Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements
Abstract
1. Introduction
2. Measurements
2.1. Site
2.2. Hyperspectral Imaging Sensor (HIS)
2.3. Pandora Spectrophotometer (No. 27)
3. Estimation of Total Column Nitrogen Dioxide (TCN)
3.1. Algorithm Development
3.2. Pixel Co-Adding
3.3. Bias Near the Sun
3.4. Uncertainty Estimation
4. Comparison with Co-Located Pandora Measurements
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J. The Role of NO and NO2 in the Chemistry of the Troposphere and Stratosphere. Annu. Rev. Earth Planet. Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Solomon, S.; Portmann, R.W.; Sanders, R.W.; Daniel, J.S.; Madsen, W.; Bartram, B.; Dutton, E.G. On the role of nitrogen dioxide in the absorption of solar radiation. J. Geophys. Res. Atmos. 1999, 104, 12047–12058. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Ozone Air Quality Models. JAPCA 1988, 38, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Wang, Y.; Zeng, T.; Cunnold, D.; Yang, E.-S.; Martin, R.; Chance, K.; Thouret, V.; Edgerton, E. Springtime transitions of NO2, CO, and O3 over North America: Model evaluation and analysis. J. Geophys. Res. Atmos. 2008, 113, D20311. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Eldering, A.; Osterman, G.; Yung, Y.L.; Gu, Y.; Liou, K.N. Lightning and anthropogenic NOx sources over the United States and the western North Atlantic Ocean: Impact on OLR and radiative effects. Geophys. Res. Lett. 2009, 36, L17806. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Spinei, E.; Mount, G.; Tzortziou, M.; Abuhassan, N. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res. Atmos. 2009, 114, D13307. [Google Scholar] [CrossRef]
- Tzortziou, M.; Herman, J.R.; Cede, A.; Loughner, C.P.; Abuhassan, N.; Naik, S. Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem. J. Atmos. Chem. 2015, 72, 287–309. [Google Scholar] [CrossRef]
- Brewer, A.W. A replacement for the Dobson spectrophotometer? Pure Appl. Geophys. 1973, 106–108, 919–927. [Google Scholar] [CrossRef]
- Kerr, J.B. New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra: New methodology using brewer direct sun spectra. J. Geophys. Res. Atmos. 2002, 107, 4731. [Google Scholar] [CrossRef]
- Hönninger, G. Multi axis differential optical absorption spectroscopy. Atmos. Chem. Phys. 2004, 24, 231–254. [Google Scholar] [CrossRef]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; Van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef]
- Ionov, D.; Goutail, F.; Pommereau, J.-P.; Bazureau, A.; Kyro, E.; Portafaix, T.; Held, G.; Ericksen, P.; Dorokhov, V. Ten years of NO2 comparisons between ground-based SAOZ and satellite instruments (GOME, SCIAMACHY, OMI). In Proceedings of the Atmospheric Science Conference, Frascati, Italy, 8–12 May 2006. [Google Scholar]
- Celarier, E.A.; Brinksma, E.J.; Gleason, J.F.; Veefkind, J.P.; Cede, A.; Herman, J.R.; Ionov, D.; Goutail, F.; Pommereau, J.-P.; Lambert, J.-C.; et al. Validation of Ozone Monitoring Instrument nitrogen dioxide columns. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Wenig, M.O.; Cede, A.M.; Bucsela, E.J.; Celarier, E.A.; Boersma, K.F.; Veefkind, J.P.; Brinksma, E.J.; Gleason, J.F.; Herman, J.R. Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Kramer, L.J.; Leigh, R.J.; Remedios, J.J.; Monks, P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J. Geophys. Res. 2008, 113, D16S39. [Google Scholar] [CrossRef]
- Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.; Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett. 2019, 46, 1049–1060. [Google Scholar] [CrossRef]
- Chong, H.; Lee, H.; Koo, J.-H.; Kim, J.; Jeong, U.; Kim, W.; Kim, S.-W.; Herman, J.R.; Abuhassan, N.K.; Ahn, J.; et al. Regional Characteristics of NO2 Column Densities from Pandora Observations during the MAPS-Seoul Campaign. Aerosol Air Qual. Res. 2018, 18, 2207–2219. [Google Scholar] [CrossRef]
- Baek, K.; Kim, J.H.; Herman, J.R.; Haffner, D.P.; Kim, J. Validation of Brewer and Pandora measurements using OMI total ozone. Atmos. Environ. 2017, 160, 165–175. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Cho, H.-K.; Herman, J.; Park, S.S.; Lim, H.K.; Kim, J.-H.; Miyagawa, K.; Lee, Y.G. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea. Atmos. Meas. Tech. 2017, 10, 3661–3676. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; Kim, J.; Herman, J.; Kim, W.; Hong, H.; Choi, W.; Yang, J.; Kim, D. Retrieval Accuracy of HCHO Vertical Column Density from Ground-Based Direct-Sun Measurement and First HCHO Column Measurement Using Pandora. Remote Sens. 2018, 10, 173. [Google Scholar] [CrossRef]
- Herman, J.; Spinei, E.; Fried, A.; Kim, J.; Kim, J.; Kim, W.; Cede, A.; Abuhassan, N.; Segal-Rozenhaimer, M. NO2 and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and with aircraft measurements during the KORUS-AQ campaign. Atmos. Meas. Tech. 2018, 11, 4583–4603. [Google Scholar] [CrossRef]
- Spinei, E.; Whitehill, A.; Fried, A.; Tiefengraber, M.; Knepp, T.N.; Herndon, S.; Herman, J.R.; Müller, M.; Abuhassan, N.; Cede, A.; et al. The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmos. Meas. Tech. 2018, 11, 4943–4961. [Google Scholar] [CrossRef]
- Headwallphotonics. In Hyperspec UV Imaging Sensor for the 250–500 nm Spectral Range; Headwall Inc.: Fitchburg, MA, USA, 2016; Available online: http://cdn2.hubspot.net/hubfs/145999/docs/UV-VIS.pdf (accessed on 16 October 2018).
- Tzortziou, M.; Herman, J.R.; Cede, A.; Abuhassan, N. High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI: Pandora total column ozone retrieval. J. Geophys. Res. 2012, 117, D16303. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Anderson, G.; Clough, S.; Kneizys, F.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles (0.120km); Tech. Rep. AFCL-TR86-0110; Air Force Geophysics Laboratory: Hanscom AFB, MA, USA, 1986. [Google Scholar]
- Kurucz, R. Synthetic infrared spectra. In Proceedings of the 154th Symposium of the International Astronomical Union (IAU), Tucson, AZ, USA, 2–6 March 1992. [Google Scholar]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Martin, R.V. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res. 2003, 108, 4537. [Google Scholar] [CrossRef]
- Parisi, A.V.; Sabburg, J.; Kimlin, M.G.; Downs, N. Measured and modelled contributions to UV exposures by the albedo of surfaces in an urban environment. Theor. Appl. Climatol. 2003, 76, 181–188. [Google Scholar] [CrossRef]
- Auvinen, H. Inversion algorithms for recovering minor species densities from limb scatter measurements at UV-visible wavelengths. J. Geophys. Res. 2002, 107, 4172. [Google Scholar] [CrossRef]
- de Beek, R.; Weber, M.; Rozanov, V.V.; Rozanov, A.; Richter, A.; Burrows, J.P. Trace gas column retrieval—An error assessment study for GOME-2. Adv. Space Res. 2004, 34, 727–733. [Google Scholar] [CrossRef]
- Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A.C.; Richter, A.; Burrows, J.P. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft. Atmos. Meas. Tech. 2015, 8, 5113–5131. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Yun, S.; Lee, H.; Kim, J.; Jeong, U.; Park, S.S.; Herman, J. Inter-comparison of NO2 column densities measured by Pandora and OMI over Seoul, Korea. Korean J. Remote Sens. 2013, 29, 663–670. [Google Scholar] [CrossRef][Green Version]
- Wang, S.; Pongetti, T.J.; Sander, S.P.; Spinei, E.; Mount, G.H.; Cede, A.; Herman, J. Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers. J. Geophys. Res. 2010, 115, D13305. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.J.; Jung, J.; Lee, C.; Heue, K.-P.; Platt, U.; Hu, M.; Zhu, T. Spatial and temporal variations in NO2 distributions over Beijing, China measured by imaging differential optical absorption spectroscopy. J. Environ. Manag. 2009, 90, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
Hyperspectral Imaging Sensor (HIS) | Pandora Spectrophotometer | |
---|---|---|
Wavelength (nm) | 250–500 | 280–525 |
Spectral sampling (nm) | 0.26 | 0.23 |
Spectral resolution (FWHM) (nm) | 1.4 | 0.6 |
Field-of-view | 13° (vertical) | 1.6° |
Detector | Charge-Coupled Device |
Variables | Entries | No. of Entries |
---|---|---|
SZA (°) | 0, 10, 20, 30, 40, 50, 60, 70 | 8 |
VZA (°) | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 | 15 |
RAA (°) | 0, 10, 20, 30, 40, 50, 60, 90, 120, 180 | 10 |
AOD (550 nm) | 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 | 11 |
TCN (DU) | 0.1–9.0 (0.1 DU interval) | 90 |
Strong (I)/Weak (I′) Absorption Wavelength (nm) | |
---|---|
1 | 400.610/407.055 |
2 | 409.403/416.598 |
3 | 421.661/426.457 |
4 | 435.251/442.179 |
5 | 448.307/456.834 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-J.; Park, J.-S.; Kim, S.-W.; Chong, H.; Lee, H.; Kim, H.; Ahn, J.-Y.; Kim, D.-G.; Kim, J.; Park, S.S. Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements. Remote Sens. 2019, 11, 3005. https://doi.org/10.3390/rs11243005
Park H-J, Park J-S, Kim S-W, Chong H, Lee H, Kim H, Ahn J-Y, Kim D-G, Kim J, Park SS. Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements. Remote Sensing. 2019; 11(24):3005. https://doi.org/10.3390/rs11243005
Chicago/Turabian StylePark, Hyeon-Ju, Jin-Soo Park, Sang-Woo Kim, Heesung Chong, Hana Lee, Hyunjae Kim, Joon-Young Ahn, Dai-Gon Kim, Jhoon Kim, and Sang Seo Park. 2019. "Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements" Remote Sensing 11, no. 24: 3005. https://doi.org/10.3390/rs11243005
APA StylePark, H.-J., Park, J.-S., Kim, S.-W., Chong, H., Lee, H., Kim, H., Ahn, J.-Y., Kim, D.-G., Kim, J., & Park, S. S. (2019). Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements. Remote Sensing, 11(24), 3005. https://doi.org/10.3390/rs11243005