Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Input Data
3.2. WebGIS Database
3.3. Client–Server Architecture
4. Results
4.1. Displaying of Fishpond Data on a Webpage
4.2. Web-Based Server and a Client-Side Module
5. Discussion
6. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fluet-Chouinard, E.; Messager, M.; Lehner, B.; Finlayson, C. Freshwater Lakes and Reservoirs. In The Wetland Book. Dordrecht; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- Mammides, C. A global assessment of the human pressure on the world’s lakes. Glob. Environ. Chang. 2020, 63, 102084. [Google Scholar] [CrossRef]
- Ding, L.; Chen, K.-L.; Cheng, S.-G.; Wang, X. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan. Phys. Chem. Earth Parts A/B/C 2015, 89-90, 104–113. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Xion, J.; Zhang, H. Study on the spatial pattern and influencing factors of population urbanization of Dongting Lake area. Grograph. Res. 2013, 32, 1912–1922. [Google Scholar]
- Zeballos-Velarde, C.; Yamaguchi, K. Impacts of land reclamation on the landscape of Lake Biwa, Japan. Procedia-Soc. Behav. Sci. 2011, 19, 683–692. [Google Scholar] [CrossRef][Green Version]
- Lienhoop, N.; Messner, F. The Economic Value of Allocating Water to Post-Mining Lakes in East Germany. Water Resour. Manag. 2009, 23, 965–980. [Google Scholar] [CrossRef]
- Jayanthi, M.; Rekha, P.N.; Kavitha, N.; Ravichandran, P. Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquac. Res. 2006, 37, 1617–1626. [Google Scholar] [CrossRef]
- Hickley, P.; Muchiri, M.; Boar, R.; Britton, R.; Adams, C.; Gichuru, N.; Harper, D. Habitat degradation and subsequent fishery collapse in Lakes Naivasha and Baringo, Kenya. Ecohydrol. Hydrobiol. 2004, 4, 503–517. [Google Scholar]
- Schindler, D.W.; Carpenter, S.; Chapra, S.C.; Hecky, R.E.; Orihel, D. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- Ekholm, P.; Mitikka, S. Agricultural Lakes in Finland: Current Water Quality and Trends. Environ. Monit. Assess. 2006, 116, 111–135. [Google Scholar] [CrossRef]
- Cooper, S.D.; Lake, P.S.; Sabater, S.; Melack, J.M.; Sabo, J.L. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 2013, 719, 383–425. [Google Scholar] [CrossRef]
- Mao, D.; Cherkauer, K.A. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Peres-Neto, P. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol. Oceanogr. 2008, 53, 728–742. [Google Scholar] [CrossRef]
- Hecky, R.E.; Bootsma, H.A.; Kingdon, M.L. Impact of Land Use on Sediment and Nutrient Yields to Lake Malawi/Nyasa (Africa). J. Great Lakes Res. 2003, 29, 139–158. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Spataru, C.; Vandeveer, S.D.; Obersteiner, M.; Van Der Voet, E.; Johnson, C.; Andrews-Speed, P.; Boersma, T.; Hoff, H.; Van Vuuren, D.P. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 2018, 1, 737–743. [Google Scholar] [CrossRef]
- Lal, R. The Nexus Approach to Managing Water, Soil, and Waste under Changing Climate and Growing Demands on Natural Resources. In Governing the Nexus: Water, Soil, and Waste Resources Considering Global Change; Kurian, M., Ardakanian, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–60. [Google Scholar]
- Jain, S.K.; Lohani, A.K.; Singh, R.D.; Chaudhary, A.; Thakural, L.N. Glacial lakes and glacial lake outburst flood in a Himalayan basin using remote sensing and GIS. Nat. Hazards 2012, 62, 887–899. [Google Scholar] [CrossRef]
- Mergili, M.; Schneider, J.F. Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat. Hazards Earth Syst. Sci. 2011, 11, 1447–1462. [Google Scholar] [CrossRef]
- Leblanc, M.; Favreau, G.; Tweed, S.; Leduc, C.; Razack, M.; Mofor, L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Appl. Hydrogeol. 2006, 15, 97–100. [Google Scholar] [CrossRef]
- Ye, Q.; Zhu, L.; Zheng, H.; Naruse, R.; Zhang, X.; Kang, S. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. J. Glaciol. 2007, 53, 673–676. [Google Scholar] [CrossRef]
- Zainab, N.; Tariq, A.; Siddiqui, S. Development of Web-Based GIS Alert System for Informing Environmental Risk of Dengue Infections in Major Cities of Pakistan. Geosfera Indones. 2021, 6, 77–95. [Google Scholar] [CrossRef]
- D’Amico, G.; Szopik-Depczyńska, K.; Beltramo, R.; D’Adamo, I.; Ioppolo, G. Smart and Sustainable Bioeconomy Platform: A New Approach towards Sustainability. Sustainability 2022, 14, 466. [Google Scholar] [CrossRef]
- Li, C.; Longley, P. A Test Environment for Location-Based Services Applications. Trans. GIS 2006, 10, 43–61. [Google Scholar] [CrossRef]
- Constanza, R.; Kubiszewski, I. A Nexus Approach to Urban and Regional Planning Using the Four-Capital Frame-work of Ecological Economics. In Environmental Resource Management and the Nexus Approach; Hettiarachchi, H., Ardakanian, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 79–111. [Google Scholar]
- Kurian, M.; Ardakanian, R. The Nexus Approach to Governance of Environmental Resources Considering Global Change. In Governing the Nexus: Water, Soil and Waste Resources Considering Global Change; Kurian, M., Ardakanian, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 3–13. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water 2020, 12, 2493. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Groll, M. Identification of Critical Diffuse Pollution Sources in an Ungauged Catchment by Using the Swat Model- A Case Study of Kolleru Lake, East Coast of India. Asian J. Geogr. Res. 2020, 3, 53–68. [Google Scholar] [CrossRef]
- Azeez, P.; Kumar, A.; Choudhury, B.; Sastry, V.; Upadhyay, S.; Reddy, K.; Rao, K. Report on the Proposal for Downsizing the Kolleru Wildlife Sanctuary (+5 to +3 Feet Contour); The Ministry of Environment and Forests Government of India: New Delhi, India, 2011.
- Rao, K.; Krishna, G.; Malini, B. Kolleru lake is vanishing—A revelation through digital image processing of IRS-1D LISS III sensor data. Curr. Sci. 2004, 86, 1312–1316. [Google Scholar]
- Harikrishna, K. Land Use/Land Cover patterns in and around Kolleru Lake, Andhra Pradesh, India Using Remote Sensing and GIS Techniques. Int. J. Remote Sens. Geosci. 2013, 2, 2319–3484. [Google Scholar]
- Belton, B.; Padiyar, A.; Ravibabu, G.; Rao, K.G. Boom and bust in Andhra Pradesh: Development and transformation in India’s domestic aquaculture value chain. Aquaculture 2017, 470, 196–206. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.; Nagabhatla, N.; Sellamuthu, S. A case study of Kolleru Wetland (Ramsar site), India using remote sensing and GIS. IUP J. Earth Sci. 2010, 4, 70–77. [Google Scholar]
- Barman, R.P. The fishes of the Kolleru Lake, Andhra Pradesh, India, with comments. Rec. Zool. Sur. India 2004, 103, 83–89. [Google Scholar]
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Hagen, S.; Schaub, T. The Geojson Format; Technical Report; Internet Engineering Task Force (IETF): Fremon, CA, USA, 2016. [Google Scholar]
- Piedrafita, R.; Béjar, R.; Blasco, R.; Marco, A.; Zarazaga-Soria, F.J. The digital ‘connected’ earth: Open technology for providing location-based services on degraded communication environments. Int. J. Digit. Earth 2017, 11, 761–782. [Google Scholar] [CrossRef]
- Horbiński, T.; Lorek, D. The use of Leaflet and GeoJSON files for creating the interactive web map of the preindustrial state of the natural environment. J. Spat. Sci. 2020, 1–17. [Google Scholar] [CrossRef]
- Masetti, G.; Kelley, J.G.W.; Johnson, P.; Beaudoin, J. A Ray-Tracing Uncertainty Estimation Tool for Ocean Mapping. IEEE Access 2017, 6, 2136–2144. [Google Scholar] [CrossRef]
- Dai, Y.; Duan, Z.; Ai, D. Construction and Application of Field Investigation Support Platform for Land Spatial Planning Based on GeoServer. J. Phys. Conf. Ser. 2020, 1621. [Google Scholar] [CrossRef]
- Gao, S.; Mioc, D.; Anton, F.; Yi, X.; Coleman, D.J. Online GIS services for mapping and sharing disease information. Int. J. Heal. Geogr. 2008, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.W.; Liu, H.Y.; Yang, Y.C.; Zhang, X.; Li, Y.W. GeoServer Based Forestry Spatial Data Sharing and Integration. Appl. Mech. Mater. 2013, 295–298, 2394–2398. [Google Scholar] [CrossRef]
- Boulos, M.N.K.; Honda, K. Web GIS in practice IV: Publishing your health maps and connecting to remote WMS sources using the Open Source UMN MapServer and DM Solutions MapLab. Int. J. Heal. Geogr. 2006, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Bordogna, G.; Kliment, T.; Frigerio, L.; Brivio, P.A.; Crema, A.; Stroppiana, D.; Boschetti, M.; Sterlacchini, S. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture. ISPRS Int. J. Geo-Inf. 2016, 5, 73. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, J. Management methods of spatial data based on PostGIS. In Proceedings of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System, Beijing, China, 1–2 August 2010; Volume 1, pp. 410–413. [Google Scholar]
- Peterson, G. GIS cartography. In A Guide to Effective Map Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]







Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolli, M.K.; Opp, C.; Karthe, D.; Kumar, N.M. Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability 2022, 14, 2044. https://doi.org/10.3390/su14042044
Kolli MK, Opp C, Karthe D, Kumar NM. Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability. 2022; 14(4):2044. https://doi.org/10.3390/su14042044
Chicago/Turabian StyleKolli, Meena Kumari, Christian Opp, Daniel Karthe, and Nallapaneni Manoj Kumar. 2022. "Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India" Sustainability 14, no. 4: 2044. https://doi.org/10.3390/su14042044
APA StyleKolli, M. K., Opp, C., Karthe, D., & Kumar, N. M. (2022). Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability, 14(4), 2044. https://doi.org/10.3390/su14042044

