Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAS Data Collection
2.3. UAS Data Processing
2.4. Ground Measurements
2.5. Data Analysis
3. Results
3.1. Temporal Dynamics of CH
3.2. Temporal Dynamics of CC
3.3. Temporal Dynamics of VIs
3.4. Correlations Between Grain Yield and UAS-Based Parameters
4. Discussion
4.1. Growth Dynamics based on UAS-Based Canopy Traits
4.2. Association between UAS-Based Canopy Traits and Grain Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Canopy Cover |
CHM | Canopy Height Model |
CH | Canopy height |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
DTM | Digital Terrain Model |
ExG | Excess Green Index |
GPS | Global Positioning System |
GSD | Ground Sampling Distance |
HTP | High-Throughput Phenotyping |
MS | Multispectral |
NIR | Near-InfraRed |
NDRE | Normalized Difference Red-edge Index |
NDVI | Normalized Difference Vegetation Index |
UVT | Uniform Variety Trial |
UAS | Unmanned Aerial System |
Vis | Vegetation indices |
References
- Plains, S.; Field, R.; Post, O.; Box, O. May Crop Production Texas Wheat Production and Yield. 2020; 9992, 2019–2020. Available online: https://www.nass.usda.gov/Statistics_by_State/Texas/Publications/Current_News_Release/2020_Rls/spr-crop-prod-05-2020.pdf (accessed on 1 January 2021).
- Ray, R.L.; Fares, A.; Risch, E. Effects of Drought on Crop Production and Cropping Areas in Texas. Agric. Environ. Lett. 2018, 3, 170037. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.P.; Welch, J.M.; Robinson, J. Agricultural Impacts of Texas’s Driest Year on Record. Choices AAEA 2012, 27, 1–4. [Google Scholar]
- Bacelar, E.L.V.A.; Moutinho-Pereira, J.M.; Gonçalves, B.M.C.; Brito, C.V.Q.; Gomes-Laranjo, J.; Ferreira, H.M.F.; Correia, C.M. Water Use Strategies of Plants under Drought Conditions. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Springer: Berlin/Heidelberg, Germany, 2012; pp. 145–170. [Google Scholar] [CrossRef] [Green Version]
- Nezhadahmadi, A.; Prodhan, Z.H.; Faruq, G. Drought Tolerance in Wheat. Sci. World J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Blum, A.; Pnuel, Y. Physiological Attributes Associated with Drought Resistance of Wheat Cultivars in a Mediterranean Environment. Aust. J. Agric. Res. 1990, 41, 799–810. [Google Scholar] [CrossRef]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.A.; Baenziger, P.S.; Börner, A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A.; Stark, J.C.; Tanveer, A.; Mustafa, T. Use of Canopy Temperature Measurements as a Screening Tool for Drought Tool for Drought Tolerance in Spring Wheat. J. Agron. Crop Sci. 1999, 231–238. [Google Scholar] [CrossRef]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; James, R.A.; Condon, A.G.; Bovill, W.D.; Hutchinson, P.; Scarrow, J.; Davy, R.; Furbank, R.T. Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [Green Version]
- Manschadi, A.M.; Christopher, J.; Devoil, P.; Hammer, G.L. The Role of Root Architectural Traits in Adaptation of Wheat to Water-Limited Environments. Funct. Plant Biol. 2006, 33, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Botwright, T.L.; Condon, A.G.; Rebetzke, G.J.; Richards, R.A. Field Evaluation of Early Vigour for Genetic Improvement of Grain Yield in Wheat. Aust. J. Agric. Res. 2002, 53, 1137–1145. [Google Scholar] [CrossRef]
- Richards, R.A. Selectable Traits to Increase Crop Photosynthesis and Yield of Grain Crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Ludwig, F.; Asseng, S. Potential Benefits of Early Vigor and Changes in Phenology in Wheat to Adapt to Warmer and Drier Climates. Agric. Syst. 2010, 103, 127–136. [Google Scholar] [CrossRef]
- Large, E.C. Growth Stages in Cereals Illustration of the Feekes Scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Zhao, Z.; Rebetzke, G.J.; Zheng, B.; Chapman, S.C.; Wang, E. Modelling Impact of Early Vigour on Wheat Yield in Dryland Regions. J. Exp. Bot. 2019, 70, 2535–2548. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought in the North China Plain. J. Arid Land 2018, 10, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Tigkas, D.; Tsakiris, G. Early Estimation of Drought Impacts on Rainfed Wheat Yield in Mediterranean Climate. Environ. Process. 2015, 2, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, S.; Hordyńska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechyńska-Hebda, M. Variation among Wheat (Triticum Easativum L.) Genotypes in Response to the Drought Stress: I–Selection Approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Hubbard, K.G.; You, J.; Hunt, E.D. Development of the Soil Moisture Index to Quantify Agricultural Drought and Its “User Friendliness” in Severity-Area-Duration Assessment. J. Hydrometeorol. 2008, 9, 660–676. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Kumar, V. Influence of Irrigation on the Leaf Water Potentials and Yield of Wheat and Barley at Two Dates of Sowing. Field Crop. Res. 1979, 2, 117–124. [Google Scholar] [CrossRef]
- Alghory, A.; Yazar, A. Evaluation of Crop Water Stress Index and Leaf Water Potential for Deficit Irrigation Management of Sprinkler-Irrigated Wheat. Irrig. Sci. 2019, 37, 61–77. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.; He, X.; Zhang, X.; Chen, S.; Chen, J.; Yang, Y. Water Use Efficiency and Evapotranspiration of Winter Wheat and Its Response to Irrigation Regime in the North China Plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of Water Stress on Photosynthetic Characteristics, Dry Matter Translocation and WUE in Two Winter Wheat Genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Jin, N.; Ren, W.; Tao, B.; He, L.; Ren, Q.; Li, S.; Yu, Q. Effects of Water Stress on Water Use Efficiency of Irrigated and Rainfed Wheat in the Loess Plateau, China. Sci. Total Environ. 2018, 642, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, J. Effects of Water Stress on Photosynthesis, Chlorophyll Fluorescence and Photoinhibition in Wheat Plants. Aust. J. Plant Physiol. 1998, 25, 883–892. [Google Scholar] [CrossRef]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.A.; Mushore, T.D.; Gupta, A. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial Patterns of NDVI in Response to Precipitation and Temperature in the Central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the Utility of the Vegetation Condition Index (VCI) for Monitoring Meteorological Drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Salazar, L.; Kogan, F.; Roytman, L. Using Vegetation Health Indices and Partial Least Squares Method for Estimation of Corn Yield. Int. J. Remote Sens. 2008, 29, 175–189. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F.N. Monitoring Regional Drought Using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Stehr, N.J. Drones: The Newest Technology for Precision Agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [Google Scholar] [CrossRef]
- Haghighattalab, A.; González Pérez, L.; Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Application of Unmanned Aerial Systems for High Throughput Phenotyping of Large Wheat Breeding Nurseries. Plant Methods 2016, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, D.C.; Miceli-Garcia, J.J.; Lyon, D.J. Canopy Cover and Leaf Area Index Relationships for Wheat, Triticale, and Corn. Agron. J. 2012, 104, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.; Ibrahim, A.M.H.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing Winter Wheat Foliage Disease Severity Using Aerial Imagery Acquired from Small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, A.B.; George-Jaeggli, B.; Chapman, S.C.; Laws, K.; Cadavid, L.A.S.; Wixted, J.; Watson, J.; Eldridge, M.; Jordan, D.R.; Hammer, G.L. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, I.; Moro Rosso, L.H.; Secchi, M.A.; Ciampitti, I.A. Evaluating Sorghum Senescence Patterns Using Small Unmanned Aerial Vehicles and Multispectral Imaging. Kans. Agric. Exp. Stn. Res. Rep. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yang, X.; Heskel, M.; Sun, S.; Tang, J. Seasonal Variations of Leaf and Canopy Properties Tracked by Ground-Based NDVI Imagery in a Temperate Forest. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H. Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of Diverse Wheat (Triticum Aestivum L.) Genotypes Varying in Sensitivity to Heat and Drought Stress. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Remote Sensing Center Texas A&M University: College Station, TX, USA, 1974; p. 112. [Google Scholar]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Chen, P.Y.; Fedosejevs, G.; Tiscareño-López, M.; Arnold, J.G. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environ. Monit. Assess. 2006, 119, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Boiarskii, B. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. J. Mech. Contin. Math. Sci. 2019, spl1. [Google Scholar] [CrossRef]
- Morlin Carneiro, F.; Angeli Furlani, C.E.; Zerbato, C.; Candida de Menezes, P.; da Silva Gírio, L.A.; Freire de Oliveira, M. Comparison between Vegetation Indices for Detecting Spatial and Temporal Variabilities in Soybean Crop Using Canopy Sensors. Precis. Agric. 2020, 21, 979–1007. [Google Scholar] [CrossRef]
- Naser, M.A.; Khosla, R.; Longchamps, L.; Dahal, S. Using NDVI to Differentiate Wheat Genotypes Productivity under Dryland and Irrigated Conditions. Remote Sens. 2020, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic Monitoring of NDVI in Wheat Agronomy and Breeding Trials Using an Unmanned Aerial Vehicle. Field Crop. Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.W.; Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Xu, Z.Q.; Mao, W.; Li, W.X.; Huo, Z.Y.; Guo, W.S.; Yun, F. Quantitative Monitoring of Leaf Area Index in Wheat of Different Plant Types by Integrating NDVI and Beer-Lambert Law. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.; Govaerts, B.; Nelissen, V.; Sayre, K.D.; Crossa, J.; Raes, D.; Deckers, J. The Effect of Tillage, Crop Rotation and Residue Management on Maize and Wheat Growth and Development Evaluated with an Optical Sensor. Field Crop. Res. 2011, 120, 58–67. [Google Scholar] [CrossRef]
- Chu, L.; Liu, Q.S.; Huang, C.; Liu, G.H. Monitoring of Winter Wheat Distribution and Phenological Phases Based on MODIS Time-Series: A Case Study in the Yellow River Delta, China. J. Integr. Agric. 2016, 15, 2403–2416. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J. Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sens. 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.L.; Murray, S.C.; Malambo, L.; Ratcliff, C.; Popescu, S.; Cope, D.; Chang, A.; Jung, J.; Thomasson, J.A. Prediction of Maize Grain Yield before Maturity Using Improved Temporal Height Estimates of Unmanned Aerial Systems. Plant Phenome J. 2019, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Chopin, J.; Cai, J.; Eichi, V.R.; Haefele, S.; Miklavcic, S.J. Quantitative Estimation of Wheat Phenotyping Traits Using Ground and Aerial Imagery. Remote Sens. 2018, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-Green Traits to Improve Wheat Adaptation in Well-Watered and Water-Limited Environments. J. Exp. Bot. 2016, 67, 5159–5172. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, S.A.; Garland-Campbell, K.; Carter, A.H. Evaluation of Agronomic Traits and Spectral Reflectance in Pacific Northwest Winter Wheat under Rain-Fed and Irrigated Conditions. Field Crop. Res. 2016, 196, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Magney, T.S.; Eitel, J.U.H.; Huggins, D.R.; Vierling, L.A. Proximal NDVI Derived Phenology Improves In-Season Predictions of Wheat Quantity and Quality. Agric. For. Meteorol. 2016, 217, 46–60. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of Rice Phenology through Time Series Analysis of Ground-Based Spectral Index Data. Field Crop. Res. 2016, 198, 131–139. [Google Scholar] [CrossRef]
- Ahmed, K.; Shabbir, G.; Ahmed, M.; Shah, K.N. Phenotyping for Drought Resistance in Bread Wheat Using Physiological and Biochemical Traits. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef]
- Monneveux, P.; Jing, R.; Misra, S.C. Phenotyping for Drought Adaptation in Wheat Using Physiological Traits. Front. Physiol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.; Langridge, P. Physiological Breeding. Curr. Opin. Plant Biol. 2016, 31, 162–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, R.A. Physiological Traits Used in the Breeding of New Cultivars for Water-Scarce Environments. Agric. Water Manag. 2006, 80, 197–211. [Google Scholar] [CrossRef]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Front. Plant Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.; Chapman, S.; Crespo-Herrera, L.; Molero, G.; Mondal, S.; Pequeno, D.N.L.; Pinto, F.; Pinera-Chavez, F.J.; Poland, J.; Rivera-Amado, C.; et al. Breeder Friendly Phenotyping. Plant Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Senthilnath, J.; Wu, W.; Zhang, X.; Zeng, Z.; Huang, H. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, 11, 978. [Google Scholar] [CrossRef] [Green Version]
- Kharrou, M.H.; Er-Raki, S.; Chehbouni, A.; Duchemin, B.; Simonneaux, V.; LePage, M.; Ouzine, L.; Jarlan, L. Water Use Efficiency and Yield of Winter Wheat under Different Irrigation Regimes in a Semi-Arid Region. Agric. Sci. 2011, 2, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Wu, J.; Liu, L.; Leng, S.; Yang, J.; Zhao, W.; Shen, Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sens. 2020, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, G.P.; Prasad, P.V.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of Drought and High Temperature Stress on Synthetic Hexaploid Wheat. Funct. Plant Biol. 2012, 39, 190–198. [Google Scholar] [CrossRef]
- Shah, N.H.; Paulsen, G.M. Interaction of Drought and High Temperature on Photosynthesis and Grain-Filling of Wheat. Plant Soil 2003, 257, 219–226. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using Vegetation Indices Derived from Conventional Digital Cameras as Selection Criteria for Wheat Breeding in Water-Limited Environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, M.; Reynolds, M.P.; Escalante-Estrada, J.A.; Rodríguez-González, M.T. Association between Canopy Reflectance Indices and Yield and Physiological Traits in Bread Wheat under Drought and Well-Irrigated Conditions. Aust. J. Agric. Res. 2004, 55, 1139–1147. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Montesinos-López, A.; Crossa, J.; los Campos, G.; Alvarado, G.; Suchismita, M.; Rutkoski, J.; González-Pérez, L.; Burgueño, J. Predicting Grain Yield Using Canopy Hyperspectral Reflectance in Wheat Breeding Data. Plant Methods 2017, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Koppe, W.; Gnyp, M.L.; Hennig, S.D.; Li, F.; Miao, Y.; Chen, X.; Jia, L.; Bareth, G. Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain. Photogramm. Fernerkund. Geoinf. 2012, 2012, 281–298. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Rudd, J.C.; Xue, Q.; Bhandari, M.; Reddy, S.K.; Jessup, K.E.; Liu, S.; Devkota, R.N.; Baker, J.; Baker, S. Use of NDVI for Characterizing Winter Wheat Response to Water Stress in a Semi-Arid Environment. J. Crop Improv. 2019, 33, 633–648. [Google Scholar] [CrossRef]
- Li, J.; Veeranampalayam-Sivakumar, A.N.; Bhatta, M.; Garst, N.D.; Stoll, H.; Stephen Baenziger, P.; Belamkar, V.; Howard, R.; Ge, Y.; Shi, Y. Principal Variable Selection to Explain Grain Yield Variation in Winter Wheat from Features Extracted from UAV Imagery. Plant Methods 2019. [Google Scholar] [CrossRef] [PubMed]
2017/18 Growing Season (2018) | 2018/19 Growing Season (2019) | |||
---|---|---|---|---|
Irrigated | Dryland | Irrigated | Dryland | |
Planting | 17-Oct-17 | 11-Oct-17 | 15-Nov-18 | 30-Oct-18 |
Heading | 119–127 DOY | 113–123 DOY | 124–135 DOY | 122–129 DOY |
April 29–May 07 (2018) | April 23–May 04 (2018) | May 04–May 15 (2019) | May 02–May 09 (2019) |
DOY. | CC | CH | ExG | NDRE | NDVI | CC | CH | ExG | NDRE | NDVI |
---|---|---|---|---|---|---|---|---|---|---|
2018 Dryland | 2018 Irrigated | |||||||||
16 | −0.04 | −0.05 | −0.07 | −0.19 | −0.12 | - | - | - | 0.00 | 0.02 |
23 | 0.02 | −0.03 | −0.01 | −0.16 | −0.11 | 0.01 | −0.18 | −0.02 | 0.06 | 0.06 |
31 | 0.08 | 0.01 | 0.03 | −0.06 | −0.12 | 0.10 | −0.09 | 0.07 | 0.04 | 0.10 |
38 | −0.10 | −0.03 | −0.11 | −0.07 | −0.11 | 0.24 | −0.09 | 0.17 | 0.11 | 0.11 |
60 | −0.04 | −0.11 | −0.06 | 0.06 | −0.05 | 0.28 | 0.01 | 0.20 | 0.09 | 0.14 |
65 | 0.12 | −0.14 | 0.12 | 0.02 | −0.01 | 0.31 | 0.06 | 0.24 | 0.16 | 0.32 |
71 | 0.14 | −0.13 | −0.03 | −0.03 | −0.03 | 0.36 | 0.10 | 0.25 | 0.23 | 0.30 |
79 | 0.18 | −0.07 | 0.10 | 0.20 | 0.14 | 0.41 | 0.08 | 0.28 | 0.34 | 0.32 |
87 | 0.32 | 0.13 | 0.17 | 0.25 | 0.28 | 0.44 | 0.09 | 0.22 | 0.30 | 0.39 |
95 | 0.32 | 0.12 | 0.28 | 0.27 | 0.30 | 0.48 | 0.03 | 0.26 | 0.24 | 0.44 |
99 | 0.33 | 0.21 | 0.28 | 0.30 | 0.33 | 0.26 | 0.01 | 0.23 | 0.31 | 0.18 |
105 | 0.17 | 0.19 | 0.23 | 0.40 | 0.35 | 0.55 | 0.08 | 0.46 | 0.30 | 0.44 |
113 | 0.27 | 0.21 | 0.20 | 0.44 | 0.38 | 0.53 | 0.05 | 0.55 | 0.38 | 0.43 |
117 | 0.48 | 0.32 | 0.37 | 0.51 | 0.46 | - | - | - | - | - |
124 | 0.38 | 0.29 | 0.34 | 0.52 | 0.50 | 0.54 | 0.08 | 0.52 | 0.39 | 0.50 |
128 | 0.41 | 0.19 | 0.28 | 0.53 | 0.50 | 0.42 | 0.13 | 0.47 | 0.41 | 0.44 |
134 | 0.13 | 0.03 | −0.12 | 0.58 | 0.54 | 0.45 | 0.42 | 0.57 | 0.54 | 0.49 |
141 | - | - | - | - | - | 0.53 | 0.30 | 0.48 | 0.47 | 0.52 |
150 | - | - | - | - | - | 0.48 | 0.50 | 0.53 | 0.54 | 0.52 |
2019 Dryland | 2019 Irrigated | |||||||||
17 | −0.15 | −0.17 | −0.23 | −0.03 | −0.06 | −0.39 | 0.11 | −0.09 | −0.21 | −0.23 |
57 | 0.17 | −0.19 | 0.16 | 0.17 | 0.17 | −0.01 | 0.17 | −0.04 | 0.12 | −0.01 |
74 | 0.09 | −0.26 | 0.04 | −0.02 | 0.01 | −0.02 | 0.14 | −0.04 | 0.03 | 0.00 |
83 | −0.07 | −0.15 | −0.03 | −0.04 | −0.07 | 0.03 | 0.17 | 0.01 | 0.13 | 0.10 |
88 | 0.05 | −0.10 | 0.05 | 0.05 | 0.01 | 0.07 | 0.12 | −0.05 | −0.01 | 0.06 |
94 | 0.13 | 0.07 | 0.18 | 0.11 | 0.09 | 0.20 | 0.19 | −0.02 | 0.15 | 0.11 |
98 | 0.05 | 0.03 | 0.14 | 0.23 | 0.08 | 0.18 | 0.26 | −0.23 | 0.10 | 0.11 |
106 | 0.07 | 0.11 | 0.24 | 0.27 | 0.18 | 0.11 | 0.25 | −0.39 | 0.08 | 0.05 |
114 | 0.06 | 0.18 | 0.24 | 0.36 | 0.14 | 0.21 | 0.32 | −0.44 | 0.06 | 0.02 |
121 | 0.09 | 0.29 | 0.15 | 0.30 | 0.17 | 0.22 | 0.40 | −0.45 | −0.14 | 0.05 |
126 | 0.00 | 0.14 | −0.04 | 0.06 | 0.23 | 0.11 | 0.39 | −0.37 | −0.19 | −0.19 |
133 | 0.14 | 0.31 | 0.07 | 0.49 | 0.44 | 0.17 | 0.36 | −0.21 | −0.17 | −0.18 |
139 | 0.53 | 0.42 | 0.16 | 0.52 | 0.57 | 0.17 | 0.29 | −0.37 | −0.04 | −0.15 |
144 | 0.71 | 0.41 | 0.52 | 0.61 | 0.59 | - | - | - | - | - |
150 | 0.62 | 0.46 | 0.45 | 0.62 | 0.58 | 0.05 | 0.07 | −0.37 | −0.12 | −0.21 |
154 | 0.61 | 0.61 | 0.54 | 0.61 | 0.62 | 0.00 | 0.08 | −0.22 | −0.18 | −0.29 |
161 | 0.35 | 0.41 | 0.39 | 0.40 | 0.43 | 0.02 | 0.14 | −0.18 | −0.18 | −0.25 |
168 | - | - | - | - | - | 0.14 | 0.28 | −0.05 | −0.11 | −0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, M.; Baker, S.; Rudd, J.C.; Ibrahim, A.M.H.; Chang, A.; Xue, Q.; Jung, J.; Landivar, J.; Auvermann, B. Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sens. 2021, 13, 1144. https://doi.org/10.3390/rs13061144
Bhandari M, Baker S, Rudd JC, Ibrahim AMH, Chang A, Xue Q, Jung J, Landivar J, Auvermann B. Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sensing. 2021; 13(6):1144. https://doi.org/10.3390/rs13061144
Chicago/Turabian StyleBhandari, Mahendra, Shannon Baker, Jackie C. Rudd, Amir M. H. Ibrahim, Anjin Chang, Qingwu Xue, Jinha Jung, Juan Landivar, and Brent Auvermann. 2021. "Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping" Remote Sensing 13, no. 6: 1144. https://doi.org/10.3390/rs13061144
APA StyleBhandari, M., Baker, S., Rudd, J. C., Ibrahim, A. M. H., Chang, A., Xue, Q., Jung, J., Landivar, J., & Auvermann, B. (2021). Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sensing, 13(6), 1144. https://doi.org/10.3390/rs13061144