Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (117,670)

Search Parameters:
Keywords = performance evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 696 KiB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 (registering DOI) - 17 Jul 2025
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
13 pages, 987 KiB  
Article
Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea
by Jae Ryong Song, Sangwon Jung, Kwangsic Joo, Hoon Il Choi, Yoon Jeon Kim and Se Joon Woo
Genes 2025, 16(7), 835; https://doi.org/10.3390/genes16070835 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: Senior-Loken syndrome (SLS) is a rare autosomal recessive renal–retinal disease caused by mutations in 10 genes. This study aimed to review the ophthalmic findings, renal function, and genotypes of Korean SLS cases. Methods: We retrospectively reviewed 17 genetically confirmed SLS [...] Read more.
Background/Objectives: Senior-Loken syndrome (SLS) is a rare autosomal recessive renal–retinal disease caused by mutations in 10 genes. This study aimed to review the ophthalmic findings, renal function, and genotypes of Korean SLS cases. Methods: We retrospectively reviewed 17 genetically confirmed SLS patients in Korea, including 9 newly identified cases and 8 previously reported. Comprehensive ophthalmologic evaluations and renal assessments were conducted. Genetic testing was performed using whole-genome sequencing (WGS), whole-exome sequencing (WES), or Sanger sequencing. Results: Among the 17 patients, patients with NPHP1 mutations were most common (35.3%), followed by those with NPHP4 (29.4%), IQCB1 (NPHP5, 29.4%), and SDCCAG8 (NPHP10, 5.9%) mutations. Patients with NPHP1 mutations showed retinitis pigmentosa (RP) sine pigmento and preserved central vision independent of renal deterioration. Patients with NPHP4 mutations showed early renal dysfunction. Two patients aged under 20 maintained relatively good visual function, but older individuals progressed to severe retinopathy. Patients with IQCB1 mutations were generally prone to early and severe retinal degeneration, typically manifesting as Leber congenital amaurosis (LCA) (three patients), while two patients exhibited milder RP sine pigmento with preserved central vision. Notably, two out of five (40.0%) maintained normal renal function at the time of diagnosis, and both had large deletions in IQCB1. The patient with SDCCAG8 mutation exhibited both end-stage renal disease and congenital blindness due to LCA. Wide-field fundus autofluorescence (AF) revealed perifoveal and peripapillary hypoAF with a perifoveal hyperAF in younger patients across genotypes. Patients under 20 years old showed relatively preserved central vision, regardless of the underlying genetic mutation. Conclusions: The clinical manifestation of renal and ocular impairment demonstrated heterogeneity among Korean SLS patients according to causative genes, and the severity of renal dysfunction and visual decline was not correlated. Therefore, simultaneous comprehensive evaluations of both renal and ocular function should be performed at the initial diagnosis to guide timely intervention and optimize long-term outcomes. Full article
(This article belongs to the Special Issue Study of Inherited Retinal Diseases—Volume II)
Show Figures

Figure 1

22 pages, 514 KiB  
Article
Fuzzy Hypothesis Testing for Radar Detection: A Statistical Approach for Reducing False Alarm and Miss Probabilities
by Ahmed K. Elsherif, Hanan Haj Ahmad, Mohamed Aboshady and Basma Mostafa
Mathematics 2025, 13(14), 2299; https://doi.org/10.3390/math13142299 (registering DOI) - 17 Jul 2025
Abstract
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and [...] Read more.
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and critical for performance evaluation. Traditional detection approaches often enhance one aspect at the expense of the other, limiting their practical applicability. To overcome this limitation, a fuzzy hypothesis testing framework is introduced that improves decision making under uncertainty by incorporating both crisp and fuzzy data representations. The methodology is divided into three phases. In the first phase, we reduce the probability of false alarm PFA while maintaining a constant probability of miss PM using crisp data characterized by deterministic values and classical statistical thresholds. In the second phase, the inverse scenario is considered: minimizing PM while keeping PFA fixed. This is achieved through parameter tuning and refined threshold calibration. In the third phase, a strategy is developed to simultaneously enhance both PFA and PM, despite their inverse correlation, by adopting adaptive decision rules. To further strengthen system adaptability, fuzzy data are introduced, which effectively model imprecision and ambiguity. This enhances robustness, particularly in scenarios where rapid and accurate classification is essential. The proposed methods are validated through both real and synthetic simulations of radar measurements, demonstrating their ability to enhance detection reliability across diverse conditions. The findings confirm the applicability of fuzzy hypothesis testing for modern radar systems in both civilian and military contexts, providing a statistically sound and operationally applicable approach for reducing detection errors and optimizing system performance. Full article
(This article belongs to the Special Issue New Advance in Applied Probability and Statistical Inference)
17 pages, 3908 KiB  
Article
Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk
by Argul Issilbayeva, Samat Kozhakhmetov, Zharkyn Jarmukhanov, Elizaveta Vinogradova, Nurislam Mukhanbetzhanov, Assel Meiramova, Yelena Rib, Tatyana Ivanova-Razumova, Gulzhan Myrzakhmetova, Saltanat Andossova, Ayazhan Zeinoldina, Malika Kuantkhan, Bayan Ainabekova, Makhabbat Bekbossynova and Almagul Kushugulova
J. Clin. Med. 2025, 14(14), 5097; https://doi.org/10.3390/jcm14145097 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal [...] Read more.
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal insights into early disease shifts. Methods: We performed shotgun metagenomic sequencing on fecal samples from 25 LCR individuals and 25 matched healthy controls. Participants underwent a comprehensive cardiovascular evaluation. Taxonomic classification used MetaPhlAn 4, and functional profiling employed HUMAnN 3. Results: Despite similar alpha diversity, significant differences in bacterial community structure were observed between groups (PERMANOVA, p < 0.05). The LCR group showed enrichment of Faecalibacterium prausnitzii (p = 0.035), negatively correlating with atherogenic markers, including ApoB (r = −0.3, p = 0.025). Conversely, Fusicatenibacter saccharivorans positively correlated with ApoB (r = 0.4, p = 0.006). Metabolic pathway analysis revealed upregulation of nucleotide biosynthesis, glycolysis, and sugar degradation pathways in the LCR group, suggesting altered metabolic activity. Conclusions: We identified distinct gut microbiome signatures in LCR individuals that may represent early alterations associated with cardiovascular disease development. The opposing correlations between F. prausnitzii and F. saccharivorans with lipid parameters highlight their potential roles in cardiometabolic health. These findings suggest gut microbiome signatures may serve as indicators of early metabolic dysregulation preceding clinically significant cardiovascular disease. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

18 pages, 802 KiB  
Article
Surface Modification of Poly(butyl methacrylate) with Sulfomethylated Resorcinarenes for the Selective Extraction of Dichromate Ion in Aqueous Media
by Cielo Urquijo and Mauricio Maldonado
Analytica 2025, 6(3), 24; https://doi.org/10.3390/analytica6030024 (registering DOI) - 17 Jul 2025
Abstract
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material [...] Read more.
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material for its removal in the aqueous phase. Poly(butyl methacrylate) (PBMA) was synthesized and modified by impregnation with resorcinarenes derived from long-chain aliphatic aldehydes. To improve the affinity for the dichromate, the resorcinarenes were functionalized with sulfomethyl groups by treatment with Na2SO3. The resulting matrices were characterized using IR-ATR, 1H-NMR, and 13C-NMR, and their adsorbent performance was evaluated via UV-Vis spectroscopy in batch extraction assays. The results showed that the functionalized polymer exhibited a higher adsorption capacity than the base polymer, reaching up to 81.1% removal at pH 5.0 in one hour. These results highlight the potential of PBMA as an effective support and raise a promising research perspective for functionalized resorcinarenes in the development of new materials for the treatment of contaminated water. Full article
21 pages, 4629 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 (registering DOI) - 17 Jul 2025
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

13 pages, 2355 KiB  
Review
Comparison Study of Converter-Based I–V Tracers in Photovoltaic Power Systems for Outdoor Detection
by Weidong Xiao
Energies 2025, 18(14), 3818; https://doi.org/10.3390/en18143818 (registering DOI) - 17 Jul 2025
Abstract
Current–voltage (I–V) characteristics are an important measure of photovoltaic (PV) generators, corresponding to environmental conditions regarding solar irradiance and temperature. The I–V curve tracer is a widely used instrument in power engineering to evaluate system performance and detect fault conditions in PV power [...] Read more.
Current–voltage (I–V) characteristics are an important measure of photovoltaic (PV) generators, corresponding to environmental conditions regarding solar irradiance and temperature. The I–V curve tracer is a widely used instrument in power engineering to evaluate system performance and detect fault conditions in PV power systems. Several technologies have been applied to develop the device and trace I–V characteristics, improving accuracy, speed, and portability. Focusing on the outdoor environment, this paper presents an in-depth analysis and comparison of the system design and dynamics to identify the I–V tracing performance based on different power conversion topologies and data acquisition methods. This is a valuable reference for industry and academia to further the technology and promote sustainable power generation. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
12 pages, 2577 KiB  
Article
Single-Atom Catalysts Dispersed on Graphitic Carbon Nitride (g-CN): Eley–Rideal-Driven CO-to-Ethanol Conversion
by Jing Wang, Qiuli Song, Yongchen Shang, Yuejie Liu and Jingxiang Zhao
Nanomaterials 2025, 15(14), 1111; https://doi.org/10.3390/nano15141111 (registering DOI) - 17 Jul 2025
Abstract
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol [...] Read more.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g–CN). We showed that these metal atoms stably coordinate with edge N sites of g–CN to form active catalytic centers. Screening 20 TM/g–CN candidates, we identified V/g–CN and Zn/g–CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key *CO hydrogenation steps and facilitate C–C coupling via an Eley–Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding–antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 4187 KiB  
Article
Study of Online Testing of Void Defects in AM Components with Grating Laser Ultrasonic Spectrum Method
by Hengtao Li, Yan Liu, Jinfeng Yang, Qinghua Guo, Zhichao Gan and Cuixiang Pei
Appl. Sci. 2025, 15(14), 7995; https://doi.org/10.3390/app15147995 (registering DOI) - 17 Jul 2025
Abstract
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online [...] Read more.
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online evaluation of porosity in AM parts. Based on the theoretical relationship between surface acoustic wave (SAW) velocity and material porosity, a non-contact detection approach is developed, allowing the direct inference of porosity from the measured SAW velocities without requiring knowledge of the exact source–detector distance. Numerical simulations are conducted to analyze SAW propagation under varying porosity conditions and to validate the inversion model. Experimental measurements on aluminum alloy specimens with different porosity levels further confirm the sensitivity of SAW signals to internal voids. The results show consistent waveform and spectral trends between the simulation and experiment, supporting the feasibility of the proposed method for practical applications. Overall, the findings demonstrate the potential of this approach for the accurate online monitoring of void defects in metal AM components. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
13 pages, 1829 KiB  
Article
The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
by Vytautas Bunevičius, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė and Neringa Rasiukevičiūtė
Agronomy 2025, 15(7), 1728; https://doi.org/10.3390/agronomy15071728 (registering DOI) - 17 Jul 2025
Abstract
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental [...] Read more.
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental pollution, and adverse effects on human health. Also, due to the goals of the European Green Deal and the decreasing use of chemical pesticides, it has become essential to look for safer alternatives. The aim of this study was to investigate the inhibitory effect of plant extracts of clove (Syzygium aromaticum L.) and rosemary (Rosmarinus officinalis L.) against Colletotrichum acutatum and Botrytis cinerea plant pathogens and to evaluate fungal pathogens recovery after the exposure to the extract. The plant extracts (PEs) were obtained by subcritical CO2 extraction. The inhibitory effect of PEs was investigated in vitro at concentrations of 1200, 1600, 2000, 2400, 2800, and 3000 μL/L. Petri dishes were incubated at 25 ± 2 °C, and the mycelial growth of fungal pathogens was evaluated at 2, 4, and 7 days after inoculation (DAI). Reinoculation was then performed. The research showed that both plant extracts had an antifungal effect. However, clove PE was more effective. This allows us to say that plant-based measures can inhibit plant pathogens, but it is essential to determine the optimal concentrations and test them with different pathogens. Full article
Show Figures

Figure 1

26 pages, 2055 KiB  
Article
Comparative Analysis of Time-Series Forecasting Models for eLoran Systems: Exploring the Effectiveness of Dynamic Weighting
by Jianchen Di, Miao Wu, Jun Fu, Wenkui Li, Xianzhou Jin and Jinyu Liu
Sensors 2025, 25(14), 4462; https://doi.org/10.3390/s25144462 (registering DOI) - 17 Jul 2025
Abstract
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion [...] Read more.
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion model combining LSTM and RF, and a dynamic weighting (DW) model. The results demonstrate that the DW model achieves the highest prediction accuracy while maintaining strong computational efficiency, making it particularly suitable for real-time applications with stringent performance requirements. Although the LSTM model effectively captures temporal dependencies, it demands considerable computational resources. The hybrid model utilises the strengths of LSTM and RF to enhance the accuracy but involves extended training times. By contrast, the DW model dynamically adjusts the relative contributions of LSTM and RF on the basis of the data characteristics, thereby enhancing the accuracy while significantly reducing the computational demands. Demonstrating exceptional performance on the ASF2 dataset, the DW model provides a well-balanced solution that combines precision with operational efficiency. This research offers valuable insights into optimising additional secondary phase factor (ASF) prediction in eLoran systems and highlights the broader applicability of real-time forecasting models. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 608 KiB  
Article
Seismic Fragility and Loss Assessment of a Multi-Story Steel Frame with Viscous Damper in a Corrosion Environment
by Wenwen Qiu, Haibo Wen, Chenhui Gong, Zhenkai Zhang, Wenjing Li and Shuo Li
Buildings 2025, 15(14), 2515; https://doi.org/10.3390/buildings15142515 (registering DOI) - 17 Jul 2025
Abstract
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel [...] Read more.
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel frame with viscous dampers (SFVD) building are investigated through experimental and numerical analysis. Based on corrosion and tensile test results, OpenSees software 3.3.0 was used to model the SFVD, and the effect of corrosion on the seismic fragility was evaluated via incremental dynamic analysis (IDA). Then, the economic losses of the SFVD during different seismic intensities were assessed at various corrosion times based on fragility analysis. The results show that as the corrosion time increases, the mass and cross-section loss rate of steel increase, causing a decrease in mechanical property indices, and theprobability of exceedance of the SFVD in the limit state increases gradually with increasing corrosion time, with an especially significant impact on the collapse prevention (CP) state. Furthermore, the economic loss assessment based on fragility curves indicates that the economic loss increases with corrosion time. Thus, the aim of this paper is to provide guidance for the seismic design and risk management of steel frame buildings in coastal regions throughout their life cycle. Full article
24 pages, 2163 KiB  
Article
Effect of Rice Husk Addition on the Hygrothermal, Mechanical, and Acoustic Properties of Lightened Adobe Bricks
by Grégoire Banaba, Sébastien Murer, Céline Rousse, Fabien Beaumont, Christophe Bliard, Éric Chatelet and Guillaume Polidori
Materials 2025, 18(14), 3364; https://doi.org/10.3390/ma18143364 (registering DOI) - 17 Jul 2025
Abstract
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of [...] Read more.
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of agricultural waste—such as rice husk—is increasingly being explored. This experimental study evaluates the effects of rice husk addition on the mechanical, hygrothermal, and acoustic properties of adobe bricks. Two soil types—one siliceous and one calcareous—were combined with 1, 2, and 3 wt% rice husk to produce bio-based earthen bricks. The influence of rice husk was found to depend strongly on the soils’ mineralogical and granulometric characteristics. The most significant improvements were in hygrothermal performance: at 3 wt%, thermal conductivity was reduced by up to 35% for calcareous soil and 20% for siliceous soil, indicating enhanced insulation. Specific heat capacity also increased with husk content, suggesting better thermal inertia. The moisture buffering capacity, already high in raw soils, is further improved due to increased surface porosity. Mechanically, rice husk incorporation had mixed effects: a modest increase in compressive strength was observed in siliceous soil at 1 wt%, while calcareous soil showed slight improvement at 3 wt%. Acoustic performance remained low across all samples, with minimal gains attributed to limited macro-porosity. These findings highlight the importance of soil composition in optimizing rice husk dosage and suggest promising potential for rice husk-stabilized adobe bricks, especially in thermally demanding environments. Full article
12 pages, 1275 KiB  
Article
Performance of G3-PLC Channel in the Presence of Spread Spectrum Modulated Electromagnetic Interference
by Waseem ElSayed, Amr Madi, Piotr Lezynski, Robert Smolenski and Paolo Crovetti
Signals 2025, 6(3), 33; https://doi.org/10.3390/signals6030033 (registering DOI) - 17 Jul 2025
Abstract
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used [...] Read more.
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used to mitigate the EMI peaks generated from the power converters. Consequently, the performance of the nearby communication systems is affected under the presence of EMI, which is not covered in many situations. In this paper, the behavior of the G3 Power Line Communication (PLC) channel is evaluated in terms of the Shannon–Hartley equation in the presence of SS-modulated EMI from a buck converter. The SS-modulation technique used is the Random Carrier Frequency Modulation with Constant Duty cycle (RCFMFD). Moreover, The analysis is validated by experimental results obtained with a test setup reproducing the parasitic coupling between the PLC system and the power converter. Full article
Show Figures

Figure 1

26 pages, 2731 KiB  
Review
Recent Advances in PEEK for Biomedical Applications: A Comprehensive Review of Material Properties, Processing, and Additive Manufacturing
by Samreen Dallal, Babak Eslami and Saeed Tiari
Polymers 2025, 17(14), 1968; https://doi.org/10.3390/polym17141968 (registering DOI) - 17 Jul 2025
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D [...] Read more.
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer widely recognized for its distinct mechanical strength, chemical resistance, and biocompatibility. These characteristics make it suitable for a wide range of applications, particularly in medical, aerospace, chemical, and electronics fields. Conventional processing techniques, such as 3D printing, molding, and extrusion, are widely employed for PEEK fabrication. This review critically examines recent advancements in PEEK research, with an emphasis on additive manufacturing techniques that are expanding its applications in the medical field. We provide an in-depth analysis of PEEK’s intrinsic properties, diverse processing methods, and current challenges that hinder its wider adoption. In addition to evaluating PEEK’s performance, this review compares it with alternative biomaterials—such as titanium and ultra-high molecular weight polyethylene (UHMWPE)—to explore its advantages and limitations in biomedical applications. Furthermore, this review discusses cost considerations, regulatory constraints, long-term clinical performance challenges, and failure modes that are essential for validating and ensuring the reliability of PEEK in clinical use. By synthesizing the recent literature, particularly from the last decade, this review highlights the significant potential of PEEK and underscores ongoing research efforts aimed at overcoming its limitations, paving the way for its broader implementation in advanced technological applications. Full article
Show Figures

Figure 1

Back to TopTop