Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Kolleru Lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4245 KiB  
Article
Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India
by Meena Kumari Kolli, Christian Opp, Daniel Karthe and Nallapaneni Manoj Kumar
Sustainability 2022, 14(4), 2044; https://doi.org/10.3390/su14042044 - 11 Feb 2022
Cited by 7 | Viewed by 3792
Abstract
Most of the world’s freshwater lake ecosystems are endangered due to intensive land use conditions. They are subjected to anthropogenic stress and severely degraded because of large-scale aquafarming, agricultural expansion, urbanization, and industrialization. In the case of India’s largest freshwater lake, the Kolleru [...] Read more.
Most of the world’s freshwater lake ecosystems are endangered due to intensive land use conditions. They are subjected to anthropogenic stress and severely degraded because of large-scale aquafarming, agricultural expansion, urbanization, and industrialization. In the case of India’s largest freshwater lake, the Kolleru freshwater ecosystem, environmental resources such as water and soil have been adversely impacted by an increase in food production, particularly through aquaculture. There are numerous instances where aqua farmers have indulged in constructing illegal fishponds. This process of aquafarming through illegal fishponds has continued even after significant restoration efforts, which started in 2006. This underlines the necessity of continuous monitoring of the state of the lake ecosystem in order to survey the effectiveness of restoration and protection measures. Hence, to better understand the processes of ecosystem degradation and derive recommendations for future management, we developed a web mapping application (WMA). The WMA aims to provide fishpond data from the current monitoring program, allowing users to access the fishpond data location across the lake region, demanding lake digitization and analysis. We used a machine learning algorithm for training the composite series of Landsat images obtained from Google Earth Engine to digitize the lake ecosystem and further analyze current and past land use classes. An open-source geographic information system (GIS) software and JavaScript library plugins including a PostGIS database, GeoServer, and Leaflet library were used for WMA. To enable the interactive features, such as editing or updating the latest construction of fishponds into the database, a client–server architecture interface was provided, finally resulting in the web-based model application for the Kolleru Lake aquaculture system. Overall, we believe that providing expanded access to the fishpond data using such tools will help government organizations, resource managers, stakeholders, and decision makers better understand the lake ecosystem dynamics and plan any upcoming restoration measures. Full article
(This article belongs to the Special Issue Sustainable Circular Bioeconomy)
Show Figures

Figure 1

14 pages, 28339 KiB  
Article
Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine
by Meena Kumari Kolli, Christian Opp, Daniel Karthe and Michael Groll
Water 2020, 12(9), 2493; https://doi.org/10.3390/w12092493 - 7 Sep 2020
Cited by 30 | Viewed by 12269
Abstract
India’s largest freshwater ecosystem of the Kolleru Lake has experienced severe threats by land-use changes, including the construction of illegal fishponds around the lake area over the past five decades. Despite efforts to protect and restore the lake and its riparian zones, environmental [...] Read more.
India’s largest freshwater ecosystem of the Kolleru Lake has experienced severe threats by land-use changes, including the construction of illegal fishponds around the lake area over the past five decades. Despite efforts to protect and restore the lake and its riparian zones, environmental pressures have increased over time. The present study provides a synthesis of human activities through major land-use changes around Kolleru Lake both before and after restoration measures. For this purpose, archives of all Landsat imageries from the last three decades were used to detect land cover changes. Using the Google Earth Engine cloud platform, three different land-use scenarios were classified for the year before restoration (1999), for 2008 immediately after the restoration, and for 2018, i.e., the current situation of the lake one decade afterward. Additionally, the NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) indices were used to identify land cover dynamics. The results show that the restoration was successful; consequently, after a decade, the lake was transformed into the previous state of restoration (i.e., 1999 situation). In 1999, 29.7% of the Kolleru Lake ecosystem was occupied by fishponds, and, after a decade of sustainable restoration, 27.7% of the area was fishponds, almost reaching the extent of the 1999 situation. On the one hand, aquaculture is one of the most promising sources of income, but there is also limited awareness of its negative environmental impacts among local residents. On the other hand, political commitment to protect the lake is weak, and integrated approaches considering all stakeholders are lacking. Nevertheless, alterations of land and water use, increasing nutrient concentrations, and sediment inputs from the lake basin have reached a level at which they threaten the biodiversity and functionality of India’s largest wetland ecosystem to the degree that immediate action is necessary to prevent irreversible degradation. Full article
(This article belongs to the Special Issue Lake Ecology and Restoration)
Show Figures

Figure 1

Back to TopTop