Development and Comparative Assessment of Tobacco Waste-Based Composts for Sustainable Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials Used for Composting
2.3. Preparation of the Compost
2.4. Maturity Determination
2.5. Sample Analysis
2.6. Statistical Analysis
3. Result
3.1. Nutrient Contents in Conventional Composts
| Source of Variation | DF | Sum of Squares (SS) | Mean Square (MS) | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| OC | 2 | 104.24 | 52.12 | 65.03 | 0.0001 | Significant |
| N | 2 | 2.460 | 1.230 | 512.00 | 0.0000 | Significant |
| P | 2 | 0.022 | 0.011 | 209.61 | 0.0000 | Significant |
| K | 2 | 0.297 | 0.149 | 279.20 | 0.0000 | Significant |
| S | 2 | 0.241 | 0.121 | 2920.07 | 0.0000 | Significant |
| Error | 6 | (within-group variation) | - | - | - | - |
| Total | 8 | - | - | - | - | - |
| Nutrient | Treatment Comparison | Mean Difference | p-Value | Significance |
|---|---|---|---|---|
| OC | T1 vs. T2 | +2.30 | 0.001 | Significant |
| T1 vs. T3 | +2.30 | 0.001 | Significant | |
| T2 vs. T3 | 0.00 | 0.998 | Not Significant | |
| N | T1 vs. T2 | −0.78 | 0.000 | Significant |
| T1 vs. T3 | −0.56 | 0.001 | Significant | |
| T2 vs. T3 | +0.22 | 0.059 | Not Significant | |
| P | T1 vs. T2 | +0.10 | 0.008 | Significant |
| T1 vs. T3 | +0.11 | 0.007 | Significant | |
| T2 vs. T3 | +0.01 | 0.871 | Not Significant | |
| K | T1 vs. T2 | −0.29 | 0.003 | Significant |
| T1 vs. T3 | −0.43 | 0.001 | Significant | |
| T2 vs. T3 | −0.14 | 0.242 | Not Significant | |
| S | T1 vs. T2 | −0.03 | 0.004 | Significant |
| T1 vs. T3 | −0.36 | 0.000 | Significant | |
| T2 vs. T3 | −0.33 | 0.001 | Significant |
3.2. Duration of Composting
3.3. Nutrient Contents Available in Vermicomposts
3.4. Duration of Vermicomposting
3.5. Comparison Between Conventional and Vermicomposts
4. Discussion
4.1. Tobacco Waste-Based Compost Performance
4.2. Tobacco Waste Composting Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sultana, M.M.; Kibria, M.G.; Jahiruddin, M.; Abedin, M.A. Composting Constraints and Prospects in Bangladesh: A Review. J. Geosci. Environ. Prot. 2020, 8, 126–139. [Google Scholar] [CrossRef]
- Das, N.; Touhidul Islam, M.; Symum Islam, M.; Adham, A.K.M. Response of Dairy Farm’s Wastewater Irrigation and Fertilizer Interactions to Soil Health for Maize Cultivation in Bangladesh. Asian-Australas. J. Biosci. Biotechnol. 2018, 3, 33–39. [Google Scholar] [CrossRef]
- Islam, S.; Islam, T.; Al Mamun Hossain, S.A.; Adham, A.K.M.; Islam, D.; Rahman, M.M. Impacts of Dairy Farm’s Wastewater Irrigation on Growth and Yield Attributes of Maize. Fundam. Appl. Agric. 2017, 2, 247–255. [Google Scholar]
- Islam, F.A.S. “The Samiul Turn”: An Inventive Roadway Design Where No Vehicles Have to Stop Even for a Second and There Is No Need for Traffic Control. Eur. J. Eng. Technol. Res. 2023, 8, 76–79. [Google Scholar] [CrossRef]
- Golder, P.C.; Sastry, R.K.; Srinivas, K. Research Priorities in Bangladesh: Analysis of Crop Production Trends. SAARC J. Agric. 2013, 11, 53–70. [Google Scholar] [CrossRef]
- Hassan, M.; Parvin, M.; Rresmi, S.-I. Farmer’s Profitability of Tobacco Cultivation at Rangpur District in the Socio-Economic Context of Bangladesh: An Empirical Analysis. Int. J. Econ. Financ. Manag. Sci. 2015, 3, 91–98. [Google Scholar]
- Karim, R.; Nahar, N.; Shirin, T.; Rahman, M.A. Study on Tobacco Cultivation and Its Impacts on Health and Environment at Kushtia, Bangladesh. J. Biosci. Agric. Res. 2016, 8, 746–753. [Google Scholar] [CrossRef]
- Statistical Yearbook Bangladesh 2022; Bangladesh Bureau of Statistics (BBS): Dhaka, Bangaldesh, 2023.
- Manthos, G.; Tsigkou, K. Upscaling of Tobacco Processing Waste Management: A Review and a Proposed Valorization Approach towards the Biorefinery Concept. J. Environ. Manag. 2025, 387, 125942. [Google Scholar] [CrossRef]
- Statista. Tobacco Industry-Statistics & Facts.—Google Scholar. 2023. Available online: https://www.statista.com/topics/1593/tobacco/#topicOverview (accessed on 9 August 2025).
- Jokić, S.; Gagić, T.; Knez, Ž.; Banožić, M.; Škerget, M. Separation of Active Compounds from Tobacco Waste Using Subcritical Water Extraction. J. Supercrit. Fluids 2019, 153, 104593. [Google Scholar] [CrossRef]
- Zielke, D.; Liebe, R. The Removal of Stems from Cut Tobacco. Beiträge Zur Tab. Int. 1997, 17, 49–55. [Google Scholar] [CrossRef][Green Version]
- Valverde, J.L.; Curbelo, C.; Mayo, O.; Molina, C.B. Pyrolysis Kinetics of Tobacco Dust. Chem. Eng. Res. Des. 2000, 78, 921–924. [Google Scholar] [CrossRef]
- Mumba, P.P.; Phiri, R. Environmental Impact Assessment of Tobacco Waste Disposal. Int. J. Environ. Res. 2008, 2, 225–230. [Google Scholar]
- Hu, R.S.; Wang, J.; Li, H.; Ni, H.; Chen, Y.F.; Zhang, Y.W.; Xiang, S.P.; Li, H.H. Simultaneous Extraction of Nicotine and Solanesol from Waste Tobacco Materials by the Column Chromatographic Extraction Method and Their Separation and Purification. Sep. Purif. Technol. 2015, 146, 1–7. [Google Scholar] [CrossRef]
- Novinscak, A.; Surette, C.; Allain, C.; Filion, M. Application of Molecular Technologies to Monitor the Microbial Content of Biosolids and Composted Biosolids. Water Sci. Technol. 2008, 57, 471–477. [Google Scholar] [CrossRef]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for High Value-Added Chemicals from Food Supply Chain Wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef]
- Purwono, S.; Murachman, B.; Wintoko, J.; Simanjuntak, B.A.; Sejati, P.P.; Permatasari, N.E.; Lidyawati, D. The Effect of Solvent for Extraction for Removing Nicotine on the Development of Charcoal Briquette from Waste of Tobacco Stem. J. Sustain. Energy Environ. 2011, 2, 11–13. [Google Scholar]
- Zeng, J.; Singh, D.; Chen, S. Thermal Decomposition Kinetics of Wheat Straw Treated by Phanerochaete chrysosporium. Int. Biodeterior. Biodegrad. 2011, 65, 410–414. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Raman, G.; Mohan, K.N.; Manohar, V.; Sakthivel, N. Biodegradation of Nicotine by a Novel Nicotine-Degrading Bacterium, Pseudomonas plecoglossicida TND35 and Its New Biotransformation Intermediates. Biodegradation 2013, 25, 95–107. [Google Scholar] [CrossRef]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land Application of Organic Waste—Effects on the Soil Ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The Use of Vermicompost in Organic Farming: Overview, Effects on Soil and Economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Singh, R.P.; Embrandiri, A.; Ibrahim, M.H.; Esa, N. Management of Biomass Residues Generated from Palm Oil Mill: Vermicomposting a Sustainable Option. Resour. Conserv. Recycl. 2011, 55, 423–434. [Google Scholar] [CrossRef]
- Nekliudov, A.D.; Fedotov, G.N.; Ivankin, A.N. Intensification of Composting Processes by Aerobic Microorganisms: A Review. Prikl. Biokhim. Mikrobiol. 2008, 44, 9–23. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.; Mo, L.; Li, J. Pretreatment of Papermaking-Reconstituted Tobacco Slice Wastewater by Coagulation-Flocculation. J. Appl. Polym. Sci. 2013, 130, 1092–1097. [Google Scholar] [CrossRef]
- Banožić, M.; Aladić, K.; Jerković, I.; Jokić, S. Volatile Organic Compounds of Tobacco Leaves versus Waste (Scrap, Dust, and Midrib): Extraction and Optimization. J. Sci. Food Agric. 2021, 101, 1822–1832. [Google Scholar] [CrossRef]
- Akter, S.; Ahmed, F. Assessment of Flood Hazards and Vulnerabilities Using Esri Lulc and Fabdem Data: A Case Study of Lalmonirhat Sadar Upazilla, Bangladesh. SSRN. 2024. Available online: https://ssrn.com/abstract=5012615 (accessed on 9 August 2025).
- Lalmonirhat. Weather Averages—Bangladesh. Available online: https://www.worldweatheronline.com/lalmonirhat-weather-averages/bd.aspx (accessed on 3 November 2025).
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of Thermophilic Fungal Consortium for Organic Municipal Solid Waste Composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Haug, R.T. The Practical Handbook of Compost Engineering. The Practical Handbook of Compost Engineering; Routledge: Oxfordshire, UK, 2018. [Google Scholar] [CrossRef]
- Velásquez-Chávez, T.E.; Sáenz-Mata, J.; Quezada-Rivera, J.J.; Palacio-Rodríguez, R.; Muro-Pérez, G.; Servín-Prieto, A.J.; Hernández-López, M.; Preciado-Rangel, P.; Salazar-Ramírez, M.T.; Ontiveros-Chacón, J.C.; et al. Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix. Microbiol. Res. 2025, 16, 177. [Google Scholar] [CrossRef]
- Zapałowska, A.; Jarecki, W.; Skwiercz, A.; Malewski, T. Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings. Int. J. Mol. Sci. 2025, 26, 442. [Google Scholar] [CrossRef] [PubMed]
- C/N Ratio—CORNELL Composting. Available online: https://www.compost.css.cornell.edu/calc/cn_ratio.html (accessed on 9 August 2025).
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar] [CrossRef]
- Olsen, S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Islam, S.M.S.; Hossain, A.; Hasan, M.; Itoh, K.; Tuteja, N. Application of Trichoderma spp. as Biostimulants to Improve Soil Fertility for Enhancing Crop Yield in Wheat and Other Crops. In Biostimulants in Alleviation of Metal Toxicity in Plants: Emerging Trends and Opportunities; Academic Press: Cambridge, MA, USA, 2023; pp. 177–206. [Google Scholar] [CrossRef]
- Meade, R.H. Soil Analysis: Methods of Soil Analysis. Edited by C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, and F. E. Clark. Part 1, Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling (894 pp.); Part 2, Chemical and Microbiological Properties (926 pp.); American Society of Agronomy, Madison, Wis., 1965. $17.50 each; $30 set. Science 1966, 151, 982–983. [Google Scholar] [CrossRef]
- Williams, C.H.; Steinbergs, A. Soil Sulphur Fractions as Chemical Indices of Available Sulphur in Some Australian Soils. Aust. J. Agric. Res. 1959, 10, 340–352. [Google Scholar] [CrossRef]
- Zahedi, S.; Khalifehzadeh, R. Spatial Distribution of Surface Soil Organic Carbon in Vegetation Types of Chehelgazi Rangelands, Sanandaj City, Kurdistan Province. Watershed Manag. Res. 2025, 38, 100–119. [Google Scholar] [CrossRef]
- Medalia, A.I. Test for traces of organic matter in water. Anal. Chem. 1951, 23, 1318–1320. [Google Scholar] [CrossRef]
- White, K.E.; Brennan, E.B.; Cavigelli, M.A.; Smith, R.F. Winter Cover Crops Increase Readily Decomposable Soil Carbon, but Compost Drives Total Soil Carbon during Eight Years of Intensive, Organic Vegetable Production in California. PLoS ONE 2020, 15, e0228677. [Google Scholar] [CrossRef]
- Tautges, N.E.; Chiartas, J.L.; Gaudin, A.C.M.; O’Geen, A.T.; Herrera, I.; Scow, K.M. Deep Soil Inventories Reveal That Impacts of Cover Crops and Compost on Soil Carbon Sequestration Differ in Surface and Subsurface Soils. Glob. Chang. Biol. 2019, 25, 3753–3766. [Google Scholar] [CrossRef]
- Adediran, J.A.; Mnkeni, P.N.S.; Mafu, N.C.; Muyima, N.Y.O. Changes in Chemical Properties and Temperature during the Composting of Tobacco Waste with Other Organic Materials, and Effects of Resulting Composts on Lettuce (Lactuca sativa L.) and Spinach (Spinacea oleracea L.). Biol. Agric. Hortic. 2004, 22, 101–119. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Dinh, D.H.; Hoang, N.B.; Do, T.T.; Milham, P.; Thi Hoang, D.; Cao, S.T. Composted Tobacco Waste Increases the Yield and Organoleptic Quality of Leaf Mustard. Agrosyst. Geosci. Environ. 2022, 5, e20283. [Google Scholar] [CrossRef]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.X.; Dong, D.F. Soil Phosphorus Transformation and Plant Uptake Driven by Phosphate-Solubilizing Microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Di, Q.; Wang, Z.; Zhang, Y.; Zhang, J.; Liu, J.; Shi, X. Grafting Alleviates Potassium Stress and Improves Growth in Tobacco. BMC Plant Biol. 2019, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Dhull, S.K.; Kapoor, K.K. Chemical and Biological Changes during Composting of Different Organic Wastes and Assessment of Compost Maturity. Bioresour. Technol. 2005, 96, 1584–1591. [Google Scholar] [CrossRef]
- Aira, M.; Sampedro, L.; Monroy, F.; Domínguez, J. Detritivorous Earthworms Directly Modify the Structure, Thus Altering the Functioning of a Microdecomposer Food Web. Soil. Biol. Biochem. 2008, 40, 2511–2516. [Google Scholar] [CrossRef]
- Di, H.; Wang, R.; Ren, X.; Deng, J.; Deng, X.; Bu, G. Co-Composting of Fresh Tobacco Leaves and Soil: An Exploration on the Utilization of Fresh Tobacco Waste in Farmland. Environ. Sci. Pollut. Res. 2022, 29, 8191–8204. [Google Scholar] [CrossRef]
- Altomare, C.; Tringovska, I. Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. In Genetics, Biofuels and Local Farming Systems; Springer: Dordrecht, The Netherlands, 2011; Volume 7, pp. 161–214. [Google Scholar] [CrossRef]
- Wang, G.; Kong, Y.; Liu, Y.; Li, D.; Zhang, X.; Yuan, J.; Li, G. Evolution of Phytotoxicity during the Active Phase of Co-Composting of Chicken Manure, Tobacco Powder and Mushroom Substrate. Waste Manag. 2020, 114, 25–32. [Google Scholar] [CrossRef]
- Degefa, K.; Tullu, M.; Samuel, N. Nutrient Status of Composted and Vermicomposted Kitchen Wastes. Int. J. Soil Sci. Agron. 2022, 9, 250–254. [Google Scholar]
- Ievinsh, G.; Andersone-Ozola, U.; Zeipiņa, S. Comparison of the Effects of Compost and Vermicompost Soil Amendments in Organic Production of Four Herb Species. Biol. Agric. Hortic. 2020, 36, 267–282. [Google Scholar] [CrossRef]
- Kauser, H.; Khwairakpam, M. Organic Waste Management by Two-Stage Composting Process to Decrease the Time Required for Vermicomposting. Environ. Technol. Innov. 2022, 25, 102193. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Kumar, A.; Phytology, B.S.-J. Utilizing Composted Jatropha & Neem Cake and Tobacco Waste to Sustain Garlic Yields in Indo-Gangetic Plains. J. Phytol. 2009, 1, 353–360. [Google Scholar]
- Adediran, J.A. Growth of Tomato and Lettuce Seedlings in Soilless Media. J. Veg. Sci. 2005, 11, 5–15. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of Different Types of Waste Using Eisenia foetida: A Comparative Study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Singh, J.; Vig, A.P. Effect on Growth of Earthworm and Chemical Parameters During Vermicomposting of Pressmud Sludge Mixed with Cattle Dung Mixture. Procedia Environ. Sci. 2016, 35, 425–434. [Google Scholar] [CrossRef]
- Doan, T.T.; Henry-Des-Tureaux, T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of Compost, Vermicompost and Biochar on Soil Fertility, Maize Yield and Soil Erosion in Northern Vietnam: A Three Year Mesocosm Experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Kandoria, A.; Quadar, J.; Bhat, S.A.; Chowdhary, A.B.; Vig, A.P. Bioconversion of Different Organic Waste into Fortified Vermicompost with the Help of Earthworm: A Comprehensive Review. Int. J. Recycl. Org. Waste Agric. 2020, 9, 423–439. [Google Scholar] [CrossRef]
- De Castro, F.U.; Aprile, A.; Benedetti, M.; Fanizzi, F.P.; Ur Rehman, S.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Adhikary, S. Vermicompost, the Story of Organic Gold: A Review. Agric. Sci. 2012, 2012, 905–917. [Google Scholar] [CrossRef]
- Tarım, S.; Dergisi, G.B.; Ceritoğlu, M.; Şahin, S.; Erman, M. Effects of Vermicompost on Plant Growth and Soil Structure. Selcuk. J. Agric. Food Sci. 2018, 32, 607–615. [Google Scholar] [CrossRef]






| Primary Substrate | Co-Substrate | Average C:N Ratio of Components | Mixing Ratio (by Weight) | Rationing (C:N Contribution) | Adjusted C:N Ratio | Remarks |
|---|---|---|---|---|---|---|
| Cow manure | Vegetable leaves | 17.56:1 (Cow manure), 78.67:1 (Vegetable leaves) | 4:1 | 70.24:4 + 78.67:1 = 148.91:5 | 29.78:1 | Ideal (≈30:1), sine qua non of perfect composting |
| Cow manure | Tobacco leaves | 17.56:1 (Cow manure), 70.67:1 (Tobacco leaves) | 4:1 | 70.24:4 + 70.67:1 = 140.91:5 | 28.18:1 | Suitable for composting (within 25–35:1 range) |
| Cow manure | Tobacco stems | 17.56:1 (Cow manure), 98.76:1 (Tobacco stem) | 4:1 | 70.24:4 + 98.76:1 = 169:5 | 33.80:1 | Suitable for composting (within 25–35:1 range) |
| Source of Variation | DF | Sum of Squares (SS) | Mean Square (MS) | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| OC | 2 | 220.15 | 110.08 | 47.07 | 0.0002 | Significant |
| N | 2 | 0.273 | 0.136 | 47.27 | 0.0002 | Significant |
| P | 2 | 0.003 | 0.0015 | 11.70 | 0.0085 | Significant |
| K | 2 | 0.017 | 0.008 | 13.26 | 0.0063 | Significant |
| S | 2 | 0.139 | 0.069 | 1196.01 | 0.0000 | Significant |
| Error | 6 | (within-group variation) | - | - | - | - |
| Total | 8 | - | - | - | - | - |
| Nutrient | Treatment Comparison | Mean Difference | p-Value | Significance |
|---|---|---|---|---|
| OC | T4 vs. T5 | +4.55 | 0.004 | Significant |
| T4 vs. T6 | +6.64 | 0.001 | Significant | |
| T5 vs. T6 | +2.09 | 0.048 | Significant | |
| N | T4 vs. T5 | +0.27 | 0.038 | Significant |
| T4 vs. T6 | −0.18 | 0.067 | Not Significantns | |
| T5 vs. T6 | −0.45 | 0.002 | Significant | |
| P | T4 vs. T5 | +0.07 | 0.021 | Significant |
| T4 vs. T6 | +0.09 | 0.014 | Significant | |
| T5 vs. T6 | +0.02 | 0.625 | Not Significant | |
| K | T4 vs. T5 | −0.07 | 0.081 | Not Significant |
| T4 vs. T6 | −0.14 | 0.009 | Significant | |
| T5 vs. T6 | −0.07 | 0.072 | Not Significant | |
| S | T4 vs. T5 | −0.12 | 0.018 | Significant |
| T4 vs. T6 | −0.49 | 0.000 | Significant | |
| T5 vs. T6 | −0.37 | 0.001 | Significant |
| Region | Feedstocks | Maturity | Nutrient Outcomes | Safety Measurements | Agronomic Outcome | Distinct |
|---|---|---|---|---|---|---|
| Bangladesh (This Study) | Cow manure with (i) tobacco leaves, (ii) tobacco stems, (iii) vegetable leaves, and (iv) earthworms | Compost: 70–104 days; Vermicompost: 40–79 days | Vermicompost has a higher nutrient content than conventional compost. Tobacco stems have higher N, K, and S content compared to vegetable leaves. | Nicotine/phytotoxicity not measured | No crop yield test | Smallholder demonstration study |
| China—Di et al., 2022 [50] | Fresh tobacco leaves and soil | Co-composting lasted for nearly 10 months | Nitrogen and available potassium increased by roughly 157% and 132%. Pseudomonas, Azotobacter, and Coprinus increased by roughly 244%, 323%, and 675% | Nicotine content decreased dramatically | Stimulate the growth of tobacco plants | Demonstrates the feasibility of tobacco leaf composting. |
| South Africa—Adediran et al., 2004 [44] | Tobacco waste, sawdust/wood shavings, cow dung, pig dung, poultry manure, or cabbage waste | Compost maturity was achieved after 45–59 days | Improved NPK content and compost quality | Reduced the nicotine content of tobacco wastes from 12,180 mg kg−1 to 4872 mg kg−1 by dilution, while composting reduced it further to <160 mg kg−1 in the final composts. | Lettuce and spinach showed a positive growth response | Early agronomic evidence for tobacco-waste compost |
| China—Wang et al., 2020 [52] | Chicken manure, tobacco powder, and mushroom substrate | After day 28, the composting entered the end of the active phase | Enhanced nutrient profile and stability | Phytotoxicity tracked; detoxification confirmed by the Chinese national standard | No yield trial | Highlights the detoxification |
| Vietnam—Nguyen et al., 2022 [45] | Tobacco waste with chicken manure | After 30 days of composting, the heaps were mixed, sampled, and analyzed | Nitrate concentration decreased concomitantly from ∼67 to ∼42 mg NO3–N kg−1 fresh weight | Composting decreased the alkaloid content from ∼6000 to ∼200 mg kg−1 | The yield increased from ∼17 to ∼29 t ha−1 for leaf mustard (Brassica integrifolia) | Demonstrates the agronomic benefits of tobacco compost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, M.; Islam, M.S.; Rahman, A.; Fares, A.; Rahman, M.Z. Development and Comparative Assessment of Tobacco Waste-Based Composts for Sustainable Agriculture. Sustainability 2025, 17, 10144. https://doi.org/10.3390/su172210144
Mahmud M, Islam MS, Rahman A, Fares A, Rahman MZ. Development and Comparative Assessment of Tobacco Waste-Based Composts for Sustainable Agriculture. Sustainability. 2025; 17(22):10144. https://doi.org/10.3390/su172210144
Chicago/Turabian StyleMahmud, Mansura, Md Symum Islam, Atikur Rahman, Ali Fares, and Md. Zillur Rahman. 2025. "Development and Comparative Assessment of Tobacco Waste-Based Composts for Sustainable Agriculture" Sustainability 17, no. 22: 10144. https://doi.org/10.3390/su172210144
APA StyleMahmud, M., Islam, M. S., Rahman, A., Fares, A., & Rahman, M. Z. (2025). Development and Comparative Assessment of Tobacco Waste-Based Composts for Sustainable Agriculture. Sustainability, 17(22), 10144. https://doi.org/10.3390/su172210144

