80 | 5 (Aqua-Day) 2 (Aqua-Night) | |
JCI2 | Terra: 31-Dec.-2009/ 17-Feb.-2016 2197 days | 35 (Terra-Day) 26 (Terra-Night) | 96 | 5 (Terra-Day) 2 (Terra-Night) |
Aqua: 32-Dec.-2009/ 21-Feb.-2016 2207 days | 33 (Aqua-Day) 23 (Aqua-Night) | 96 | 4 (Aqua-Day) 3 (Aqua-Night) | |
JG | Terra: 2-Dec.-2006/ 24-Jan.-2015 1451 days | 28 (Terra-Day) 21 (Terra-Night) | 98 | 4 (Terra-Day) 1 (Terra-Night) |
Aqua: 2-Dec.-2006/ 24-Jan.-2015 1455 days | 25 (Aqua-Day) 18 (Aqua-Night) | 98 | 4 (Aqua-Day) 0.4 (Aqua-Night) | |
HG | Terra: 25-Jan.-2015/ 14-Feb.-2016 115 days | 13 (Terra-Day) 5 (Terra-Night) | 100 | 0 (Terra-Day) 0 (Terra-Night) |
Aqua: 25-Jan.-2015/ 14-Feb.-2016 115 days | 11 (Aqua-Day) 3 (Aqua-Night) | 100 | 0 (Aqua-Day) 0 (Aqua-Night) | |
INC2 | Terra: 23-Jan.-2006/ 9-Feb.-2016 3655 days | 36 (Terra-Day) 27 (Terra-Night) | 99 | 5 (Terra-Day) 2 (Terra-Night) |
Aqua: 23-Jan.-2006/ 9-Feb.-2016 3663 days | 34 (Aqua-Day) 24 (Aqua-Night) | 99 | 5 (Aqua-Day) 3 (Aqua-Night) | |
SOF | Terra: 23-Feb.-2002/ 20-Jan.-2015 4165 days | 33 (Terra-Day) 26 (Terra-Night) | 100 | 3 (Terra-Day) 1 (Terra-Night) |
Aqua: 8-Jul.-2002/ 20-Jan.-2015 4040 days | 32 (Aqua-Day) 22 (Aqua-Night) | 100 | 2 (Aqua-Day) 1 (Aqua-Night) | |
CR | Terra: 2-Feb.-2006/ 9-Feb.-2016 3276 days Aqua: 2-Feb.-2006/ 9-Feb.-2016 3279 days | 27 (Terra-Day) 19 (Terra-Night) 26 (Aqua-Day) 18 (Aqua-Night) | 100 100 | 2 (Terra-Day) 1 (Terra-Night) 1 (Aqua-Day) 1 (Aqua-Night) |
Station | Time Period | Ta Model = Offset + Linear Trend + One Sine-Cosine Harmonic Ta = f (t) | C | φ | LOESS Method: Ta-Trend Tini, Tfin, ΔTa (°C) |
---|---|---|---|---|---|
JCI1 | 1-Jan.-2000/ 30-Dec.-2009 | Ta = (291 ± 32) + (−0.15 ± 0.02) t + (1.43 ± 0.07) sin2πt + (2.93 ± 0.06) cos2πt | 3.26 | 1.12 | 0.55, −0.95, −1.5 |
JCI2 | 31-Dec.-2009/ 21-Feb.-2016 | Ta = (389 ± 66) + (−0.19 ± 0.03) t + (1.56 ± 0.08) sin2πt + (2.98 ± 0.08) cos2πt | 3.36 | 1.09 | −1.01, −2.60, −1.59 |
JG | 1-Dec.-2006/ 24-Jan.-2015 | Ta = (147 ± 62) + 0 t + (0.7 ± 0.1) sin2πt + (2.80 ± 0.09) cos2πt | 2.89 | 1.33 | −2.27, −2.04, 0.23 |
HG | 25-Jan.-2015/ 15-Feb.-2016 | Not applicable | Not applicable | ||
INC2 | 23-Jan.-2006/ 9-Feb.-2016 | Ta = (4 ± 30) + 0 t + (1.56 ± 0.06) sin2πt + (2.90 ± 0.06) cos2πt | 3.29 | 1.08 | −2.65, −2.24, 0.41 |
SOF | 23-Feb.-2002/ 20-Jan.-2015 | Ta = (−179 ± 25) + (0.09 ± 0.01) t + (1.46 ± 0.07) sin2πt + (3.12 ± 0.07) cos2πt | 3.44 | 1.13 | −3.81, −2.73, 1.08 |
CR | 2-Feb.-2006/ 9-Feb.-2016 | Ta = (−68 ± 30) + (0.03 ± 0.02) t + (1.80 ± 0.07) sin2πt + (2.89 ± 0.07) cos2πt | 3.40 | 1.01 | −4.07, −3.26, 0.81 |
Station MODIS Data | n | R2 | RSE (°C) | c1 (°C) | c2 (LST) | c3 (t) | c4 (sin) | c5 (cos) | |
---|---|---|---|---|---|---|---|---|---|
JCI1 | Terra-Day | 91 | 0.49 | 2.36 | 409.7 ± 197.9 | 0.19 ± 0.06 | −0.20 ± 0.10 | 0.9 ± 0.3 | 1.4 ± 0.6 |
Terra-Night | 21 | 0.46 | 2.25 | 0.2 ± 1.2 | 0.5 ± 0.1 | 0 | 0 | 0 | |
Aqua-Day | 67 | 0.56 | 2.3 | −2.1 ± 0.4 | 0.12 ± 0.06 * | 0 | 1.4 ± 0.4 | 2.7 ± 0.8 | |
Aqua-Night | 12 | 0.37 | 2.78 | −0.3 ± 2.7 | 0.5 ± 0.2 | 0 | 0 | 0 | |
JCI2 | Terra-Day | 83 | 0.61 | 1.46 | −0.9 ± 0.4 | 0.23 ± 0.05 | 0 | 1.6 ± 0.3 | 1.5 ± 0.5 |
Terra-Night | 31 | 0.72 | 1.23 | 2.82 ± 1.06 | 0.44 ± 0.07 | 0 | 1.9 ± 0.6 | 2.7 ± 1.1 | |
Aqua-Day | 58 | 0.5 | 2.47 | −0.6 ± 0.5 | 0.25 ± 0.06 | 0 | 1.1 ± 0.5 | 1.6 ± 0.8 | |
Aqua-Night | 18 | 0.74 | 2.5 | 1.2 ± 1.1 | 0.7 ± 0.1 | 0 | 0 | 0 | |
JG | Terra-Day | 53 | 0.26 | 2.20 | −1.7 ± 0.6 | 0.09 ± 0.07 ** | 0 | 0 | 1.8 ± 0.7 |
Terra-Night | 6 | 0.64 | 0.78 | 2 ± 1 | 0.4 ± 0.2 * | 0 | 0 | 0 | |
Aqua-Day | 54 | 0.45 | 2.39 | −3.4 ± 0.7 | 0.29 ± 0.06 | 0 | 1.8 ± 0.5 | 1 ± 1 | |
Aqua-Night | Not applicable | ||||||||
HG | Not applicable | ||||||||
INC2 | Terra-Day | 139 | 0.53 | 1.93 | −329.2 ± 152.5 | 0.26 ± 0.05 | 0.16 ± 0.08 | 1.2 ± 0.3 | 0.9 ± 0.5 |
Terra-Night | 45 | 0.44 | 2.2 | 0.6 ± 0.7 | 0.44 ± 0.07 | 0 | 0 | 0 | |
Aqua-Day | 98 | 0.51 | 2.64 | −503.8 ± 169.3 | 0.23 ± 0.05 | 0.25 ± 0.08 | 1.4 ± 0.3 | 1.5 ± 0.6 | |
Aqua-Night | 30 | 0.55 | 2.17 | 0.8 ± 0.9 | 0.55 ± 0.08 | 0 | 0 | 0 | |
SOF | Terra-Day | 118 | 0.61 | 2.21 | −400 ± 121 | 0.57 ± 0.06 | 0.20 ± 0.06 | 0.7 ± 0.3 | −1.4 ± 0.6 |
Terra-Night | 46 | 0.06 | 2.73 | 5 ± 1 | 0.18 ± 0.08 * | 0 | 0 | 0 | |
Aqua-Day | 91 | 0.49 | 2.51 | −399 ± 154 | 0.27 ± 0.05 | 0.20 ± 0.08 | 1.3 ± 0.3 | 1.4 ± 0.7 | |
Aqua-Night | 29 | 0.41 | 2.02 | 3 ± 2 | 0.6 ± 0.2 | 0 | 0 | 6 ± 3 | |
CR | Terra-Day | 72 | 0.66 | 2.15 | −440 ± 175 | 0.47 ± 0.04 | 0.22 ± 0.09 | 0.9 ± 0.3 | 0 |
Terra-Night | 26 | 0.36 | 1.96 | −1 ± 1 | 0.40 ± 0.08 | 0 | 0 | 0 | |
Aqua-Day | 38 | 0.63 | 2.87 | −862 ± 352 | 0.52 ± 0.07 | 0.4 ± 0.2 | 0 | 0 | |
Aqua-Night | 30 | 0.68 | 2.58 | −803 ± 350 | 0.5 ± 0.1 | 0.4 ± 0.2 | −6 ± 2 | 0 |
MODIS Data | n | R2 | RSE (°C) | c1 (°C) | c2 (LST) | c3 (t) | c4 (sin) | c5 (cos) | c6 (c) | c7 (s) | c8 (d) | c9 (H) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Terra-Day | 556 | 0.55 | 2.14 | −0.7± 0.2 | 0.31 ± 0.02 | 0 | 1.1 ± 0.1 | 0.7 ± 0.2 | 201 ± 25 | −3.3 ± 0.8 | 0 | 0 |
Terra-Night | 175 | 0.39 | 2.10 | −0.9 ± 0.4 | 0.39 ± 0.4 | 0 | 0 | 0 | 169 ± 35 | 0 | 0 | 0 |
Aqua-Day | 406 | 0.51 | 2.7 | −291 ± 78 | 0.25 ± 0.02 | 0.14 ± 0.04 | 1.3 ± 0.2 | 1.6 ± 0.3 | 0 | 0 | −0.0018 ± 0.0003 | 0 |
Aqua-Night | 119 | 0.56 | 2.74 | 2.9 ± 0.8 | 0.57 ± 0.06 | 0 | 0 | 4 ± 1 | 0 | 0 | 0 | −0.04 ± 0.03 |
Station | MODIS Data | n | R2CV | RMSECV (°C) | RPD | Bias (°C) |
---|---|---|---|---|---|---|
JCI1 | Terra-Day | 91 | 0.43 | 2.51 | 1.39 | −0.11 |
Terra-Night | 21 | 0.40 | 2.08 | 1.70 | −0.03 | |
Aqua-Day | 67 | 0.50 | 2.35 | 1.47 | −0.10 | |
Aqua-Night | 12 | 0.30 | 3.77 | 0.97 | −0.45 | |
JCI2 | Terra-Day | 83 | 0.58 | 2.69 | 1.39 | −0.05 |
Terra-Night | 31 | 0.64 | 1.73 | 2.12 | 0.01 | |
Aqua-Day | 58 | 0.40 | 3.47 | 1.09 | −0.10 | |
Aqua-Night | 18 | 0.69 | 2.26 | 1.73 | 0.08 | |
JG | Terra-Day | 53 | 0.16 | 2.43 | 1.24 | −0.14 |
Terra-Night | 6 | 0.03 | 1.28 | 2.41 | 0.07 | |
Aqua-Day | 54 | 0.35 | 3.29 | 1.00 | 0.22 | |
Aqua-Night | Not applicable | |||||
HG | Not applicable | |||||
INC2 | Terra-Day | 139 | 0.49 | 2.68 | 1.34 | −0.09 |
Terra-Night | 45 | 0.40 | 2.14 | 1.67 | 0.0005 | |
Aqua-Day | 98 | 0.44 | 3.01 | 1.24 | −0.04 | |
Aqua-Night | 30 | 0.53 | 2.71 | 1.42 | −0.23 | |
SOF | Terra-Day | 118 | 0.58 | 2.56 | 1.51 | 0.08 |
Terra-Night | 46 | 0.01 | 2.95 | 1.33 | −0.10 | |
Aqua-Day | 91 | 0.37 | 3.40 | 1.06 | 0.02 | |
Aqua-Night | 29 | 0.30 | 3.66 | 1.07 | −0.26 | |
CR | Terra-Day | 72 | 0.62 | 2.50 | 1.46 | 0.01 |
Terra-Night | 26 | 0.29 | 2.29 | 1.62 | 0.13 | |
Aqua-Day | 38 | 0.56 | 2.94 | 1.26 | −0.05 | |
Aqua-Night | 30 | 0.58 | 2.79 | 1.38 | −0.22 |
MODIS Data | n | R2CV | RMSECV (°C) | RPD | Bias (°C) |
---|---|---|---|---|---|
Terra-Day | 556 | 0.54 | 2.64 | 1.41 | −0.03 |
Terra-Night | 175 | 0.37 | 2.45 | 1.56 | −0.02 |
Aqua-Day | 406 | 0.48 | 2.97 | 1.25 | −0.03 |
Aqua-Night | 119 | 0.52 | 2.96 | 1.32 | −0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recondo, C.; Corbea-Pérez, A.; Peón, J.; Pendás, E.; Ramos, M.; Calleja, J.F.; de Pablo, M.Á.; Fernández, S.; Corrales, J.A. Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016. Remote Sens. 2022, 14, 3206. https://doi.org/10.3390/rs14133206
Recondo C, Corbea-Pérez A, Peón J, Pendás E, Ramos M, Calleja JF, de Pablo MÁ, Fernández S, Corrales JA. Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016. Remote Sensing. 2022; 14(13):3206. https://doi.org/10.3390/rs14133206
Chicago/Turabian StyleRecondo, Carmen, Alejandro Corbea-Pérez, Juanjo Peón, Enrique Pendás, Miguel Ramos, Javier F. Calleja, Miguel Ángel de Pablo, Susana Fernández, and José Antonio Corrales. 2022. "Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016" Remote Sensing 14, no. 13: 3206. https://doi.org/10.3390/rs14133206
APA StyleRecondo, C., Corbea-Pérez, A., Peón, J., Pendás, E., Ramos, M., Calleja, J. F., de Pablo, M. Á., Fernández, S., & Corrales, J. A. (2022). Empirical Models for Estimating Air Temperature Using MODIS Land Surface Temperature (and Spatiotemporal Variables) in the Hurd Peninsula of Livingston Island, Antarctica, between 2000 and 2016. Remote Sensing, 14(13), 3206. https://doi.org/10.3390/rs14133206