Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data
Abstract
:1. Introduction
2. Study Areas and Data Sets
2.1. Yushu County in China
2.2. Ishinomaki City in Japan
2.3. Mashiki Town in the Kumamoto Area of Japan
3. Methods
3.1. Non-Building Area Removal
3.1.1. The Selection of Classification Features
3.1.2. Non-Building Area Removal Procedure
3.2. Collapsed and Standing Building Classification
3.2.1. The OPCE Matching Algorithm and the Feature
Algorithm 1 OPCE matching algorithm |
Input: |
PolSAR image and target sample set |
Output: |
Feature |
1: |
2: for to do |
3: for to do |
4: |
5: |
6: |
7: |
8: end for |
9: end for |
10: return |
3.2.2. Multi-Feature-Based Collapsed and Standing Building Classification
4. Results
4.1. Results of Non-Building Area Removal
4.2. Results of Building Damage Detection
5. Discussion
5.1. The Selection of Parameters for the Calculation of Texture Features
5.1.1. Window Size
5.1.2. Direction
5.2. The Comparison of Two Evaluation Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, W.; Huang, C.L.; Pei, W.S. Building Damage Assessment Based on the Fusion of Multiple Texture Features Using a Single Post-Earthquake PolSAR Image. Remote Sens. 2019, 11, 897. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.Q.; Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2296–2309. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, X.S.; Xiao, S.P. Urban Damage Level Mapping Based on Co-Polarization Coherence Pattern Using Multitemporal Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2657–2667. [Google Scholar] [CrossRef]
- Ji, Y.Q.; Sri Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Assessment for Urban Areas Using Post-Event PolSAR Data. Remote Sens. 2018, 10, 1088. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Ueda, N.; Al-Najjar, H.A.H.; Halin, A.A. Assessment of Convolutional Neural Network Architectures for Earthquake-Induced Building Damage Detection based on Pre- and Post-Event Orthophoto Images. Remote Sens. 2020, 12, 3529. [Google Scholar] [CrossRef]
- Moya, L.; Yamazaki, F.; Liu, W.; Yamada, M. Detection of Collapsed Buildings from Lidar Data Due to the 2016 Kumamoto Earthquake in Japan. Nat. Hazards Earth Syst. Sci. 2018, 18, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Janalipour, M.; Mohammadzadeh, A. Building Damage Detection Using Object-Based Image Analysis and ANFIS From High-Resolution Image (Case Study: BAM Earthquake, Iran). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1937–1945. [Google Scholar] [CrossRef]
- Kaya, G.T.; Musaoglu, N.; Ersoy, O.K. Damage Assessment of 2010 Haiti Earthquake with Post-Earthquake Satellite Image by Support Vector Selection and Adaptation. Photogramm. Eng. Remote Sens. 2011, 77, 1025–1035. [Google Scholar] [CrossRef]
- Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions. Remote Sens. 2019, 11, 2765. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, E.; Nex, F.; Toschi, I.; Remondino, F. Contextual Classification Using Photometry and Elevation Data for Damage Detection After an Earthquake Event. Eur. J. Remote Sens. 2018, 51, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Duarte, D.; Steenbeek, A.; Kerle, N. Towards Real-Time Building Damage Mapping with Low-Cost UAV Solutions. Remote Sens. 2019, 11, 287. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.L.; Gokon, H.; Meguro, K. A Review on Synthetic Aperture Radar-based Building Damage Assessment in Disasters. Remote Sens. Environ. 2020, 240, 111693. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Use of Satellite SAR Intensity Imagery for Detecting Building Areas Damaged Due to Earthquakes. Earthq. Spectra 2004, 20, 975–994. [Google Scholar] [CrossRef]
- Matsuoka, M.; Nojima, N. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery. Remote Sens. 2010, 2, 2111–2126. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yamazaki, F. Extraction of Collapsed Buildings in the 2016 Kumamoto Earthquake Using Multi-Temporal PALSAR-2 Data. J. Disaster Res. 2017, 12, 241–250. [Google Scholar] [CrossRef]
- Hoffmann, J. Mapping Damage During the Bam (Iran) Earthquake Using Interferometric Coherence. Int. J. Remote Sens. 2007, 28, 1199–1216. [Google Scholar] [CrossRef]
- Chen, S.W.; Sato, M. Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1985–1997. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR. Proc. IEEE 2012, 100, 2851–2860. [Google Scholar] [CrossRef]
- Park, S.-E.; Jung, Y.T. Detection of Earthquake-Induced Building Damages Using Polarimetric SAR Data. Remote Sens. 2020, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence- and Amplitude-based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1571–1581. [Google Scholar] [CrossRef]
- Zhang, X.D.; Liu, W.X.; He, S.G. Urban Change Detection in TerraSAR Image Using the Difference Method and SAR Coherence Coefficient. J. Eng. Sci. Technol. Rev. 2018, 11, 18–23. [Google Scholar] [CrossRef]
- Bai, Y.B.; Adriano, B.; Mas, E.; Koshimura, S. Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake. J. Disaster Res. 2017, 12, 646–655. [Google Scholar] [CrossRef]
- Natsuaki, R.; Nagai, H.; Tomii, N.; Tadono, T. Sensitivity and Limitation in Damage Detection for Individual Buildings Using InSAR Coherence—A Case Study in 2016 Kumamoto Earthquakes. Remote Sens. 2018, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.L.; Gokon, H.; Meguro, K. Building Damage Assessment Using Intensity SAR Data with Different Incidence Angles and Longtime Interval. J. Disaster Res. 2019, 14, 456–465. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding. IEEE Trans. Geosci. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Gokon, H.; Koshimura, S.I. Extraction of Tsunami-flooded Areas and Damaged Buildings in the 2011 Tohoku-oki Earthquake from TerraSAR-X Intensity Images. Earthq. Spectra 2013, 29, S183–S200. [Google Scholar] [CrossRef] [Green Version]
- Benediktsson, J.A.; Bovolo, F.; Bruzzone, L.; Bruzzone, L.; Bovolo, F.; Saha, S. Destroyed-buildings Detection from VHR SAR Images Using Deep Features. In Proceedings of the Image and Signal Processing for Remote Sensing XXIV, Berlin, Germany, 10–12 September 2018. [Google Scholar]
- Guo, H.D. Study of Detecting Method with Advanced Airborne and Spaceborne Synthetic Aperture Radar Data for Collapsed Urban Buildings from the Wenchuan Earthquake. J. Appl. Remote Sens. 2009, 3, 031695. [Google Scholar] [CrossRef]
- Li, X.W.; Guo, H.D.; Zhang, L.; Chen, X.; Liang, L. A New Approach to Collapsed Building Extraction Using RADARSAT-2 Polarimetric SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2012, 9, 677–681. [Google Scholar] [CrossRef]
- Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P.; Shi, L.; Lang, F.K. Damage Assessment in Urban Areas Using Post-Earthquake Airborne PolSAR Imagery. Int. J. Remote Sens. 2013, 34, 8952–8966. [Google Scholar] [CrossRef]
- Shi, L.; Sun, W.D.; Yang, J.; Li, P.X.; Lu, L.J. Building Collapse Assessment by the Use of Postearthquake Chinese VHR Airborne SAR. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2021–2025. [Google Scholar] [CrossRef]
- Sun, W.D.; Shi, L.; Yang, J.; Li, P.X. Building Collapse Assessment in Urban Areas Using Texture Information from Postevent SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3792–3808. [Google Scholar] [CrossRef]
- Bai, Y.B.; Adriano, B.; Mas, E.; Koshimura, S. Building Damage Assessment in the 2015 Gorkha, Nepal, Earthquake Using Only Post-Event Dual Polarization Synthetic Aperture Radar Imagery. Earthq. Spectra 2017, 33, S185–S195. [Google Scholar] [CrossRef]
- Chen, Q.H.; Nie, Y.L.; Li, L.L.; Liu, X.G. Buildings Damage Assessment Using Texture Features of Polarization Decomposition Components. J. Remote Sens. 2017, 21, 955–965. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.L.; Liu, X.G.; Chen, Q.H.; Yang, S. Building Damage Assessment from PolSAR Data Using Texture Parameters of Statistical Model. Comput. Geosci. 2018, 113, 115–126. [Google Scholar] [CrossRef]
- Gokon, H.; Koshimura, S. Mapping of Building Damage of the 2011 Tohoku Earthquake Tsunami in Miyagi Prefecture. Coast. Eng. J. 2012, 54, 1250006-1–1250006-12. [Google Scholar] [CrossRef]
- Okada, S.; Takai, N. Classifications of Structural Types and Damage Patterns of Buildings for Earthquake Field Investigation. J. Struct. Constr. Eng. (Trans. AIJ) 1999, 64, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Quick Report of the Field Survey on the Building Damage by the 2016 Kumamoto Earthquake, Technical Note No. 929. Available online: http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0929.htm (accessed on 30 September 2019). (In Japanese)
- Yamaguchi, Y.; Sato, A.; Boerner, W.; Sato, R.; Yamada, H. Four-Component Scattering Power Decomposition with Rotation of Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Image: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 214–215. [Google Scholar]
- Tong, S.W.; Liu, X.G.; Chen, Q.H.; Zhang, Z.J.; Xie, G.Q. Multi-Feature Based Ocean Oil Spill Detection for Polarimetric SAR Data Using Random Forest and the Self-Similarity Parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.J. Application of Cloude’s Target Decomposition Theorem to Polarimetric Imaging Radar Data. In Radar Polarimetry; SPIE: San Diego, USA, 1992; pp. 184–191. [Google Scholar]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Refregier, P.; Morio, J. Shannon Entropy of Partially Polarized and Partially Coherent Light with Gaussian Fluctuations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2006, 23, 3036–3044. [Google Scholar] [CrossRef]
- Morio, J.; Refregier, P.; Goudail, F.; Dubois-Fernandez, P.C.; Dupuis, X. Information Theory-based Approach for Contrast Analysis in Polarimetric and/or Interferometric SAR Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2185–2196. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; McCabe, M.F. A Hybrid Training Approach for Leaf Area Index Estimation via Cubist and Random Forests Machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Yang, J.; Dong, G.; Peng, Y.; Yamaguchi, Y.; Yamada, H. Generalized Optimization of Polarimetric Contrast Enhancement. IEEE Geosci. Remote Sens. Lett. 2004, 1, 171–174. [Google Scholar] [CrossRef]
- Ioannidis, G.A. Optimum Antenna Polarizations for Target Discrimination in Clutter. IEEE Trans. Antennas Propag. 1979, 27, 357–363. [Google Scholar] [CrossRef]
- Kostinski, A.B.; Boerner, W.M. On the Polarimetric Contrast Optimization. IEEE Trans. Antennas Propag. 1987, 35, 988–991. [Google Scholar] [CrossRef]
- Swartz, A.A.; Yueh, H.A.; Kong, J.A.; Novak, L.M.; Shin, R.T. Optimal Polarizations for Achieving Maximum Contrast in Radar Images. J. Geophys. Res. Solid Earth 1988, 93, 15252–15260. [Google Scholar] [CrossRef] [Green Version]
- Mott, H.; Boerner, W.M. Polarimetric Contrast Enhancement Coefficients for Perfecting High-resolution POL-SAR/SAL Image Feature Extraction. In Wideband Interferometric Sensing and Imaging Polarimetry; SPIE: San Diego, CA, USA, 1997; pp. 106–117. [Google Scholar]
- Yang, J.; Yamaguchi, Y.; Boerner, W.M.; Lin, S. Numerical Methods for Solving the Optimal Problem of Contrast Enhancement. IEEE Trans. Geosci. Remote Sens. 2000, 38, 965–971. [Google Scholar] [CrossRef]
- Yin, J.J.; Zhou, Z.S.; Wooil, M.M.; Jin, R.; Caccetta, P.A. The Use of a Modified GOPCE Method for Forest and Nonforest Discrimination. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1076–1080. [Google Scholar] [CrossRef]
- Yang, J.; Cui, Y. A Novel Method for Ship Detection in Polarimetric SAR Images Using GOPCE. In Proceedings of the IET International Radar Conference 2009, Guilin, China, 20–22 April 2009. [Google Scholar]
- Zhang, H.Z.; Wang, Q.; Zeng, Q.M.; Jiao, J. A Novel Approach to Building Collapse Detection from Post-seismic Polarimetric SAR Imagery by Using Optimization of Polarimetric Contrast Enhancement. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015; pp. 3270–3273. [Google Scholar]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The Jeffries–Matusita Distance for the Case of Complex Wishart Distribution As a Separability Criterion for Fully Polarimetric SAR Data. Int. J. Remote Sens. 2014, 35, 6859–6873. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Wang, C.; Wu, F.; Zhang, J.; Zhang, H.; Li, Q. Earthquake-Induced Building Damage Detection with Post-Event Sub-Meter VHR TerraSAR-X Staring Spotlight Imagery. Remote Sens. 2016, 8, 887. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Gong, L.; Wang, C.; Zhang, H.; Zhang, B.; Xie, L. Signature Analysis of Building Damage with TerraSAR-X New Staring SpotLight Mode Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1696–1700. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitao, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box-A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef] [Green Version]
Study Site | J–M Distance between Obliquely-Oriented Buildings and Collapsed Buildings in | |||
---|---|---|---|---|
Span | ||||
Yushu study site | 0.034 | 0.029 | 0.253 | 1.088 |
Ishinomaki study site | 0.266 | 0.154 | 0.156 | 0.963 |
Mashiki town study site | 0.009 | 0.103 | 0.057 | 0.736 |
Study Site | J–M Distance between Affected Collapsed Buildings and Standing Buildings in | |||
---|---|---|---|---|
Span | ||||
Yushu study site | 0.199 | 0.159 | 0.260 | 0.211 |
Study Site | J–M Distance between Affected Collapsed Buildings and Standing Buildings in | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Span | MaxC | Mean | Var 1 | Hom 2 | Con 3 | Dis 4 | Entr 5 | SeM 6 | Cor 7 | |
Yushu study site | 0.260 | 0.211 | 0.638 | 0.507 | 0.550 | 0.486 | 0.537 | 0.640 | 0.681 | 0.467 |
Classification Method | Proposed Method | ||||||
---|---|---|---|---|---|---|---|
Non-Building Area | Built-Up Area | Non-Building Area | Built-Up Area | Non-Building Area | Built-Up Area | ||
Yushu | Ground truth | ||||||
Non-building area | 91 | 209 | 184 | 116 | 264 | 36 | |
Built-up area | 16 | 284 | 8 | 292 | 11 | 289 | |
Prod. accu. 2 | 30.0% | 94.7% | 61.3% | 97.3% | 88.0% | 96.3% | |
OA 1: 62.5% | OA: 79.3% | OA: 92.2% | |||||
Ishinomaki | Ground truth | ||||||
Non-building area | 508 | 492 | 828 | 172 | 848 | 152 | |
Built-up area | 59 | 941 | 121 | 879 | 32 | 968 | |
Prod. accu. | 50.8% | 94.1% | 82.8% | 87.9% | 84.8% | 96.8% | |
OA: 72.5% | OA: 85.4% | OA: 90.8% | |||||
Mashiki town | Ground truth | ||||||
Non-building area | 52 | 14 | 461 | 30 | 499 | 1 | |
Built-up area | 448 | 486 | 39 | 470 | 19 | 481 | |
Prod. accu. | 10.4% | 97.2% | 92.2% | 94.0% | 99.8% | 96.2% | |
OA: 53.8% | OA: 93.1% | OA: 98.0% |
Classification Method | Proposed Method | ||||||
---|---|---|---|---|---|---|---|
Non-Building Area | Built-Up Area | Non-Building Area | Built-Up Area | Non-Building Area | Built-Up Area | ||
Yushu | Ground truth | ||||||
Collapsed buildings | 10 | 290 | 16 | 284 | 5 | 295 | |
Error rate | 3.4% | 5.3% | 1.7% | ||||
Ishinomaki | Ground truth | ||||||
Collapsed buildings | 44 | 456 | 98 | 402 | 6 | 494 | |
Error rate | 8.8% | 19.6% | 1.2% | ||||
Mashiki town | Ground truth | ||||||
Collapsed buildings | 22 | 378 | 42 | 358 | 14 | 386 | |
Error rate | 5.5% | 10.5% | 3.5% |
Study Sites | Collapsed Building Samples (Pixels) | Standing Building Samples (Pixels) | Total (Pixels) |
---|---|---|---|
Yushu | 741 | 648 | 1389 |
Ishinomaki | 620 | 924 | 1544 |
Mashiki | 537 | 560 | 1097 |
Method | Detection Rate of Different Damage Level (%) | OA 1 (%) | ||
---|---|---|---|---|
Slight Damage | Moderate Damage | Serious Damage | ||
method | 20.3 | 28.4 | 86.0 | 49.0 |
PWMF method | 66.3 | 14.0 | 76.8 | 57.3 |
Proposed method | 86.0 | 56.2 | 97.2 | 82.3 |
Method | Detection Rate of Different Damage Level (%) | OA 1 (%) | ||
---|---|---|---|---|
Slight Damage | Moderate Damage | Serious Damage | ||
method | 61.4 | 0.0 | 92.2 | 63.2 |
PWMF method | 64.6 | 10.3 | 54.3 | 62.7 |
Proposed method | 100.0 | 26.0 | 86.3 | 97.4 |
Method | Detection Rate of Different Damage Level (%) | OA 1 (%) | ||
---|---|---|---|---|
Slight Damage | Moderate Damage | Serious Damage | ||
method | 78.0 | 18.8 | 26.8 | 63.8 |
PWMF method | 73.9 | 15.3 | 22.9 | 59.8 |
Proposed method | 88.3 | 35.7 | 64.8 | 78.5 |
Block-Count-Based Evaluation | Pixel-Count-Based Evaluation | ||||||
---|---|---|---|---|---|---|---|
The Experimental Results | The Experimental Results | ||||||
Slight | Moderate | Serious | Slight | Moderate | Serious | ||
Yushu | Reference | ||||||
Slight | 28 | 2 | 0 | 9330 | 266 | 0 | |
Moderate | 11 | 9 | 4 | 2116 | 4006 | 1002 | |
Serious | 0 | 6 | 22 | 0 | 1588 | 9778 | |
OA: 72.0% | OA: 82.3% | ||||||
Ishinomaki | Reference | ||||||
Slight | 43 | 0 | 0 | 41,6661 | 0 | 0 | |
Moderate | 4 | 1 | 0 | 6205 | 2183 | 0 | |
Serious | 3 | 2 | 6 | 1265 | 4845 | 38,465 | |
OA: 84.7% | OA: 97.4% | ||||||
Mashiki town | Reference | ||||||
Slight | 272 | 31 | 5 | 9259 | 1064 | 168 | |
Moderate | 13 | 19 | 22 | 442 | 651 | 733 | |
Serious | 8 | 10 | 34 | 285 | 352 | 1173 | |
OA: 78.5% | OA: 78.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Zeng, Q.; Zhang, H.; Wang, Q. Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data. Remote Sens. 2021, 13, 1146. https://doi.org/10.3390/rs13061146
Nie Y, Zeng Q, Zhang H, Wang Q. Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data. Remote Sensing. 2021; 13(6):1146. https://doi.org/10.3390/rs13061146
Chicago/Turabian StyleNie, Yuliang, Qiming Zeng, Haizhen Zhang, and Qing Wang. 2021. "Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data" Remote Sensing 13, no. 6: 1146. https://doi.org/10.3390/rs13061146
APA StyleNie, Y., Zeng, Q., Zhang, H., & Wang, Q. (2021). Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data. Remote Sensing, 13(6), 1146. https://doi.org/10.3390/rs13061146