Correction: Yang et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215
1. Text Correction
Index | City | 1987–1997 | 1997–2007 | 2007–2017 | Average |
ER (%) | Guangzhou | 18.79 | 6.39 | 11.43 | 12.20 |
Shenzhen | 39.85 | 7.28 | 3.32 | 16.82 | |
Hong Kong | 3.68 | 4.69 | 1.08 | 3.15 | |
Macau | 5.03 | 13.54 | 0.71 | 6.43 | |
Foshan | 26.33 | 10.65 | 8.94 | 15.31 | |
Huizhou | 3.07 | 46.00 | 5.86 | 18.31 | |
Jiangmen | 14.83 | 19.61 | 9.57 | 14.67 | |
Zhongshan | 62.62 | 24.45 | 4.81 | 30.63 | |
Dongguan | 63.01 | 12.69 | 5.03 | 26.91 | |
Zhaoqing | 7.27 | 31.94 | 7.53 | 15.58 | |
Zhuhai | 37.41 | 25.51 | 7.91 | 23.61 | |
AI (km2) | Guangzhou | 27.61 | 27.05 | 79.28 | 44.65 |
Shenzhen | 26.97 | 24.57 | 19.37 | 23.64 | |
Hong Kong | 3.36 | 5.86 | 1.99 | 3.74 | |
Macau | 0.25 | 0.99 | 0.12 | 0.45 | |
Foshan | 27.53 | 40.46 | 70.10 | 46.03 | |
Huizhou | 1.42 | 27.73 | 19.78 | 16.31 | |
Jiangmen | 6.16 | 20.24 | 29.25 | 18.55 | |
Zhongshan | 10.66 | 30.24 | 20.51 | 20.47 | |
Dongguan | 29.08 | 42.76 | 38.45 | 36.76 | |
Zhaoqing | 2.10 | 15.91 | 15.73 | 11.25 | |
Zhuhai | 3.93 | 12.70 | 13.98 | 10.20 | |
AGR (%) | Guangzhou | 11.15 | 5.07 | 7.92 | 8.05 |
Shenzhen | 17.43 | 5.62 | 2.91 | 8.65 | |
Hong Kong | 3.19 | 3.92 | 1.03 | 2.71 | |
Macau | 4.16 | 8.94 | 0.69 | 4.59 | |
Foshan | 13.77 | 7.52 | 6.59 | 9.30 | |
Huizhou | 2.71 | 18.80 | 4.72 | 8.74 | |
Jiangmen | 9.52 | 11.47 | 6.95 | 9.31 | |
Zhongshan | 21.93 | 13.17 | 4.01 | 13.03 | |
Dongguan | 21.99 | 8.54 | 4.16 | 11.56 | |
Zhaoqing | 5.61 | 15.42 | 5.77 | 8.93 | |
Zhuhai | 16.84 | 13.51 | 6.00 | 12.12 |
2. Text Correction
Reference
- Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Correction: Yang et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. Remote Sens. 2022, 14, 4108. https://doi.org/10.3390/rs14164108
Yang C, Li Q, Zhao T, Liu H, Gao W, Shi T, Guan M, Wu G. Correction: Yang et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. Remote Sensing. 2022; 14(16):4108. https://doi.org/10.3390/rs14164108
Chicago/Turabian StyleYang, Chao, Qingquan Li, Tianhong Zhao, Huizeng Liu, Wenxiu Gao, Tiezhu Shi, Minglei Guan, and Guofeng Wu. 2022. "Correction: Yang et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215" Remote Sensing 14, no. 16: 4108. https://doi.org/10.3390/rs14164108
APA StyleYang, C., Li, Q., Zhao, T., Liu, H., Gao, W., Shi, T., Guan, M., & Wu, G. (2022). Correction: Yang et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data. Remote Sens. 2019, 11, 2215. Remote Sensing, 14(16), 4108. https://doi.org/10.3390/rs14164108