Solving the Recyclable Household Waste Bin Location–Allocation Problem: A Case Study of the Commune of Quinta Normal in Santiago, Chile
Abstract
1. Introduction
- We generalize a prior MILP formulation to represent the generation and assignment of four types of recyclable waste separately (plastic, glass, paper, and metal) to collection sites.
- We perform a comparative analysis of SS and MS collection strategies along with two alternative location options and three bin sizes for collecting the recyclable household waste.
- We use real-world data from the commune of Quinta Normal in Santiago, Chile for solving the recyclable household waste bin location–allocation problem.
2. Literature Review
3. Mathematical Model
3.1. Sets and Indices
3.2. Parameters
3.3. Decision Variables
3.4. Mathematical Formulation
4. Case Study
5. Results
6. Discussion and Managerial Implications
6.1. Economic Implications
6.2. Public Participation
6.3. Spatial Planning
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MILP | Mixed-Integer Linear Programming |
| SS | Single-Stream |
| MS | Multi-Stream |
| UB | Upper Bound |
| LB | Lower Bound |
| GAP | Optimality gap |
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Available online: https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a (accessed on 5 October 2024).
- Rojas, A.; Yabar, H.; Mizunoya, T.; Higano, Y. The potential benefits of introducing informal recyclers and organic waste recovery to a current waste management system: The case study of Santiago de Chile. Resources 2018, 7, 18. [Google Scholar] [CrossRef]
- D’Adamo, I.; Mazzanti, M.; Morone, P.; Rosa, P. Assessing the relation between waste management policies and circular economy goals. Waste Manag. 2022, 154, 27–35. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Global Waste Management Outlook 2024. Available online: https://www.unep.org/resources/global-waste-management-outlook-2024 (accessed on 23 June 2025).
- InvestChile. Ranking 2023: Chile Lidera América Latina en Competitividad Global. Available online: https://blog.investchile.gob.cl/bloges/rankings-chile-lidera-america-latina-en-competitividad (accessed on 23 June 2025).
- Cifelli, R. Conoce Las Cifras de Reciclaje en Chile por Tipo de Residuo. Available online: https://codexverde.cl/conoce-las-cifras-de-reciclaje-en-chile-por-tipo-de-residuo/ (accessed on 13 January 2025).
- Valenzuela-Levi, N. Poor performance in municipal recycling: The case of Chile. Waste Manag. 2021, 133, 49–58. [Google Scholar] [CrossRef]
- Pariona, A. OECD Recycling Statistics. Available online: https://www.worldatlas.com/articles/oecd-leading-countries-in-recycling.html (accessed on 13 January 2025).
- Ministerio Medio Ambiente. Hoja de Ruta Economía Circular. Available online: https://economiacircular.mma.gob.cl/wp-content/uploads/2022/01/HOJA-DE-RUTA-PARA-UN-CHILE-CIRCULAR-AL-2040-EN.pdf (accessed on 13 January 2025).
- Valenzuela-Levi, N. Factors influencing municipal recycling in the Global South: The case of Chile. Resour. Conserv. Recycl. 2019, 150, 104441. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report. Available online: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf (accessed on 23 June 2025).
- Corporación Ciudades. Estudio Reciclaje y Residuos en Grandes Ciudades de Chile. Available online: https://corporacionciudades.cl/wp-content/uploads/2024/07/Estudio-reciclaje-2024.pdf (accessed on 23 June 2025).
- Ilustre Municipalidad de Quinta Normal. Plan de Desarrollo Comunal. Resumen Ejecutivo. Available online: https://ligup-v2.s3.amazonaws.com/quintanormal/multimedia/62758_resumen_pladeco_2022_2025_vf_febrero_2024_1_.pdf (accessed on 13 January 2025).
- Manríquez, J. Conoce los Puntos Limpios de Reciclaje en Quinta Normal. Available online: https://www.cualestuhuella.cl/noticia/puntos-limpios/2021/01/puntos-limpios-reciclaje-quinta-normal (accessed on 13 January 2025).
- Ilustre Municipalidad de Quinta Normal. Reciclaje Domiciliario: Quinta Normal. Available online: https://www.quintanormal.cl/secciones/6224 (accessed on 13 January 2025).
- Shaban, A.; Zaki, F.E.; Afefy, I.H.; Di Gravio, G.; Falegnami, A.; Patriarca, R. An optimization model for the design of a sustainable municipal solid waste management system. Sustainability 2022, 14, 6345. [Google Scholar] [CrossRef]
- Blazquez, C.; Paredes-Belmar, G. Network design of a household waste collection system: A case study of the commune of Renca in Santiago, Chile. Waste Manag. 2020, 116, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Alberola, M.; Gallardo Izquierdo, A.; Colomer-Mendoza, F.J.; Barreda-Albert, E. Design of a municipal solid waste collection system in situations with a lack of resources: Nikki (Benin), a case in Africa. Sustainability 2021, 13, 1785. [Google Scholar] [CrossRef]
- Herrera-Granda, I.D.; Imbaquingo-Usiña, W.G.; Lorente-Leyva, L.L.; Herrera-Granda, E.P.; Peluffo-Ordóñez, D.H.; Rossit, D.G. Optimization of the network of urban solid waste containers: A case study. In Proceedings of the International Conference on Technology Trends, Babahoyo, Ecuador, 29–31 August 2018; Springer: Berlin/Hamburg, Germany, 2018; pp. 578–589. [Google Scholar]
- Toutouh, J.; Rossit, D.; Nesmachnow, S. Computational intelligence for locating garbage accumulation points in urban scenarios. In Proceedings of the International Conference on Learning and Intelligent Optimization, Kalamata, Greece, 10–15 June 2018; Springer: Berlin/Hamburg, Germany, 2018; pp. 411–426. [Google Scholar]
- Yaakoubi, O.E.; Benabdouallah, M.; Bojji, C. Heuristic approaches for waste containers location problem and waste collection routes optimisation in an urban area. Int. J. Environ. Waste Manag. 2018, 21, 269–286. [Google Scholar] [CrossRef]
- Gilardino, A.; Rojas, J.; Mattos, H.; Larrea-Gallegos, G.; Vázquez-Rowe, I. Combining operational research and Life Cycle Assessment to optimize municipal solid waste collection in a district in Lima (Peru). J. Clean. Prod. 2017, 156, 589–603. [Google Scholar] [CrossRef]
- Rossit, D.G.; Tohmé, F.A.; Frutos, M.; Broz, D.R. An application of the augmented ε-constraint method to design a municipal sorted waste collection system. Decis. Sci. Lett. 2017, 6, 323–336. [Google Scholar] [CrossRef]
- Bennekrouf, M.; Aggoune-Mtalaa, W.; Benladghem, K.; Cherif, H.O. A strategic approach for the optimal location of recycling bins in the city of Boudjlida in Algeria. In Proceedings of the 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, Morocco, 2–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Rathore, P.; Sarmah, S.P.; Singh, A. Location–allocation of bins in urban solid waste management: A case study of Bilaspur city, India. Environ. Dev. Sustain. 2020, 22, 3309–3331. [Google Scholar] [CrossRef]
- Jammeli, H.; Argoubi, M.; Masri, H. A Bi-objective stochastic programming model for the household waste collection and transportation problem: Case of the city of Sousse. Oper. Res. 2021, 21, 1613–1639. [Google Scholar] [CrossRef]
- Adeleke, O.J.; Ali, M.M. An efficient model for locating solid waste collection sites in urban residential areas. Int. J. Prod. Res. 2021, 59, 798–812. [Google Scholar] [CrossRef]
- Cavallin, A.; Rossit, D.G.; Herran Symonds, V.; Rossit, D.A.; Frutos, M. Application of a methodology to design a municipal waste pre-collection network in real scenarios. Waste Manag. Res. 2020, 38, 117–129. [Google Scholar] [CrossRef]
- Rossit, D.; Bard, J. Solving the waste bin location problem with uncertain waste generation rate: A bi-objective robust optimization approach. Waste Manag. Res. 2025, 43, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Aka, S.; Akyüz, G. Fuzzy goal programming approach on location-routing model for waste containers. Int. J. Ind. Syst. Eng. 2018, 29, 413–427. [Google Scholar]
- Jamiro, N.F.H.; Sarif, N.A.S.; Rahman, N.S.A.; Zaharudin, Z.A. Establishing recycling bins location and allocation for sustainable urban municipalities of Johor Bahru in Malaysia. Int. J. Acad. Res. Econ. Manag. Sci. 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, M.; Wøhlk, S. Solution of the maximal covering tour problem for locating recycling drop-off stations. J. Oper. Res. Soc. 2021, 72, 1898–1913. [Google Scholar] [CrossRef]
- Letelier, C.; Blazquez, C.; Paredes-Belmar, G. Solving the bin location–allocation problem for household and recycle waste generated in the commune of Renca in Santiago, Chile. Waste Manag. Res. 2022, 40, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Rosni, M.Z.; Ishak, M.I.; Zawawi, A.S.M.; Zaharudin, Z.A. Location-Allocation Model of Recycling Facilities—A Case Study of Seremban, Malaysia. Int. J. Acad. Res. Econ. Manag. Sci. 2022, 11. [Google Scholar]
- Vidović, M.; Ratković, B.; Bjelić, N.; Popović, D. A two-echelon location-routing model for designing recycling logistics networks with profit: MILP and heuristic approach. Expert Syst. Appl. 2016, 51, 34–48. [Google Scholar] [CrossRef]
- Hemmelmayr, V.; Smilowitz, K.; de la Torre, L. A periodic location routing problem for collaborative recycling. IISE Trans. 2017, 49, 414–428. [Google Scholar] [CrossRef]
- Sheriff, K.M.; Subramanian, N.; Rahman, S.; Jayaram, J. Integrated optimization model and methodology for plastics recycling: Indian empirical evidence. J. Clean. Prod. 2017, 153, 707–717. [Google Scholar] [CrossRef]
- Nevrlỳ, V.; Šomplák, R.; Smejkalová, V.; Lipovskỳ, T.; Jadrnỳ, J. Location of municipal waste containers: Trade-off between criteria. J. Clean. Prod. 2021, 278, 123445. [Google Scholar] [CrossRef]
- Viktorin, A.; Hrabec, D.; Nevrlỳ, V.; Šomplák, R.; Šenkeřík, R. Hierarchical clustering-based algorithms for optimal waste collection point locations in large-scale problems: A framework development and case study. Comput. Ind. Eng. 2023, 178, 109142. [Google Scholar] [CrossRef]
- Moreno, J.C.; Alberola, J.M.; Sanchez-Anguix, V.; Jordán, J.; Julián, V.; Botti, V. Optimizing UCO Container Placement in Urban Environments: A Genetic Algorithm Approach. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Valencia, Spain, 20–22 November 2024; Springer: Berlin/Hamburg, Germany, 2024; pp. 208–219. [Google Scholar]
- Biblioteca del Congreso Nacional de Chile. Quinta Normal. Reporte Comunal. Available online: https://www.bcn.cl/siit/reportescomunales/comunas_v.html?anno=2021&idcom=13126 (accessed on 13 January 2025).
- Dronia, W.; Kostecki, J.; Połomka, J.; Jędrczak, A. Composition and selected properties of bio-waste collected in towns from single-and multi-family housing and in rural areas. Waste Manag. 2023, 172, 140–150. [Google Scholar] [CrossRef]
- Kyklos. Estudio de Recuperación, Reciclaje y Valorización Comunal. Datos 2021. Available online: https://chilesinbasura.cl/estudio-de-recuperacion-y-valorizacion-comunal/ (accessed on 13 January 2025).
- Instituto Nacional de Estadística. Censo 2017. Available online: https://www.censo2017.cl (accessed on 13 January 2025).
- Blazquez, C. Development of the technological tool RESCOL for designing the collaborative collection of solid household waste in urban zones. ID22I10107. Research Project, 2024.
- Berardocco, C.; Delawter, H.; Putzu, T.; Wolfe, L.C.; Zhang, H. Life cycle sustainability assessment of single stream and multi-stream waste recycling systems. Sustainability 2022, 14, 16747. [Google Scholar] [CrossRef]
- Lakhan, C. A Comparison of Single and Multi-Stream Recycling Systems in Ontario, Canada. Resources 2015, 4, 384–397. [Google Scholar] [CrossRef]
- Shang, C.; Ma, L.; Liu, Y. Green location routing problem with flexible multi-compartment for source-separated waste: A Q-learning and multi-strategy-based hyper-heuristic algorithm. Eng. Appl. Artif. Intell. 2023, 121, 105954. [Google Scholar] [CrossRef]
- Trujillo, F.; Chávez, C.; Jaime, M.; Salazar, C. Households’ preferences for door-to-door recycling service: A choice experiment in southern Chile. Ecol. Econ. 2025, 235, 108605. [Google Scholar] [CrossRef]





| References | Bin Location | Waste | Model | Objective | Limitation |
|---|---|---|---|---|---|
| Mixed waste (SS) | |||||
| [17] | Road intersections | Household waste | Two-stage MILP | Minimize bin costs | 100% coverage not fulfilled |
| [18] | Main streets | Plastic, biowaste, and other waste | GIS | Minimize costs | Optimal solutions are not guaranteed |
| [19] | Corner of the built blocks | Municipal solid waste | Multi-objective MILP | Minimize costs and walking distances | Use of single bin type and one maximum tolerance distance |
| [20] | Garbage accumulation points | Municipal solid waste | Multi-objective MILP | Maximize collected waste, and minimize cost and walking distance | Need to extend to realistic scenarios |
| [21] | Urban collection sites | Municipal solid waste | Single-objective MILP and a two-phase | Minimize total travel distance | Tested only on benchmark instances |
| Non-recyclable and recyclable waste separately (SS and MS) | |||||
| [22] | Urban grid in 9 zones | Non-recyclable, paper, plastic, glass, and cans | MILP | Minimize the number of collection sites and containers | All waste types are disposed of in same bins |
| [23] | Public spaces | Organic waste, plastic, and other types of waste | Multi-objective MILP | Minimize investment cost and average distance | Use of simulated instances |
| [24] | Grid with 256 points | Organic waste, paper, plastic, glass, metal, and cardboard | MILP | Maximum travel distance and minimizing investment costs | Use of grid instead of real locations |
| [25] | Potential points within wards | Organic and inorganic waste | MILP | Minimize bin installation and operational costs | No restriction on bin locations |
| [26] | Intersections | Recyclable and non-recyclable waste | Clustering heuristic and stochastic bi-objective programming model | Minimize collection costs and environmental impact | Use of current bin locations, only determine the number and type of bins |
| [27] | Neighborhood-level collection points | Organic waste, paper, and plastic | Lagrangian relaxation heuristic | Minimize number of collection sites | No real-world data |
| [28] | Ideal points on roads | Organic waste, paper, plastic, glass, metal, and cardboard | MILP | Minimize cost of bins and opening disposal points | Lack of accurate local waste generation and composition data |
| [29] | Sidewalk or curb | Mixed waste, paper, plastic, glass, and metal | Bi-objective MILP | Minimize network cost and maximize uncollected days | Need further field work to improve and update the input data |
| Only recyclable waste (SS and MS) | |||||
| [30] | Central points of 29 residential sites | Paper, plastic, glass, and metal | Fuzzy Multi-objective MILP | Maximizes number of served dwellings and minimizes the travel distance | Costs are not considered |
| [31] | Within a 5-min walk | Paper, plastic, glass, and metal | MILP | Maximizes the coverage | Use of a pilot study and no costs |
| [32] | Drop-off locations in public spaces | Paper, plastic, and glass | Multi-objective MILP and Variable Neighborhood Search heuristic | Minimize costs and maximize coverage | Use of relatively small instance |
| [33] | 78 points of interest | Paper, plastic, glass, and metal | GIS | Maximize the population coverage | Need additional sites near to household waste bin locations |
| [34] | 5 public spaces | Paper, plastic, glass, and metal | MILP | Maximize coverage | Costs are not considered |
| One type of recyclable waste (SS) | |||||
| [35] | Internal streets | Any recyclable waste type | MILP and two-phase heuristic | Maximize total system profit | No real-world data |
| [36] | 6 depots | Cardboard | Single-objective MILP and Adaptive Large Neighborhood Search heuristic | Minimize recycling costs | Tested on small network instances |
| [37] | 8 cluster centroids | Plastic | MILP | Minimize recycling costs | Use of non-validated data from interviewed citizens |
| [38] | Households | Plastic | Multi-objective MILP | Minimize walking distance, number of collection points, bin costs, and collection duration | Use of fixed maximum walking distance |
| [39] | Address points | Cooking oil and fat waste | MILP | Minimize the number of collection points and walking distance | Inaccuracies at cluster boundaries may locate bins too close together |
| [40] | Public urban streets | Cooking oil | MILP | Minimize walking distance and total cost | None identified |
| Scenarios | Base Case | 10% Increase | 20% Increase | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LB | UB | GAP | LB | UB | GAP | LB | UB | GAP | |||||||
| [US$] | [US$] | [%] | [m] | [%] | [US$] | [US$] | [%] | [m] | [%] | [US$] | [US$] | [%] | [m] | [%] | |
| SS | |||||||||||||||
| [m] | 28,003 | 30,945 | 9.50 | 130.5 | 92.5 | 30,764 | 34,192 | 10.03 | 124.6 | 91.6 | 33,512 | 36,535 | 8.27 | 123.6 | 93.5 |
| [m] | 27,723 | 32,840 | 15.58 | 157.5 | 88.4 | 30,486 | 35,761 | 14.75 | 149.0 | 89.3 | 33,257 | 39,186 | 15.13 | 140.2 | 89.2 |
| (27,714) | (30,915) | (10.36) | (130.7) | (92.5) | (30,486) | (34,082) | (10.55) | (124.7) | (91.9) | (33,257) | (36,254) | (8.27) | (124.5) | (94.0) | |
| [m] | 27,714 | 32,251 | 14.07 | 177.7 | 90.0 | 30,486 | 35,497 | 14.12 | 146.5 | 90.5 | 33,257 | 38,549 | 13.73 | 133.7 | 90.9 |
| (27,714) | (30,835) | (10.12) | (130.6) | (92.7) | (30,486) | (34,353) | (11.26) | (125.4) | (91.3) | (33,257) | (36,394) | (8.62) | (124.0) | (93.7) | |
| MS | |||||||||||||||
| [m] | 42,298 | 50,907 | 16.91 | 145.1 | 63.4 | 44,469 | 53,290 | 16.55 | 143.4 | 65.6 | 46,986 | 58,196 | 19.26 | 142.2 | 65.0 |
| [m] | 32,558 | 43,392 | 24.98 | 183.5 | 70.6 | 35,091 | 46,575 | 24.66 | 179.3 | 72.4 | 38,148 | 47,366 | 19.46 | 191.9 | 76.8 |
| [m] | 29,401 | 40,207 | 26.88 | 215.8 | 75.3 | 32,024 | 43,040 | 25.60 | 212.5 | 77.2 | 34,799 | 47,317 | 26.46 | 218.6 | 77.0 |
| Scenarios | Base Case | 10% Increase | 20% Increase | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LB | UB | GAP | LB | UB | GAP | LB | UB | GAP | |||||||
| [US$] | [US$] | [%] | [m] | [%] | [US$] | [US$] | [%] | [m] | [%] | [US$] | [US$] | [%] | [m] | [%] | |
| SS | |||||||||||||||
| [m] | 27,862 | 29,152 | 4.43 | 217.2 | 96.7 | 30,677 | 31,712 | 3.27 | 225.9 | 97.7 | 33,435 | 34,611 | 3.40 | 238.1 | 97.4 |
| MS | |||||||||||||||
| [m] | 33,466 | 35,727 | 6.33 | 241.0 | 83.4 | 36,064 | 38,697 | 6.80 | 241.6 | 84.4 | inf | inf | — | — | — |
| Waste Type | SS | MS | ||||||
|---|---|---|---|---|---|---|---|---|
| Bin Size | Total | Bin Size | Total | |||||
| Small | Medium | Large | Small | Medium | Large | |||
| Road intersections | ||||||||
| Plastic | 17 | 10 | 45 | 72 | ||||
| Paper | 17 | 10 | 38 | 65 | ||||
| Glass | 47 | 0 | 0 | 47 | ||||
| Metal | 47 | 0 | 0 | 47 | ||||
| Total | 41 | 20 | 89 | 150 | 128 | 20 | 83 | 231 |
| Public spaces | ||||||||
| Plastic | 8 | 9 | 46 | 63 | ||||
| Paper | 11 | 10 | 37 | 58 | ||||
| Glass | 35 | 0 | 0 | 35 | ||||
| Metal | 35 | 0 | 0 | 35 | ||||
| Total | 15 | 6 | 98 | 119 | 89 | 19 | 83 | 191 |
| Scenarios | Base Case | 10% Increase | 20% Increase | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | |
| Road intersections | ||||||||||||
| [m] | 83.5 | 81.9 | 27.6 | 17.8 | 83.7 | 82.6 | 30.3 | 19.6 | 84.7 | 81.0 | 29.7 | 19.2 |
| [m] | 85.4 | 82.3 | 38.7 | 25.0 | 87.6 | 83.0 | 40.4 | 26.2 | 88.3 | 85.8 | 49.0 | 31.7 |
| [m] | 86.8 | 84.8 | 46.9 | 30.4 | 87.9 | 84.6 | 51.6 | 33.4 | 88.6 | 85.0 | 49.9 | 32.3 |
| Public spaces | ||||||||||||
| [m] | 90.9 | 90.2 | 63.0 | 40.8 | 92.3 | 88.5 | 67.4 | 43.6 | — | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazquez, C.; Yuraszeck, F.; Gallardo, F.; Bernal, N. Solving the Recyclable Household Waste Bin Location–Allocation Problem: A Case Study of the Commune of Quinta Normal in Santiago, Chile. Sustainability 2025, 17, 9837. https://doi.org/10.3390/su17219837
Blazquez C, Yuraszeck F, Gallardo F, Bernal N. Solving the Recyclable Household Waste Bin Location–Allocation Problem: A Case Study of the Commune of Quinta Normal in Santiago, Chile. Sustainability. 2025; 17(21):9837. https://doi.org/10.3390/su17219837
Chicago/Turabian StyleBlazquez, Carola, Francisco Yuraszeck, Felipe Gallardo, and Nikcolas Bernal. 2025. "Solving the Recyclable Household Waste Bin Location–Allocation Problem: A Case Study of the Commune of Quinta Normal in Santiago, Chile" Sustainability 17, no. 21: 9837. https://doi.org/10.3390/su17219837
APA StyleBlazquez, C., Yuraszeck, F., Gallardo, F., & Bernal, N. (2025). Solving the Recyclable Household Waste Bin Location–Allocation Problem: A Case Study of the Commune of Quinta Normal in Santiago, Chile. Sustainability, 17(21), 9837. https://doi.org/10.3390/su17219837

