Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.3. Urban Expansion Pattern
2.3.1. Quantification of Urban Expansion
2.3.2. Classification of Urban Expansion Type
2.4. Urban Landscape Pattern Analysis
2.5. Rationality of Urban Expansion
3. Results
3.1. Urban Expansion Pattern
3.1.1. Urban Expansion Quantification
3.1.2. Urban Expansion Type
3.2. Urban Landscape Pattern
3.3. Rationality of Urban Expansion
4. Discussion
4.1. Magnitude and Spatial Comparison of Urban Expansion
4.2. Response of Landscape to Urban Expansion
4.3. Rationality of Urban Expansion
4.4. Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Bank. World Bank Database. Available online: http://data.worldbank.org (accessed on 13 May 2015).
- Madanian, M.; Soffianian, A.R.; Koupai, S.S.; Pourmanafi, S.; Momeni, M. Analyzing the effects of urban expansion on land surface temperature patterns by landscape metrics: A case study of Isfahan city, Iran. Environ. Monit. Assess. 2018, 190, 189–199. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Urbanization Prospects: The 2014 Revision; UN: New York, NY, USA, 2014. [Google Scholar]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. PNAS 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Fang, J. Ecological consequences of rapid urban expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Shen, W.; Wu, J.; Grimm, N.B.; Hope, D. Effects of urbanization-induced environmental changes on ecosystem functioning in the phoenix metropolitan region, USA. Ecosystems 2008, 11, 138–155. [Google Scholar] [CrossRef]
- Clarke, K.C.; Gaydos, L.J. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Lu, K. Modeling and prediction of future urban growth in the Charleston region of South Carolina: A GIS-based integrated approach. Ecol. Soc. 2003, 8, 1850–1851. [Google Scholar] [CrossRef]
- Yangfan, L.I.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landscape Urban. Plan. 2010, 94, 218–227. [Google Scholar]
- Sun, R.H.; Xu, Z.L.; Chen, L.X.; Li, F. Theoretical framework and key techniques of urban ecological landscape research. Acta Ecol. Sin. 2012, 32, 979–1986. [Google Scholar]
- Shao, M.; Tang, X.; Zhang, Y.; Li, W. City clusters in China: Air and surface water pollution. Front. Ecol. Environ. 2006, 4, 353–361. [Google Scholar] [CrossRef]
- Zhu, H.M.; You, W.H.; Zeng, Z.F. Urbanization and CO2 emissions: A semi-parametric panel data analysis. Econ. Lett 2012, 117, 848–850. [Google Scholar] [CrossRef]
- Radulovic, S.; Bobic, A.; Cvejic, J.; Tutundzic, A. Growing cities in serbia in the light of projected global warming: The situation in urban morphological zones. Urban. Fore. Urban. Gree. 2015, 14, 99–106. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multitemporal satellite imagery with GIS-based cellular automata model. Ecol. Inform. 2016, 32, 145–155. [Google Scholar] [CrossRef]
- NBSC. China’s City Construction Statistical Yearbook of 2011; China Statistics Press: Beijing, China, 2012.
- World Bank. Urban Population. Available online: http://www.data.worldbank.org (accessed on 24 February 2012).
- Liu, J.; Zhuang, D.; Luo, D.; Xiao, X. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. Int. J. Remote Sens. 2003, 24, 2485–2500. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Xiang, W.N. Quantitative analysis of the built-up area expansion in Su-Xi-Chang region, China. Chin. J. Appl. Ecol 2014, 25, 1422–1430. [Google Scholar]
- Zen, Y.N.; He, L.L.; Jin, W.; Wu, K.J.; Xu, Y.Y.; Yu, F.F. Quantitative Analysis of the Urban Expansion Models in Changsha-Zhuzhou-Xiangtan Metroplan Areas. Sci. Geogr. Sin. 2012, 32, 544–549. [Google Scholar]
- Fang, C. Urbanization and urban development in China after the reform and opening-up. Econ. Geogr. 2009, 29, 19–25. [Google Scholar]
- Zhou, L.M.; Dickinson, R.E.; Tian, Y.H. Evidence for a significant urbanization effect on climate in China. PNAS 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Zhu, D.J.; Yu, W.H.; Sun, X.H. Urban expansion and farmland protection policy. Chin. Land Sci. 1996, 10, 36–37. [Google Scholar]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W. The spatiotemporal pattern of urban expansion in china: a comparison study of three urban megaregions. Remote Sens. 2017, 9, 45. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban. Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.C.; Ying, Q.; Cheng, X.; Wang, X.Y.; Li, X.Y.; Hu, L.Y.; Liang, L.; Yu, L.; Huang, H.B.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N. The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: The case of Mekelle city of northern Ethiopia. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C. Assessing spatiotemporal characteristics of urbanization dynamics in Southeast Asia using time series of DMSP/OLS nighttime light data. Remote Sens. 2018, 10, 47. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar] [CrossRef]
- Tan, K.C.; Lim, H.S.; Matjafri, M.; Abdullah, K. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ. Earth Sci. 2010, 60, 1509–1521. [Google Scholar] [CrossRef]
- Yang, A.Y.; Wong, L.N.Y.; Chen, C.; Chen, T. Using multitemporal landsat imagery to monitor and model the influences of landscape pattern on urban expansion in a metropolitan region. J. Appl. Remote Sens. 2014, 8, 083639. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on landsat data. Sci. Total Environ. 2017, 721, 605–606. [Google Scholar] [CrossRef]
- Wahyudi, A.; Liu, Y.; Corcoran, J. Combining Landsat and landscape metrics to analyse large-scale urban land cover change: A case study in the Jakarta Metropolitan Area. Spat. Sci. 2018, 3, 1–20. [Google Scholar] [CrossRef]
- Peng, W.; Wang, G.; Zhou, J.; Zhao, J.; Yang, C. Studies on the temporal and spatial variations of urban expansion in Chengdu, western China, from 1978 to 2010. Sustain. Cities Soc. 2015, 17, 141–150. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban. Econ. 2008, 63, 115. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yue, W.Z.; Fan, B.L. Measuring Urban Sprawl in Large Chinese Cities: A Case Study of Hangzhou. Sci. Geogr. Sin. 2014, 34, 394–400. [Google Scholar]
- Mundia, C.N.; Aniya, M. Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. Int. J. Remote Sens. 2005, 26, 2831–2849. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, S. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 2012, 117, 162–176. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.C.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 11, 756–763. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Clarke, K.C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plann. A 2002, 34, 1443–1458. [Google Scholar] [CrossRef]
- Weng, Q.; Hua, L.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban. Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Sinha, P.N.; Patel, N.; Jeyaseelan, A.T.; Singh, V.K. Quantification of urban landscape dynamics using patch parameters and landscape indices: An analytical study of Ranchi. J. Indian Soc. Remote Sens. 2011, 39, 225–233. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J.G. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Z.; Zhou, W.; Ai, G. Gradient analysis of urban construction land expansion in the Chongqing urban area of China. J. Urban. Plan. D 2014, 141, 05014009. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Urban expansion in Centre County, Pennsylvania: Spatial dynamics and landscape transformations. Appl. Geogr. 2009, 29, 235–249. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto Int. 2013, 28, 582–593. [Google Scholar] [CrossRef]
- Han, R.D.; Zhang, L.; Zheng, Y.; Wang, H.; Zhang, J. Urban expansion and its ecological environmental effects in Bangkok, Thailand. Acta Ecol. Sin. 2017, 37, 6322–6334. [Google Scholar]
- Shen, G.; Abdoul, N.I.; Zhu, Y.; Wang, Z.; Gong, J. Remote sensing of urban growth and landscape pattern changes in response to the expansion of Chongming Island in Shanghai, China. Geocarto Int. 2017, 32, 488–502. [Google Scholar] [CrossRef]
- Berling-Wolff, S.; Wu, J. Modeling urban landscape dynamics: A case study in Phoenix, USA. Urban. Ecosyst. 2004, 7, 215–240. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, M.; Bai, Y.; Xing, X. Ecological analysis of an emerging urban landscape pattern-desakota: A case study in Suzhou, China. Landsc. Ecol. 2006, 21, 1297–1309. [Google Scholar] [CrossRef]
- Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban. 2006, 30, 861–879. [Google Scholar] [CrossRef]
- Ghani, N.L.A.; Abidin, S.Z.Z. A modified landscape expansion index algorithm for urban growth classification using satellite remote sensing image. Adv. Sci. Lett. 2018, 24, 1843–1846. [Google Scholar] [CrossRef]
- Benza, M.; Weeks, J.R.; Stow, D.A.; López-Carr, D.; Clarke, K.C. A pattern-based definition of urban context using remote sensing and GIS. Remote Sens. Environ. 2016, 183, 250–264. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Global Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Zhong, H.; Chen, J.; Shi, T.; Ding, K.; Wu, G. Spatiotemporal evolution of urban agglomerations in four major bay areas of US, China and Japan from 1987 to 2017: Evidence from remote sensing images. Sci. Total Environ. 2019, 671, 232–247. [Google Scholar] [CrossRef]
- Wang, Q. Reach on Chinese Urban Expansion Characteristic and Driving Factors in Recent 30 Years; Chinese Academy of Sciences: Beijing, China, 2007. [Google Scholar]
- Tan, W.B.; Liu, B.; Zhang, Z.X.; Ling, W. Remote sensing monitoring and analyzing of the urban built-up land expansion in Kunming in 1974–2004. J. Geo-Info. Sci. 2009, 11, 117–124. [Google Scholar] [CrossRef]
- Mu, J.X. Study on the Expansion of Construction Land in Xi’an. Mod. Urban. Res. 2007, 4, 38–42. [Google Scholar]
- Li, A.M.; Liu, B.; Lv, A.M. Research on expansion of built-up area in Zhengzhou during 1999—2007 based on multi-original remote sensing images. J. Zhengzhou Univ. 2011, 32, 125–128. [Google Scholar]
- Taubenböck, H.; Weigand, M.; Escha, T.; Staaba, J.; Wurma, M.; Masta, J.; Dechab, S. A new ranking of the world’s largest cities—Do administrative units obscure morphological realities? Remote Sens. Environ. 2019, 232, 111353. [Google Scholar] [CrossRef]
- Shimoni, M.; Lopez, J.; Forget, Y.; Wolff, E.; Michellier, C.; Grippa, T.; Linard, C.; Gilbert, M. An urban expansion model for African cities using fused multi temporal optical and SAR data. IEEE Geosci. Remote Symp. 2015, 1159–1162. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, S. Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji urban agglomeration from 1978 to 2015. Ecol. Indic. 2018, 87, 302–313. [Google Scholar] [CrossRef]
- Hai, M.P.; Yamaguchi, Y. Urban growth and change analysis using remote sensing and spatial metrics from 1975 to 2003 for Hanoi, Vietnam. Int. J. Remote Sens. 2011, 32, 1901–1915. [Google Scholar]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wiesner, M. The spatial network of megaregions-types of connectivity between cities based on settlement patterns derived from EO-data. Comput. Environ. Urban. Syst. 2015, 54, 165–180. [Google Scholar] [CrossRef]
- Fragkias, M.; Seto, K.C. Evolving rank-size distributions of intra-metropolitan urban clusters in south China. Comput. Environ. Urban. Syst. 2009, 33, 189–199. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Zou, Q.; Zhang, Q.; Wu, G. A bilevel scale-sets model for hierarchical representation of large remote sensing images. IEEE Trans. Geosc. Remote Sens. 2016, 54, 7366–7377. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Verlag: New York, NY, USA, 1995. [Google Scholar]
- Li, H.; Gu, H.; Han, Y.; Yang, J. Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine. Int. J. Remote Sens. 2010, 31, 1453–1470. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Yu, S.; Sun, Z.; Guo, H.; Zhao, X.; Sun, L.; Wu, M. Monitoring and analyzing the spatial dynamics and patterns of megacities along the maritime Silk Road. J. Remote Sens. 2017, 21, 169–181. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef]
- Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving land use/land cover classification by integrating pixel unmixing and decision tree methods. Remote Sens. 2017, 9, 1222. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.K.; Renqiang, L.I.; Zhou, Z.J.; Zhang, L.Q. Accuracy assessments and uncertainty analysis of spatially explicit modeling for land use/cover change and urbanization: A case in Beijing metropolitan area. Sci. China Earth Sci. 2010, 53, 173–180. [Google Scholar] [CrossRef]
- Liu, S.; Wu, C.J.; Shen, H.Q. A GIS based model of urban land use growth in Beijing. Acta Geogr. Sin. 2000, 55, 407–416. [Google Scholar]
- Wu, W.; Zhao, S.; Zhu, C.; Zhao, S.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landscape Urban. Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Forman, RTT. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Xu, C.; Liu, M.; Zhang, C. The spatialtemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc. Ecol. 2007, 22, 925–937. [Google Scholar] [CrossRef]
- Liu, X.P.; Xia, L.; Chen, Y.M.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landscape Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Wu, J. Quantifying the speed, growth modes, and landscape pattern changes of urbanization: A hierarchical patch dynamics approach. Landsc. Ecol. 2013, 28, 1875–1888. [Google Scholar] [CrossRef]
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; USDA Forest Service: Washington, DC, USA, 1995.
- McGarigal, K. Fragstats Help; University of Massachusetts: Amherst, MA, USA, 2015. [Google Scholar]
- Taubenböck, H.; Wiesner, M.; Felbier, A.; Marconcini, M.; Esch, T.; Dech, S. New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Appl. Geogr. 2014, 47, 137–153. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Lv, C. An analysis of driving forces of urban land expansion in China. Econ. Geogr. 2003, 23, 635–639. [Google Scholar]
- Wang, L.; Zhu, J.; Xu, Y.; Wang, Z. Urban built-up area boundary extraction and spatial-temporal characteristics based on land surface temperature retrieval. Remote Sens. 2018, 10, 473. [Google Scholar] [CrossRef]
- Mu, F.; Zhang, Z. A comparative study of urban expansion on Hong Kong and Macao special administrative region in the past three decades. Int. Workshop Earth Obs. Remote Sens. Appl. 2008, 1–6. [Google Scholar] [CrossRef]
- Qiu, T.P. Study on Land Development and Utilization System of Hong Kong and its Inspiration to the Mainland; South China University of Technology: Guangzhou, China, 2013. [Google Scholar]
- Li, L.I.; Chi, Y.B.; Wang, Z.Y.; Wang, A.; Zhou, H. The spatio-temporal dynamic characteristics in expansion of major cities in china in 30 years since the reform and opening-up. J. Nat. Resources 2009, 24, 1933–1943. [Google Scholar]
- Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, F. Quantifying the emergy flow of an urban complex and the ecological services of a satellite town: A case study of Zengcheng, China. J. Clean. Prod. 2016, 163, 267–276. [Google Scholar] [CrossRef]
- Wang, W.W.; Jin, J.W.; Xiao, Z.P.; Shi, T.T. Urban expansion and its driving forces based on remote sensed data and GIS: A case study of Hangzhou city from 1991 to 2008. Geogr. Res. 2009, 28, 685–695. [Google Scholar]
- Ma, Y.; Xu, R. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou city, China. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- Silva, P.; Li, L. Mapping urban expansion and exploring its driving forces in the city of Praia, Cape Verde, from 1969 to 2015. Sustainability 2017, 9, 1434. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.F.; Lv, Z.Q.; Yao, N.; Wei, J. Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. 2013, 21, 409–417. [Google Scholar] [CrossRef]
- National Development and Reform Commission of China (NDRC). National New-type Urbanization Plan. Available online: http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm (accessed on 16 March 2014).
- Zhang, Z.X.; Wen, Q.; Liu, F.; Zhao, X.; Liu, B.; Xu, J.; Yi, L.; Hu, S.; Wang, X.; Zuo, L.; et al. Urban expansion in China and its effect on cultivated land before and after initiating reform and open policy. Sci. China 2016, 59, 1930–1945. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Xu, M.; He, C.; Liu, Z.; Dou, Y. How did urban land expand in china between 1992 and 2015? A multi-scale landscape analysis. PLoS ONE 2016, 11, e0154839. [Google Scholar]
- Collinge, S.K. Ecological consequences of habitat fragmentation: Implications for landscape architecture and planning. Landsc. Urban. Plan. 1996, 36, 59–77. [Google Scholar] [CrossRef]
- Magle, S.B.; Theobald, D.M.; Crooks, K.R. A comparison of metrics predicting landscape connectivity for a highly interactive species along an urban gradient in Colorado, USA. Landsc. Ecol. 2009, 24, 267–280. [Google Scholar] [CrossRef]
- Gobattoni, F.; Pelorosso, R.; Lauro, G.; Leone, A.; Monaco, R. A procedure for mathematical analysis of landscape evolution and equilibrium scenarios assessment. Landsc. Urban. Plan. 2011, 103, 289–302. [Google Scholar] [CrossRef]
- Tannier, C.; Foltete, J.C.; Girardet, X. Assessing the capacity of different urban forms to preserve the connectivity of ecological habitats. Landsc. Urban. Plan. 2012, 105, 128–139. [Google Scholar] [CrossRef]
- Shoshany, M.; Goldshleger, N. Land-use and population density changes in Israel—1950 to 1990: Analysis of regional and local trends. Land Use Policy 2002, 19, 123–133. [Google Scholar] [CrossRef]
- Tan, M.H.; Lv, C. Urban land expansion and farmland loss in China. J. Nat. Res. 2005, 20, 52–58. [Google Scholar]
- Liu, J.X. On the Administration of Migrant Population in Shenzhen City and its Countermeasures; Central China Normal University: Wuhan, China, 2011. [Google Scholar]
- Yu, Y.E.; Zhang, H.O.; Xue, Q.; Chun-shan, Z. Study on the relationship between construction land expansion and economic growth pattern in the Pearl River Delta. Geogr. Res. 2011, 30, 2259–2271. [Google Scholar]
- Liu, X.; Wang, Y.; Li, Y.; Liu, F.; Shen, J.; Wang, J.; Xiao, R.; Wu, J. Changes in arable land in response to township urbanization in a Chinese low hilly region: Scale effects and spatial interactions. Appl. Geogr. 2017, 88, 24–37. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, J.F.; Wen, Q.; Liu, S.; Li, B. Primary exploration of ecological theories and technologies for delineation of ecological redline zones. Acta Ecol. Sin. 2016, 36, 1244–1252. [Google Scholar]
- Lu, Z. Xinhua News Agency. Available online: http://www.gov.cn/xinwen/2017-02/08/content_5166338.htm (accessed on 8 February 2017).
1987 (Landsat TM) | 1997 (Landsat TM) | 2007 (Landsat TM) | 2017 (Landsat OLI) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Path/row | Date | Cloud (%) | Path/row | Date | Cloud (%) | Path/row | Date | Cloud (%) | Path/row | Date | Cloud (%) |
122/44 | 1987.12.8 | 0.32 | 122/44 | 1997.8.29 | 1.00 | 122/44 | 2007.1.29 | 0.02 | 122/44 | 2017.10.23 | 0.05 |
121/44 | 1987.8.11 | 0.02 | 121/44 | 1997.1.10 | 0.00 | 121/44 | 2006.12.21 | 0.11 | 121/44 | 2017.11.1 | 0.03 |
122/45 | 1987.2.7 | 4.00 | 122/45 | 1997.8.29 | 0.05 | 122/45 | 2007.7.24 | 4.27 | 122/45 | 2017.8.20 | 7.89 |
121/45 | 1987.8.11 | 0.00 | 121/45 | 1996.8.19 | 2.00 | 121/45 | 2007.1.30 | 0.53 | 121/45 | 2017.8.29 | 3.51 |
122/43 | 1987.12.8 | 0.03 | 122/43 | 1997.11.1 | 4.00 | 122/43 | 2007.4.19 | 1.00 | 122/43 | 2017.12.16 | 0.70 |
123/44 | 1987.9.10 | 0.00 | 123/44 | 1997.10.23 | 4.00 | 123/44 | 2006.12.19 | 0.05 | 123/44 | 2017.10.30 | 1.00 |
123/45 | 1987.9.10 | 0.55 | 123/45 | 1997.11.8 | 3.00 | 123/45 | 2007.7.15 | 0.00 | 123/45 | 2017.9.12 | 1.67 |
123/43 | 1987.9.10 | 0.00 | 123/43 | 1996.12.23 | 0.00 | 123/43 | 2007.2.5 | 0.47 | 123/43 | 2017.10.30 | 2.05 |
Date | OA (%) | Kappa | PA (%) | UA (%) |
---|---|---|---|---|
1987 | 88.16 | 0.84 | 87.50 | 80.00 |
1997 | 90.32 | 0.88 | 93.54 | 93.55 |
2007 | 90.22 | 0.88 | 87.80 | 92.31 |
2017 | 90.39 | 0.87 | 90.70 | 97.50 |
Average | 89.77 | 0.87 | 89.89 | 90.84 |
Periods | 1987 | 1997 | 2007 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
Population | GDP | Population | GDP | Population | GDP | Population | GDP | |
Guangzhou | 576.91 | 173.21 | 666.49 | 1678.12 | 949.68 | 7140.32 | 1449.84 | 19,547.44 |
Shenzhen | 105.44 | 55.90 | 527.75 | 1297.42 | 912.37 | 6801.57 | 1190.84 | 19,492.60 |
Hong Kong | 558.05 | 1916.81 | 650.21 | 6363.52 | 685.71 | 13,139.29 | 733.66 | 21,771.35 |
Macau | 43.43 | 139.86 | 42.21 | 452.51 | 53.18 | 1140.58 | 65.31 | 3128.09 |
Foshan | 145.93 | 69.12 | 367.46 | 724.6 | 629.67 | 3660.18 | 765.67 | 9549.60 |
Huizhou | 231.25 | 22.41 | 291.32 | 318.90 | 402.86 | 1117.91 | 475.55 | 3412.17 |
Jiangmen | 348.93 | 60.45 | 380.60 | 424.58 | 421.32 | 1097.26 | 456.17 | 2690.25 |
Zhongshan | 124.92 | 27.58 | 195.2 | 234.72 | 268.68 | 1268.04 | 326.0 | 3450.31 |
Dongguan | 175.62 | 39.29 | 336.45 | 448.60 | 656.07 | 3160.05 | 749.66 | 7582.12 |
Zhaoqing | 320.10 | 56.62 | 331.93 | 211.85 | 378.31 | 619.69 | 408.46 | 2200.61 |
Zhuhai | 52.62 | 15.95 | 101.46 | 234.04 | 147.44 | 894.81 | 176.54 | 2564.73 |
Landscape metric title | Units | Equations | Description |
---|---|---|---|
PLAND (percentage of landscape) | % | The proportion of the total landscape consisting of the corresponding class | |
LPI (largest patch index) | % | The percentage of area that is occupied by the largest patch of one patch type | |
LSI (landscape shape index) | Non | The total amount of edge within the landscape and landscape boundary, which is divided by the total area and adjusted by a constant for a square standard | |
NP (number of patches) | Number | The total number of patches for each individual class | |
PD (patch density) | Number/100 ha | The number of patches per 100 ha | |
FI (fragmentation index) | Number/ha | The degree of fragmentation of the corresponding class |
Study Areas | Urban Areas | Urban Area Changes | ||||||
---|---|---|---|---|---|---|---|---|
1987 | 1997 | 2007 | 2017 | 1987–1997 | 1997–2007 | 2007–2017 | Average | |
Guangzhou | 146.90 | 422.96 | 693.44 | 1486.24 | 276.06 | 270.48 | 792.8 | 446.45 |
Shenzhen | 67.67 | 337.32 | 583.04 | 776.77 | 269.65 | 245.72 | 193.73 | 236.37 |
Hong Kong | 91.29 | 124.92 | 183.56 | 203.42 | 33.63 | 58.64 | 19.86 | 37.38 |
Macau | 4.87 | 7.32 | 17.23 | 18.45 | 2.45 | 9.91 | 1.22 | 4.53 |
Foshan | 104.52 | 379.77 | 784.34 | 1485.32 | 275.25 | 404.57 | 700.98 | 460.27 |
Huizhou | 46.12 | 60.27 | 337.54 | 535.37 | 14.15 | 277.27 | 197.83 | 163.08 |
Jiangmen | 41.56 | 103.2 | 305.59 | 598.09 | 61.64 | 202.39 | 292.5 | 185.51 |
Zhongshan | 17.03 | 123.67 | 426.09 | 631.22 | 106.64 | 302.42 | 205.13 | 204.73 |
Dongguan | 46.15 | 336.93 | 764.48 | 1148.98 | 290.78 | 427.55 | 384.5 | 367.61 |
Zhaoqing | 28.84 | 49.8 | 208.87 | 366.12 | 20.96 | 159.07 | 157.25 | 112.43 |
Zhuhai | 10.50 | 49.78 | 176.77 | 316.58 | 39.28 | 126.99 | 139.81 | 102.03 |
Index | City | 1987–1997 | 1997–2007 | 2007–2017 | Average |
---|---|---|---|---|---|
ER (%) | Guangzhou | 18.79 | 6.39 | 11.43 | 12.20 |
Shenzhen | 39.85 | 7.28 | 3.32 | 16.82 | |
Hong Kong | 3.68 | 4.69 | 1.08 | 3.15 | |
Macau | 5.03 | 13.54 | 0.71 | 6.43 | |
Foshan | 26.33 | 10.65 | 8.94 | 15.31 | |
Huizhou | 3.07 | 46.00 | 5.86 | 18.31 | |
Jiangmen | 14.83 | 19.61 | 9.57 | 14.67 | |
Zhongshan | 62.62 | 24.45 | 4.81 | 30.63 | |
Dongguan | 63.01 | 12.69 | 5.03 | 26.91 | |
Zhaoqing | 7.27 | 31.94 | 7.53 | 15.58 | |
Zhuhai | 37.41 | 25.51 | 7.91 | 23.61 | |
AI (km2) | Guangzhou | 27.61 | 27.05 | 79.28 | 44.65 |
Shenzhen | 26.97 | 24.57 | 19.37 | 23.64 | |
Hong Kong | 3.36 | 5.86 | 1.99 | 3.74 | |
Macau | 0.25 | 0.99 | 0.12 | 0.45 | |
Foshan | 27.53 | 40.46 | 70.10 | 46.03 | |
Huizhou | 1.42 | 27.73 | 19.78 | 16.31 | |
Jiangmen | 6.16 | 20.24 | 29.25 | 18.55 | |
Zhongshan | 10.66 | 30.24 | 20.51 | 20.47 | |
Dongguan | 29.08 | 42.76 | 38.45 | 36.76 | |
Zhaoqing | 2.10 | 15.91 | 15.73 | 11.25 | |
Zhuhai | 3.93 | 12.70 | 13.98 | 10.20 | |
AGR (%) | Guangzhou | 11.15 | 5.07 | 7.92 | 8.05 |
Shenzhen | 17.43 | 5.62 | 2.91 | 8.65 | |
Hong Kong | 3.19 | 3.92 | 1.03 | 2.71 | |
Macau | 4.16 | 8.94 | 0.69 | 4.59 | |
Foshan | 13.77 | 7.52 | 6.59 | 9.30 | |
Huizhou | 2.71 | 18.80 | 4.72 | 8.74 | |
Jiangmen | 9.52 | 11.47 | 6.95 | 9.31 | |
Zhongshan | 21.93 | 13.17 | 4.01 | 13.03 | |
Dongguan | 21.99 | 8.54 | 4.16 | 11.56 | |
Zhaoqing | 5.61 | 15.42 | 5.77 | 8.93 | |
Zhuhai | 16.84 | 13.51 | 6.00 | 12.12 |
City | UPEC | UGEC | ||||
---|---|---|---|---|---|---|
1987–1997 | 1997–2007 | 2007–2017 | 1987–1997 | 1997–2007 | 2007–2017 | |
Guangzhou | 12.10 | 1.51 | 2.17 | 0.22 | 0.20 | 0.66 |
Shenzhen | 0.99 | 1.00 | 1.09 | 0.18 | 0.17 | 0.18 |
Hong Kong | 2.23 | 8.60 | 1.55 | 0.16 | 0.44 | 0.16 |
Macau | –17.91 | 5.21 | 0.31 | 0.23 | 0.89 | 0.04 |
Foshan | 1.73 | 1.49 | 4.14 | 0.28 | 0.26 | 0.56 |
Huizhou | 1.18 | 12.02 | 3.25 | 0.02 | 1.84 | 0.29 |
Jiangmen | 16.34 | 18.33 | 11.57 | 0.25 | 1.24 | 0.66 |
Zhongshan | 11.13 | 6.50 | 2.26 | 0.83 | 0.56 | 0.28 |
Dongguan | 6.88 | 1.34 | 3.53 | 0.60 | 0.21 | 0.36 |
Zhaoqing | 19.67 | 22.86 | 9.45 | 0.27 | 1.66 | 0.30 |
Zhuhai | 4.03 | 5.63 | 4.01 | 0.27 | 0.90 | 0.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. https://doi.org/10.3390/rs11192215
Yang C, Li Q, Zhao T, Liu H, Gao W, Shi T, Guan M, Wu G. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sensing. 2019; 11(19):2215. https://doi.org/10.3390/rs11192215
Chicago/Turabian StyleYang, Chao, Qingquan Li, Tianhong Zhao, Huizeng Liu, Wenxiu Gao, Tiezhu Shi, Minglei Guan, and Guofeng Wu. 2019. "Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data" Remote Sensing 11, no. 19: 2215. https://doi.org/10.3390/rs11192215
APA StyleYang, C., Li, Q., Zhao, T., Liu, H., Gao, W., Shi, T., Guan, M., & Wu, G. (2019). Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sensing, 11(19), 2215. https://doi.org/10.3390/rs11192215