Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Evaluation Procedures and Performance Indicators
3. Results
3.1. Magnitude Agreement at Grid-Cell Scale
3.2. Magnitude Agreement at Watershed Scale
3.3. Hit-Missed-False Events
3.4. Elevation Dependency of Bias
3.5. Spatiotemporal Distribution
4. Discussion
4.1. Performance of the Satellite-Based Products
4.2. Implications for Precipitation Product Application
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
AMSR-E | Advanced Microwave Scanning Radiometer for the Earth Observing System |
AMSU-B | Advanced Microwave Sounding Unit-B |
AVHRR | Advanced Very High Resolution Radiometer |
CAMS | Climate Assessment and Monitoring System |
CCD | Cold Cloud Duration |
CHIRPS | Climate Hazards group InfraRed Precipitation with Stations |
CHPlim | Climate Hazards group Precipitation climatology |
CPC | Climate Prediction Center |
CMAP | CPC Merged Analysis of Precipitation |
CMORPH | CPC MORPHing technique |
COOP | COOPerative observer network |
DMSP | Defense Meteorological Satellite Program |
ERA | European centre for medium-Range weather forecasts reAnalysis systems |
FAO | Food and Agriculture Organization |
GEO | GEOstationary |
GHCN | Global Historical Climatology Network |
GMS | Geostationary Meteorological Satellite |
GOES | Geostationary Operational Environmental Satellites |
GPCC | Global Precipitation Climatology Centre |
GPCP | Global Precipitation Climatology Project |
GPCP-1DD | GPCP one-degree daily precipitation analysis |
GPI | Geostationary operational environmental satellites Precipitation Index |
GPROF | Goddard PROFiling algorithm |
GriSat | Globally Gridded Satellite |
GSMaP | Global Satellite Mapping of Precipitation |
GSOD | Global Summary Of the Day |
GTS | Global Telecommunication System |
JRA-55 | Japanese 55-year ReAnalysis |
MetOp | European Operational Meteorological satellite. |
MSU | Microwave Sounding Unit |
MSWEP | Multi-Source Weighted-Ensemble Precipitation |
NCAR | National Center for Atmospheric Research |
NCEP | National Centers for Environmental Prediction |
NMAs | National Meteorological Agencies |
OLR | Outgoing Longwave Radiation |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks |
PER-CCS | PERSIANN - Cloud Classification System |
PER-CDR | PERSIANN - Climate Data Record |
SSM/I | Special Sensor Microwave/Imager |
TCI | TRMM Combined Instrument |
TIR | Thermal InfraRed |
TRMM | Tropical Rainfall Measuring Mission |
TMI | TRMM Microwave Imager |
TMPA | TRMM Multi-Satellite Precipitation Analysis |
TOVS | Television and infrared Observation satellite Operational Vertical Sounder |
References
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.N.; Pai, D.S. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Clim. 2015, 36, 1614–1631. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Clim. 2013, 34, 265–285. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.; Petersen, W.A.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Reiner, P.L.; Samir, C.-M.; Sonia Raquel, G.-F.; Yolanda, C.-D.; María Jesús, E.-P. High-resolution boreal winter precipitation projections over tropical america from cmip5 models. Clim. Dyn. 2018, 51, 1773–1792. [Google Scholar]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk Assess. 2010, 25, 475–484. [Google Scholar] [CrossRef]
- Ouyang, L.; Yang, K.; Qin, J.; Wang, Y.; Lu, H. Research progress and prospect of precipitation in himalayan region. Plateau Meteorol. 2017, 36, 1165–1175. [Google Scholar]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. Persiann-cdr: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. Mswep: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of trmm 3b42 precipitation estimates of tropical cyclone rainfall using pacrain data. J. Geophys. Res. Atmos. 2013, 118, 2184–2196. [Google Scholar] [CrossRef]
- Fu, Q.; Ruan, R.; Liu, Y. Accuracy assessment of global satellite mapping of precipitation (gsmap) product over poyang lake basin, china. Procedia Environ. Sci. 2011, 10, 2265–2271. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.J.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of persiann-ccs rainfall measurement using the name event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; Mcnab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (gpcp) combined precipitation data set. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Joyce, R.; Janowiak, J.E.; Arkin, P.A.; Xie, P. Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Okamoto, K.i.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (gsmap) project. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 5, pp. 3414–3416. [Google Scholar]
- Kai, T.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the tibetan plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of persiann-cdr daily rainfall products in two river basins on the tibetan plateau. Hydrol. Earth Syst. Sci. 2016, 21, 169–181. [Google Scholar] [CrossRef]
- Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.; Sorooshian, S.; Braithwaite, D. Assessing the efficacy of high-resolution satellite-based persiann-cdr precipitation product in simulating streamflow. J. Hydrometeorol. 2016, 17, 2061–2076. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; Bodaghjamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of trmm_3b42 over iran. Adv. Geosci. 2010, 25, 119–125. [Google Scholar] [CrossRef]
- Joshi, M.K.; Rai, A.; Pandey, A.C. Validation of tmpa and gpcp 1dd against the ground truth rain-gauge data for indian region. Int. J. Clim. 2013, 33, 2633–2648. [Google Scholar] [CrossRef]
- Ruiz, J. Evaluation of different methodologies for precipitation estimates calibration-cmorph-over South America. Rev. Bras. Meteorol. 2009, 24, 473–488. [Google Scholar] [CrossRef]
- Xu, S.; Niu, Z.; Kuang, D.; Shen, Y.; Huang, W.; Wang, Y. Estimating summer precipitation over the tibetan plateau with geostatistics and remote sensing. Mt. Res. Dev. 2013, 33, 424–436. [Google Scholar] [CrossRef]
- Zhao, T.; Yatagai, A. Evaluation of trmm 3b42 product using a new gauge-based analysis of daily precipitation over china. Int. J. Clim. 2014, 34, 2749–2762. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of gpm imerg with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Wei, G.; Lu, H.; Crow, W.T.; Zhu, Y.; Wang, J.; Su, J. Comprehensive evaluation of gpm-imerg, cmorph, and tmpa precipitation products with gauged rainfall over mainland china. Adv. Meteorol. 2018, 2018, 18. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with trmm products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Chen, C.; Chen, Q.; Zhang, Y.; Ma, N.; Zaman, Q. Effects of temporal scales and space mismatches on the trmm 3b42 v7 precipitation product in a remote mountainous area. Hydrol. Process. 2017, 31, 4315–4327. [Google Scholar] [CrossRef]
- Prakash, S. Performance assessment of chirps, mswep, sm2rain-cci, and tmpa precipitation products across india. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Li, R.; Fu, Y. Tropical precipitation estimated by gpcp and trmm pr observations. Adv. Atmos. Sci. 2005, 22, 852–864. [Google Scholar]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A.-X. Evaluation of Three Satellite Precipitation Products TRMM 3B42, CMORPH, and PERSIANN over a Subtropical Watershed in China. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the tibetan plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Chen, D. Evaluations and improvements of gldas2.0 and gldas2.1 forcing data’s applicability for basin scale hydrological simulations in the tibetan plateau. J. Geophys. Res. Atmos. 2018, 123, 13128–13148. [Google Scholar] [CrossRef]
- Gao, Y.C.; Liu, M. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the tibetan plateau. Hydrol. Earth Syst. Sci. Discuss. 2012, 17, 837–849. [Google Scholar] [CrossRef]
- Zhu, X.; Bothe, O.; Fraedrich, K. Summer atmospheric bridging between europe and east asia: Influences on drought and wetness on the tibetan plateau. Quat. Int. 2011, 236, 151–157. [Google Scholar] [CrossRef]
- Rees, H.G.; Collins, D.N. Regional differences in response of flow in glacier-fed himalayan rivers to climatic warming. Hydrol. Process. 2006, 20, 2157–2169. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Clim. 1998, 11, 137–164. [Google Scholar] [CrossRef]
- Spencer, R.W. Global oceanic precipitation from the msu during 1979—91 and comparisons to other climatologies. J. Clim. 1993, 6, 1301–1326. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Nakagawa, K.; Iwanami, K.; et al. Global Precipitation Map using Satellite borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar]
- Xie, P.; Yatagai, A.; Chen, M.; Hayasaka, T.; Fukushima, Y.; Liu, C.; Yang, S. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P.; Group, C.P.W. CPC Unified Gauge-based Analysis of Global Daily Precipiation. In Proceedings of the Western Pacific Geophysics Meeting, Cairns, Australia, 29 July–1 August 2008. [Google Scholar]
- Zhang, L.; Gao, L.; Zhao, L.; Qiao, Y.; Shi, J. Review on correction of errors in precipitation measurement. Adv. Earth Sci. 2017, 32, 723–730. [Google Scholar]
- Ye, B.; Yang, D.; Ding, Y.; Han, T. A bias- corrected precipitation climatology for china. ACTA GEOGRAPHICA SINICA 2007, 62, 3–13. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Shi, W. Cpc global unified gauge-based analysis of daily precipitation. Preprints. In Proceedings of the 24th Conference on Hydrology, Atlanta, GA, USA, 17–21 January 2010. [Google Scholar]
- Dinku, T.; Funk, C.C.; Tadesse, T.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. Mswep v2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2018, 100, 473–500. [Google Scholar] [CrossRef]
- Huffman, G.; Adler, R.; Bolvin, D.; Gu, G.; Nelkin, E.; Bowman, K.; Hong, Y.; Stocker, E.; Wolff, D. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The trmm multi-satellite precipitation analysis (tmpa). In Satellite rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Xie, P.; Janowiak, J.E.; Arkin, P.A.; Adler, R.F.; Gruber, A.; Ferraro, R.; Huffman, G.J.; Curtis, S. Gpcp pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Clim. 2003, 16, 2197–2214. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K. The chrs data portal, an easily accessible public repository for persiann global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; Mcgavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M. A kalman filter approach to the global satellite mapping of precipitation (gsmap) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of persiann system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Lu, C.; Meng, S.; Yao, Y.; Wang, Y. Toward high-spatial resolution hydrological modeling for china: Calibrating the vic model. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–43. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, F.; Duan, Q.; Zheng, J.; Liang, M.; Chen, F. Regional parameter estimation of the vic land surface model: Methodology and application to river basins in china. J. Hydrometeorol. 2007, 8, 447–468. [Google Scholar] [CrossRef]
- Xie, X.; Liang, S.; Yao, Y.; Jia, K.; Meng, S.; Li, J. Detection and attribution of changes in hydrological cycle over the three-north region of china: Climate change versus afforestation effect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Tian, Y.; Peterslidard, C.D.; Eylander, J.B.; Joyce, R.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Nair, A.S.; Indu, J. Performance assessment of multi-source weighted-ensemble precipitation (mswep) product over india. Climate 2017, 5, 2. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote. Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Yin, X.; Gruber, A.; Arkin, P. Comparison of the gpcp and cmap merged gauge satellite monthly precipitation products for the period 1979 2001. J. Hydrometeorol. 2004, 5, 1207–1222. [Google Scholar] [CrossRef]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the han river basin in the korean peninsula, east asia. Water 2018, 10, 642. [Google Scholar] [CrossRef]
- Derin, Y.; Nikolopoulos, E.; Anagnostou, E.N. Estimating extreme precipitation using multiple satellite-based precipitation products. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–190. [Google Scholar]
Short Name | Data Source | Spa/Tem-Resolution | Spa-Coverage | Tem-Coverage | References |
---|---|---|---|---|---|
CPC-Global | CPC, GTS, COOP, NMAs, CMA | 0.5°/daily | Land | 1979.1–present | [42,43,46] |
CHIRPS V2.0 | CCD, CHPlim, FAO, GHCN, GriSat, CPC-TIR, GSOD, GTS | 0.05°/daily | Land, 50°S–50°N | 1981.1–present | [47,48] |
MSWEP V2.0 | CHPlim, CPC, GPCC, CMORPH, GSMaP, TMPA, ERA-Interim, JRA-55 | 0.5°/daily | Global | 1979.1–present | [10,49] |
TMPA 3B42 | TMI, DMSP SSM/I, AMSR-E, AMSU-B, MetOp, GEO-IR, GOES, TCI, GPCC, CAMS | 0.25°/daily | 50°S–50°N | 1998.1–present | [50,51] |
CMAP | CPCC, IR, OLR, SSM/I, MSU, NCEP–NCAR | 2.5°/pentad | Global | 1979.1–2016.12 | [52,53] |
PERSIANN-CDR V1R1 | NCEP GridSat-B1, GPCP | 0.25°/daily | 60°S–60°N | 1983.1–present | [9,54] |
GPCP-1DD | TOVS, GPROF SSM/I, GEO-IR, AVHRR GPI | 1.0°/daily | Global | 1996.10–2015.10 | [23,55] |
GSMaP-MVK/RNL V6 | TRMM, AMSR-E, DMSP SSM/I, NCEP CPC | 0.25°/daily | 60°S–60°N | 2000.3–present | [17,56] |
CMORPH-RAW V1.0 | GOES, Meteosat, GMS, AMSU-B, SSM/I, TMI | 0.25°/daily | 60°S–60°N | 1998.1–2018.11 | [15] |
PERSIANN-CCS | NCEP-CPC-IR | 0.04°/daily | 60°S–60°N | 2003.1–present | [13,57] |
MA-EGCs | MA-Watersheds | OC | ED | |
---|---|---|---|---|
CHIRPS | G | G | M | - |
MSWEP | G | G | G | - |
TRMM | G | G | G | - |
CMAP | M | G | M | - |
PER-CDR | M | M | M | P |
GPCP | M | M | M | P |
GSMaP | M | M | G | - |
CMORPH | M | P | P | - |
PER-CCS | P | P | P | P |
Judgement standard: | ||||
◆ MA-EGCs: G-R > 0.9, RMSE < 25 mm/mon, PBias < 30%; M-0.4 ≤ R ≤ 0.9, 25 mm/mon ≤ RMSE < 45 mm/mon, 30% ≤ PBias < 50%; P-R < 0.4, RMSE ≥ 25 mm/mon, PBias ≥ 50%; | ||||
◆ MA-Watersheds: G-PBias < 30%; M-30% ≤ PBias < 50%; P-PBias ≥ 50%; | ||||
◆ OC: G-Hit > 75%, Missed < 15%, False < 15%; M-70% ≤ Hit < 75%; P-60% ≤ Hit < 70%; | ||||
◆ ED: P-R ≥ 0.4. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xie, X.; Meng, S.; Wu, D.; Chen, Y.; Jiang, F.; Zhu, B. Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sens. 2020, 12, 1750. https://doi.org/10.3390/rs12111750
Wang Y, Xie X, Meng S, Wu D, Chen Y, Jiang F, Zhu B. Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sensing. 2020; 12(11):1750. https://doi.org/10.3390/rs12111750
Chicago/Turabian StyleWang, Yibing, Xianhong Xie, Shanshan Meng, Dandan Wu, Yuchao Chen, Fuxiao Jiang, and Bowen Zhu. 2020. "Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau" Remote Sensing 12, no. 11: 1750. https://doi.org/10.3390/rs12111750
APA StyleWang, Y., Xie, X., Meng, S., Wu, D., Chen, Y., Jiang, F., & Zhu, B. (2020). Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sensing, 12(11), 1750. https://doi.org/10.3390/rs12111750