Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,667)

Search Parameters:
Keywords = air temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7151 KB  
Article
Carbonate Inhibition in Au-Cu/γ-Al2O3 Catalysts for CO Oxidation
by Karla López, Gamaliel Che-Galicia, Rodolfo Zanella, Jesús F. Guayaquil-Sosa and Alvaro Sampieri
Catalysts 2025, 15(11), 1080; https://doi.org/10.3390/catal15111080 - 14 Nov 2025
Abstract
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and [...] Read more.
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and 1:1.5) that were synthesized on γ-Al2O3 via sequential deposition–precipitation with urea. The catalysts were pretreated in either air or H2 and evaluated for CO oxidation activity and stability. A comprehensive characterization (EDS, BET, TEM, H2-TPR, O2-TPO, XPS, DRIFTS, and UV–Vis) was used to investigate particle size, metal oxidation states, and redox properties. Among all materials, the AuCu 1:1 catalyst exhibited the highest low-temperature CO conversion (>90% at 0 C) and improved stability during 24 h tests, reflecting minimal nanoparticle sintering as confirmed by TEM analysis. In situ DRIFTS revealed that the presence of Cu+ and Cu2+ minimizes the accumulation of free carbonates (one of the main deactivation pathways in Au/γ-Al2O3) while promoting the formation of reactive intermediates that facilitate CO2 production. Notably, air pretreatment at moderate temperature proved as effective as H2 pretreatment in activating both monometallic and bimetallic catalysts. These findings highlight the role of Cu as a structural and electronic promoter of gold, offering practical guidelines for designing durable, cost-effective catalysts for low-temperature CO oxidation on non-reducible supports. Full article
20 pages, 1581 KB  
Article
A Hybrid Earth–Air Heat Exchanger with a Subsurface Water Tank: Experimental Validation in a Hot–Arid Climate
by Safieddine Ounis, Okba Boucherit, Abdelhafid Moummi, Tallal Abdel Karim Bouzir, Djihed Berkouk, Fabrizio Leonforte, Claudio Del Pero and Mohammed M. Gomaa
Sustainability 2025, 17(22), 10216; https://doi.org/10.3390/su172210216 - 14 Nov 2025
Abstract
Earth–Air Heat Exchangers (EAHEs) exploit stable subsurface temperatures to pre-condition supply air. To address limitations of conventional systems in hot–arid climates, this study investigates the performance of a hybrid EAHE prototype combining a serpentine subsurface pipe with a buried water tank. Installed in [...] Read more.
Earth–Air Heat Exchangers (EAHEs) exploit stable subsurface temperatures to pre-condition supply air. To address limitations of conventional systems in hot–arid climates, this study investigates the performance of a hybrid EAHE prototype combining a serpentine subsurface pipe with a buried water tank. Installed in a residential building in Lichana, Biskra (Algeria), the system was designed to enhance land compactness, thermal stability, and soil–water heat harvesting. Experimental monitoring was conducted across 13 intervals strategically spanning seasonal transitions and extremes and was complemented by calibrated numerical simulations. From over 30,000 data points, outlet trajectories, thermal efficiency, Coefficient of Performance (COP), and energy savings were assessed against a straight-pipe baseline. Results showed that the hybrid EAHE delivered smoother outlet profiles under moderate gradients while the baseline achieved larger instantaneous ΔT. Thermal efficiencies exceeded 90% during high-gradient episodes and averaged above 70% annually. COP values scaled with the inlet–soil gradient, ranging from 1.5 to 4.0. Cumulative recovered energy reached 80.6 kWh (3.92 kWh/day), while the heat pump electricity referred to a temperature-dependent ASHP totaled 34.59 kWh (1.40 kWh/day). Accounting for the EAHE fan yields a net saving of 25.46 kWh across the campaign, only one interval (5) was net-negative, underscoring the value of bypass/fan shut-off under weak gradients. Overall, the hybrid EAHE emerges as a footprint-efficient option for arid housing, provided operation is dynamically controlled. Future work will focus on controlling logic and soil–moisture interactions to maximize net performance. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
30 pages, 3094 KB  
Article
Influence of Urban Greenery on Microclimate Across Temporal and Spatial Scales
by Isidora Simović, Mirjana Radulović, Jelena Dunjić, Stevan Savić and Ivan Šećerov
Forests 2025, 16(11), 1729; https://doi.org/10.3390/f16111729 - 14 Nov 2025
Abstract
This study investigates the influence of urban greenery on microclimate conditions in Novi Sad, a city characterized by a temperate oceanic climate, by integrating high-resolution remote sensing data with in situ measurements from 12 urban climate stations. Sentinel-2 imagery was used to capture [...] Read more.
This study investigates the influence of urban greenery on microclimate conditions in Novi Sad, a city characterized by a temperate oceanic climate, by integrating high-resolution remote sensing data with in situ measurements from 12 urban climate stations. Sentinel-2 imagery was used to capture vegetation patterns, including tree lines and small green patches, while air temperature data were collected across two climatically contrasting years. Vegetation extent and structural characteristics were quantified using NDVI thresholds (0.6–0.8), capturing variability in vegetation activity and canopy density. Results indicate that high-activity vegetation, particularly dense tree canopies, exerts the strongest cooling effects, significantly influencing air temperatures up to 750 m from measurement sites, whereas total green area alone showed no significant effect. Cooling effects were most pronounced during summer and autumn, with temperature reductions of up to 2 °C in areas dominated by mature trees. Diurnal–nocturnal analyses revealed consistent spatial cooling patterns, while seasonal variability highlighted the role of evergreen and deciduous composition. Findings underscore that urban heat mitigation is driven more by vegetation structure and composition than by green area size, emphasizing the importance of preserving high-canopy trees in urban planning. This multidimensional approach provides actionable insights for optimizing urban greenery to enhance microclimate resilience. Full article
(This article belongs to the Special Issue Urban Forests and Greening for Sustainable Cities)
18 pages, 1850 KB  
Article
Study on Pyrolysis Characteristics and Combustibility of Typical Arbor Species Along Different Altitude Gradients in Southwestern Yunnan
by Qiuyang Du, Weike Li, Yingda Wu, Yiqi Wei, Jianati Nuerlan, Mingyu Wang, Lifu Shu, Tongxin Hu, Jibin Ning, Guang Yang and Kai Li
Forests 2025, 16(11), 1727; https://doi.org/10.3390/f16111727 - 14 Nov 2025
Abstract
This study aimed to systematically characterize the pyrolysis characteristics and combustibility of six typical tree species across different altitude gradients in southwestern Yunnan, providing references for fuel management and selection of potential fire-resistant species in this region. Thermogravimetric analysis (heating rate: 20 °C·min [...] Read more.
This study aimed to systematically characterize the pyrolysis characteristics and combustibility of six typical tree species across different altitude gradients in southwestern Yunnan, providing references for fuel management and selection of potential fire-resistant species in this region. Thermogravimetric analysis (heating rate: 20 °C·min−1, air atmosphere) was employed to obtain TG-DTG curves of bark, branches, and leaves. The Coats–Redfern integral method was applied to calculate kinetic parameters, and principal component analysis was conducted for comprehensive combustibility evaluation. The results demonstrated the following: (1) The pyrolysis process of all species underwent the following four distinct stages: moisture evaporation, holocellulose decomposition, lignin decomposition, and ash formation. Among these, holo-cellulose decomposition constituted the primary mass loss stage. Significant differences in pyrolysis characteristics were observed among different plant parts, with leaves and bark exhibiting lower initial pyrolysis temperatures; (2) The activation energy ranged from 56.05 to 86.41 kJ·mol−1 across different components, with branches requiring the highest energy for pyrolysis; (3) Principal component analysis based on multiple indicators yielded the following comprehensive combustibility ranking: Pinus yunnanensis > Betula alnoides > Lithocarpus henryi > Quercus acutissima > Cunninghamia lanceolata > Myrica rubra; and (4) The combustibility assessment results integrating multiple variables (total mass loss rate, stage-specific mass loss, activation energy, and ash content) showed significant differences from the analysis based solely on activation energy, verifying the necessity of a multi-dimensional comprehensive evaluation. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

28 pages, 17514 KB  
Article
Carbon Storage Distribution and Influencing Factors in the Northern Agro-Pastoral Ecotone of China
by Bolun Zhang and Haiguang Hao
Sustainability 2025, 17(22), 10197; https://doi.org/10.3390/su172210197 - 14 Nov 2025
Abstract
Under the global goals of carbon peaking and carbon neutrality, China’s northern agro-pastoral ecotone—an ecologically fragile transition zone with drastic land use/cover change (LUCC)—is characterized by a lack of in-depth understanding of its “land use conflict–carbon sink response” mechanism, which is essential for [...] Read more.
Under the global goals of carbon peaking and carbon neutrality, China’s northern agro-pastoral ecotone—an ecologically fragile transition zone with drastic land use/cover change (LUCC)—is characterized by a lack of in-depth understanding of its “land use conflict–carbon sink response” mechanism, which is essential for regional land optimization and carbon neutrality. This study quantified the spatiotemporal dynamics of carbon storage in the zone from 2000 to 2020 using the InVEST model and identified key driving factors by combining the XGBoost model (R2 = 0.73–0.88) with the SHAP framework. The results showed that regional total carbon storage increased by 30.11 × 106 tons (a net growth of 0.57%), mainly driven by forest carbon sinks (+65.74 × 106 tons, accounting for 218.3% of the total increase), while cropland and grassland underwent continuous carbon loss (−53.87 × 106 tons and −35.80 × 106 tons, respectively). Spatially, this presents a pattern of “high-value agglomeration in the central–southern region and low-value fragmentation at urban–rural edges”. The Normalized Difference Vegetation Index (NDVI) was the primary driver (average SHAP value: 426.15–718.91), with its interacting temperature factor evolving from air temperature (2000) to nighttime surface temperature (2020). This study reveals the coupling mechanism of “vegetation restoration–microenvironment regulation–carbon sink gain” driven by the Grain for Green Program, providing empirical support for land use optimization and carbon neutrality in agro-pastoral areas. Full article
Show Figures

Figure 1

28 pages, 20208 KB  
Article
Study on the Diurnal Difference of the Impact Mechanism of Urban Green Space on Surface Temperature and Sustainable Planning Strategies
by Mengrong Shu, Yichen Lu, Rongxiang Chen, Kaida Chen and Xiaojie Lin
Sustainability 2025, 17(22), 10193; https://doi.org/10.3390/su172210193 - 14 Nov 2025
Abstract
Urban densification intensifies the heat island effect, threatening ecological security. Green spaces, as crucial spatial elements in regulating the urban thermal environment, remain poorly understood in terms of their morphological characteristics and regulatory mechanisms, with a lack of systematic quantification and recognition of [...] Read more.
Urban densification intensifies the heat island effect, threatening ecological security. Green spaces, as crucial spatial elements in regulating the urban thermal environment, remain poorly understood in terms of their morphological characteristics and regulatory mechanisms, with a lack of systematic quantification and recognition of diurnal variations. This study, focusing on Shanghai’s main urban area, constructs physiological, physical, and morphological variables of green spaces based on high-resolution remote sensing data and the MSPA landscape morphology analysis framework. By integrating machine learning models with the SHAP interpretation algorithm, it analyses the influence mechanism of green spaces on Land Surface Temperature (LST) and its non-linear characteristics from the perspective of diurnal variation. The results indicate the following: (1) Green spaces exhibit pronounced diurnal variation in LST influence. Daytime cooling is primarily driven by vegetation cover, vegetation activity, and surface albedo through evapotranspiration and shading; night-time cooling depends on soil moisture and green space spatial structure and is achieved via thermal storage-radiative heat dissipation and cold air transport. (2) Green space indicators exhibit pronounced nonlinearity and threshold effects on LST. Optimal cooling efficiency occurs under moderate vegetation activity and moderate humidity conditions, whereas extreme high humidity or high vegetation activity may induce heat retention effects. (3) Day–night thermal regulation mechanisms differ markedly. Daytime cooling primarily depends on vegetation transpiration and shading to suppress surface warming; night-time cooling is dominated by soil thermal storage release, longwave radiation dissipation, and ventilation transport, enabling cold air to diffuse across the city and establishing a stable, three-dimensional nocturnal cooling effect. This study systematically reveals the distinct diurnal cooling mechanisms of high-density urban green spaces, providing theoretical support for refined urban thermal environment management. Full article
Show Figures

Figure 1

22 pages, 623 KB  
Review
Climate Change and Air Pollution-Related Health Effects on Pain
by Pamela Kushner, Pranab Kalita, Frédérique Bariguian Revel, Christie Oliver, Mounika Nangineedi and Mary Cardosa
Int. J. Environ. Res. Public Health 2025, 22(11), 1721; https://doi.org/10.3390/ijerph22111721 - 14 Nov 2025
Abstract
Climate change-related weather extremes and air pollution have wide-ranging health effects, with emerging evidence suggesting a potential influence on pain. This narrative review explores the relationship between climate-related weather parameters/air pollution with pain across various conditions, including chronic and acute musculoskeletal pain, postoperative [...] Read more.
Climate change-related weather extremes and air pollution have wide-ranging health effects, with emerging evidence suggesting a potential influence on pain. This narrative review explores the relationship between climate-related weather parameters/air pollution with pain across various conditions, including chronic and acute musculoskeletal pain, postoperative pain, headache/migraine, dysmenorrhea, and chest pain. Included studies were published in 2014 or later. Findings indicate that higher humidity/dampness may exacerbate pain in individuals with knee osteoarthritis, while extremes in temperature and humidity are linked to a higher risk of gout arthritis attacks. No clinically meaningful associations were found between weather parameters and acute low-back pain. However, lower barometric pressure, elevated temperatures, and possibly higher humidity may influence postoperative pain levels. Headache and migraine episodes were more frequent during heat waves and periods of high humidity or rainfall, as well as in areas with elevated traffic-related air pollutants and particulate matter. Air pollution exposure was also associated with increased risk of dysmenorrhea, while lower temperatures and higher humidity correlated with more severe menstrual cramps. Temperature extremes were linked to chest pain in patients with asthma and other conditions. Overall, this review highlights the disproportionate pain-related burden of climate change and air pollution on women and emphasizes the need for further research. Full article
Show Figures

Figure 1

22 pages, 6002 KB  
Article
Climate-Based Assessment of Radiative Cooling Potential Using Energy Simulation and Atmospheric Indicators
by Xiaolin Ding, Shanshan Li, Chenxi Hu, Qian Yu, Hiroatsu Fukuda and Weijun Gao
Buildings 2025, 15(22), 4098; https://doi.org/10.3390/buildings15224098 - 14 Nov 2025
Abstract
Rising global temperatures are driving an urgent need for buildings that consume less energy while maintaining comfort. Cooling demand is surging worldwide, yet conventional air-conditioning remains energy-intensive and carbon-heavy. Against this backdrop, radiative cooling materials have gained attention as a passive solution capable [...] Read more.
Rising global temperatures are driving an urgent need for buildings that consume less energy while maintaining comfort. Cooling demand is surging worldwide, yet conventional air-conditioning remains energy-intensive and carbon-heavy. Against this backdrop, radiative cooling materials have gained attention as a passive solution capable of reflecting incoming solar radiation while emitting thermal energy to the sky. This study aims to establish a climate-informed framework that quantitatively predicts the energy-saving potential of façade-integrated radiative-cooling materials across diverse East Asian climates. By synergizing hour-by-hour building-energy simulation with three novel atmospheric suitability indices, we provide a transferable methodology for selecting and optimizing passive cooling strategies at urban and regional scales. Three façade configurations were tested, i.e., a conventional absorptive surface, a common radiative cooling surface, and an idealized high-reflectance and high-emissivity surface. The results show that the ideal case can reduce wall surface temperatures by up to 20 °C, suppress diurnal heat flux swings by 60–80%, and cut annual cooling demand by 5–80 kWh per square meter, depending on climate conditions. To generalize these findings, three new indices—the Weather Structure Index, Diurnal Temperature Index, and Composite Climate Applicability—were proposed. Regression models with R2 values above 0.9 confirm the Composite Climate Applicability index as a robust predictor of energy-saving potential. The outcomes demonstrate that radiative cooling is not only highly effective in hot, humid regions but also unexpectedly beneficial in clear, cold climates, offering a practical, climate-informed framework for advancing low-carbon building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 530 KB  
Article
Drying Temperature Dictates Ileal Amino Acid Digestibility of Enzyme-Treated Soybean Meal in 25 kg Pigs
by Xianyi Tan, Chao Liu, Lixuan Lu, Yong Zhuo, Lin Li and Yunxiang Liang
Animals 2025, 15(22), 3288; https://doi.org/10.3390/ani15223288 - 13 Nov 2025
Abstract
Soybean meal causes health issues in piglets due to the presence of antigenic proteins. Although enzymatic treatment can break down antigenic proteins, subsequent high-temperature drying may impair amino acid (AA) digestibility via the Maillard reaction. This study evaluated whether the air-drying temperature affects [...] Read more.
Soybean meal causes health issues in piglets due to the presence of antigenic proteins. Although enzymatic treatment can break down antigenic proteins, subsequent high-temperature drying may impair amino acid (AA) digestibility via the Maillard reaction. This study evaluated whether the air-drying temperature affects the ileal AA digestibility of a novel reduced-sugar enzyme-treated soybean meal (ESM) in 25 kg pigs, using fishmeal as a high-digestibility reference. In two trials using pigs fitted with simple T-cannulas in the terminal ileum, ileal digestibility was assessed. In trial 1, a replicated 3 × 3 Latin square design with three diets (fishmeal, ESM, and a nitrogen-free diet; two pigs per diet) and three periods were used per square. Fishmeal showed greater apparent (82.50% vs. 45.01%) and standardized (86.60% vs. 48.86%) digestibility of crude protein and all amino acids than ESM dried at 130 °C. In trial 2, eight pigs were allocated to two diets in a two-period crossover design to compare the AA digestibility of ESM dried at high (130 °C; HtESM) and low (80 °C; LtESM) temperatures. LtESM exhibited greater apparent (82.24% vs. 52.40%) and standardized (86.37% vs. 56.47%) digestibility of crude protein and more amino acids than HtESM. Collectively, the drying temperature critically determined the AA digestibility of ESM, irrespective of its reducing sugar content. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 4277 KB  
Article
Spatiotemporal Trends and Drivers of PM2.5 Concentrations in Shandong Province from 2014 to 2023 Under Socioeconomic Transition
by Shuaisen Qiao, Qingchun Guo, Zhenfang He, Genyue Feng, Zhaosheng Wang and Xinzhou Li
Toxics 2025, 13(11), 978; https://doi.org/10.3390/toxics13110978 - 13 Nov 2025
Abstract
China’s rapid economic growth since its reform and opening-up has come at the cost of worsening atmospheric pollution. This study investigates the spatiotemporal evolution and driving mechanisms of PM2.5 concentrations in Shandong province, a key industrial region, during 2014–2023, using comprehensive air [...] Read more.
China’s rapid economic growth since its reform and opening-up has come at the cost of worsening atmospheric pollution. This study investigates the spatiotemporal evolution and driving mechanisms of PM2.5 concentrations in Shandong province, a key industrial region, during 2014–2023, using comprehensive air quality monitoring, meteorological observations, and socioeconomic datasets. Through spatial analysis and geodetector methods, we identify that (1) The annual PM2.5 concentration decreases significantly by 50.9%; spatially, heterogeneity is observed with the western urban agglomeration experiencing more severe pollution, while the eastern coastal urban agglomeration exhibits better air quality. (2) Gravity model analysis shows that the centroids of PM2.5 pollution undergo distinct migration phases. (3) PM2.5 levels show a distinct seasonal pattern, peaking in winter at a level 143.7% higher than the summer average. (4) The meteorological driving factors are primarily air temperature (r = 0.511) and wind speed (r = −0.487), while the socioeconomic factors are tertiary industry production (r = −0.971), particulate matter emissions (r = 0.956), and sulfur dioxide emissions (r = 0.938). Concurrently, the combined effect of tertiary industry production and PM emissions account for 99.5% of PM2.5 variability. Notably, we validate an Environmental Kuznets Curve relationship (R2 = 0.805) between economic development and air quality improvement, demonstrating that clean production policy integration can reconcile environmental and economic objectives. These findings provide empirical evidence supporting circular economy strategies for air pollution mitigation in industrializing regions. Full article
Show Figures

Figure 1

19 pages, 2993 KB  
Article
Experimental Study on the Factors Influencing the Heat Transfer Coefficient of Vertical Tube Indirect Evaporative Coolers
by Tiezhu Sun, Guangyu Tian, Peixuan Li, Wenkang Li and Huan Sun
Energies 2025, 18(22), 5967; https://doi.org/10.3390/en18225967 - 13 Nov 2025
Abstract
This study looks into the parameters that affect the heat transfer coefficient (h2) on the wet surfaces of vertical tube indirect evaporative coolers (VTIEC). An experimental platform was used to investigate the impact of secondary-to-primary airflow ratios (AFR) and spray [...] Read more.
This study looks into the parameters that affect the heat transfer coefficient (h2) on the wet surfaces of vertical tube indirect evaporative coolers (VTIEC). An experimental platform was used to investigate the impact of secondary-to-primary airflow ratios (AFR) and spray water density on the HTC. The findings show that raising the primary air temperature drop, expanding the outside dry-bulb and wet-bulb temperature differences, and decreasing the air-to-water ratio improve heat transmission. The HTC of the wet sides ranged from 34.79 to 924.5 W/(m2·°C) throughout testing. To achieve optimal performance, aim for a spray water density of 2.07 to 3.46 m3/(m2·h), an AFR of 0.5 to 0.6, and a primary air temperature drop of at least 6 °C. These factors help keep the h2 above 350 W/(m2·°C). Full article
(This article belongs to the Section J2: Thermodynamics)
Show Figures

Figure 1

18 pages, 3453 KB  
Article
Dual-Drive Window Control Method for Continuous Grain Drying Based on Water Potential Accumulation
by Zhe Liu, Xing Jin, Junyi Chen, Wenfu Wu, Feng Han and Yan Xu
Agriculture 2025, 15(22), 2355; https://doi.org/10.3390/agriculture15222355 - 13 Nov 2025
Abstract
In agricultural production, numerous nonlinear, time-lagged, and continuously disturbed deterministic processes require effective regulation. This study proposed a window AI control method driven by mechanism and data, which was studied and applied in continuous grain drying process based on the concepts of micro-environment [...] Read more.
In agricultural production, numerous nonlinear, time-lagged, and continuously disturbed deterministic processes require effective regulation. This study proposed a window AI control method driven by mechanism and data, which was studied and applied in continuous grain drying process based on the concepts of micro-environment absolute water potential and water potential accumulation. A control system for continuous grain drying was established based on absolute water potential accumulation, and three sets of experiments were conducted: constant temperature drying (water potential accumulation control window, hot air temperatures of three drying sections: 40 °C, 40 °C, 40 °C; relative humidity: 35–40%), increasing temperature drying (water potential accumulation control window, hot air temperatures of three drying sections: 35 °C, 40 °C, 45 °C; relative humidity: 35–40%), and a control experiment (equivalent accumulated temperature control window, hot air temperatures of three drying sections: 40 °C, 40 °C, 40 °C; relative humidity: 35–40%). The results showed that the outlet moisture content ranged from 15.08% to 15.86%, 15.30% to 15.91%, and 15.10% to 15.95%, respectively. The outlet moisture control accuracy ranged from −0.42% to 0.36%, −0.2% to 0.41%, and −0.4% to 0.45%, respectively. Analysis of grain quality indicators (damage percentage, germination percentage, fatty acid value) and microscopic structure revealed the following order: increasing temperature drying > constant temperature drying > control experiment. Compared with the control experiment adopting the equivalent accumulated temperature window control method, the proposed method exhibited higher control accuracy and stability. By integrating coupled temperature and humidity parameters into the variables, the quality of dried grains was effectively guaranteed. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

15 pages, 1115 KB  
Article
AI-Driven Cognitive Digital Twin for Optimizing Energy Efficiency in Industrial Air Compressors
by Mawande Sikibi, Thokozani Justin Kunene and Lagouge Tartibu
Technologies 2025, 13(11), 519; https://doi.org/10.3390/technologies13110519 - 12 Nov 2025
Abstract
Energy efficiency is widely recognized as a critical strategy for reducing energy consumption in industrial systems. Improving energy efficiency has become a central point in industrial systems aiming to reduce energy consumption and operational costs. Industrial air compressors are among the most energy-intensive [...] Read more.
Energy efficiency is widely recognized as a critical strategy for reducing energy consumption in industrial systems. Improving energy efficiency has become a central point in industrial systems aiming to reduce energy consumption and operational costs. Industrial air compressors are among the most energy-intensive assets and often operate under static control policies that fail to adapt to real-time dynamics. This paper proposes a cognitive digital twin (CDT) framework that integrates reinforcement learning as, especially, a Proximal Policy Optimization (PPO) agent into the virtual replica of the air compressor system. CDT learns continuous from multidimensional telemetry which includes power, outlet pressure, air flow, and intake temperature, enabling autonomous decision-making, fault adaptation, and dynamic energy optimization. Simulation results demonstrate that PPO strategy reduces average SEC by 12.4%, yielding annual energy savings of approximately 70,800 kWh and a projected payback period of one year. These findings highlight the CDT potential to transform industrial asset management by bridging intelligent control. Full article
(This article belongs to the Special Issue AI for Smart Engineering Systems)
Show Figures

Figure 1

23 pages, 1872 KB  
Article
The Indoor Environment During Swimming Competitions and Its Impact on Construction Materials: Airborne Trichloramine as a Degradation Factor
by Małgorzata Kieszkowska-Krzewicka, Katarzyna Ratajczak, Katarzyna Peta and Robert Artur Cichowicz
Appl. Sci. 2025, 15(22), 12040; https://doi.org/10.3390/app152212040 - 12 Nov 2025
Abstract
Swimming is one of the most popular forms of recreational sport worldwide, recommended for people of all ages as a healthy activity. While numerous studies have focused on the impact of indoor air quality on the health of pool users, relatively few have [...] Read more.
Swimming is one of the most popular forms of recreational sport worldwide, recommended for people of all ages as a healthy activity. While numerous studies have focused on the impact of indoor air quality on the health of pool users, relatively few have addressed how specific airborne parameters in indoor swimming facilities affect the durability of construction materials. This article analyzes the current state of knowledge on the influence of the pool indoor environment on structural reliability, with trichloramine (NCl3) emphasized as a degradation factor. Indoor pool environments are classified as chemically aggressive, due to elevated air temperature (~30 °C), high humidity (often exceeding 60%), and the presence of volatile chlorine compounds released from disinfected water. Our case study demonstrates that during swimming competitions, the average concentration of airborne NCl3 reached a value of 900 µg/m3, with peaks up to 1200 µg/m3, i.e., about ten times higher than on typical usage days. The median trichloramine concertation during the competition was 1071 µg/m3. Such exposure conditions accelerate corrosion processes in stainless steels and other building materials, reducing service life and requiring targeted monitoring and preventive maintenance. Based on the findings, recommendations are provided regarding material selection, highlighting the importance of surface texture, ventilation strategies, and protective measures tailored to periods of intensive facility use. Full article
(This article belongs to the Special Issue Surface Metrology in Advanced and Precision Manufacturing)
Show Figures

Figure 1

47 pages, 15788 KB  
Review
A Review of PCM Trombe Walls: Advances in Structural Optimization, Material Selection, and Operational Strategies
by Zhen Wang, Jinxuan Wang, Menghui Yu, Xinyi Zhang, Qingsong Ma, Yuling Xiao, Xindong Wei and Xin Yuan
Sustainability 2025, 17(22), 10123; https://doi.org/10.3390/su172210123 - 12 Nov 2025
Abstract
Given that building energy consumption accounts for a significant portion of total energy consumption, passive building technologies have demonstrated tremendous potential in addressing energy crises and the greenhouse effect. As a passive building technology, the Trombe wall (TW) can utilize solar energy to [...] Read more.
Given that building energy consumption accounts for a significant portion of total energy consumption, passive building technologies have demonstrated tremendous potential in addressing energy crises and the greenhouse effect. As a passive building technology, the Trombe wall (TW) can utilize solar energy to enhance building energy efficiency. However, due to their reliance on direct solar radiation patterns and limited thermal inertia characteristics, traditional TW systems exhibit inherent efficiency limitations. By integrating phase change materials (PCMs), TW systems can achieve high thermal storage performance and temperature control flexibility within a narrow temperature gradient range. By integrating functional materials, PCM-TW systems can be made multifunctional (e.g., through thermal catalysts for air purification). This has significant engineering implications. Therefore, this paper systematically reviews the development timeline of TWs, focusing on the evolution of PCM-TW technology and its performance. Based on this, the paper particularly emphasizes the roles of three key operational parameters: structural characteristics, thermophysical material design, and operational management. Importantly, through comparative analysis of existing systems, this paper identifies the shortcomings of current PCM-TW systems and proposes future improvement directions based on the review results. Full article
Show Figures

Figure 1

Back to TopTop