# Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

^{3}) [14,15]. Hatice et al. [16] used acidic pumice to make pervious concrete and found that its strength compared to crushed stone decreased because of the fragility of the pumice. Hossain et al. [17] studied the mechanical properties and durability of lightweight volcanic pumice concrete, but experimental results showed that it had low compatibility as an alternative to common coarse aggregate. Kurt et al. [18] investigated the effect of fly ash on the self-compactness of pumice light aggregate concrete. The experimental results of 20, 40, 60, 80 and 100% pumice as a natural aggregate decreased the flow diameter of SCC concrete and material by 5, 6, 9 and 19%, respectively. Amel et al. [19] found that concrete with a dry density of 1430–1690 kg/m

^{3}could be obtained by using pumice as a coarse aggregate. Bakis [20] studied the effect of dune sand and pumice on the mechanical properties of lightweight concrete, and the results showed that pumice powder can be used as a binder for road pavement in an optimum binder ratio of 30% pumice and 20% lime.

^{3}. Niu et al. [24] found that the incorporation of 0.05% basalt fibers improved the mechanical properties of coral concrete the most by 9.87% and 1.36% in compressive and splitting compressive strength, respectively, at 28 days. Rao et al. [25] found that PVA fibers effectively enhanced the mechanical properties of coral concrete with an optimum admixture rate of 2–3 kg/m

^{3}. Cheng [26] found that coral sand concrete had better carbonation depth and capillary water absorption, compared to river sand concrete.

## 2. Materials and Methods

#### 2.1. Test Materials and Mix Design

#### 2.2. Test Methods

_{1}. When the specimen contacted any three of the four baffles, it was regarded as the damage state and recorded as final crack number N

_{2}.

## 3. Experimental Design and Results

#### 3.1. Cubic Compressive Strength Test

#### 3.2. Flexural Strength Test

#### 3.3. Splitting Tensile Strength

#### 3.4. Internal Mechanism Analysis of MLAC

## 4. Impact Resistance Test

#### 4.1. Impact Specimen Damage Pattern

#### 4.2. Impact Performance

_{1}and the number of final cracks N

_{2}for each group of 6 test blocks. The average value was used to calculate the impact energy consumption, which is calculated by the formula

^{2)}; and $h$ is the height of impact hammer drop (0.5 m).

_{1}and final cracking number N

_{2}because of the highly discrete type of concrete. In Figure 6, the variation pattern of the impact number of each group of multi-phase light aggregate concrete can be seen more intuitively. The data analysis and processing of the impact resistance index of each group of specimens leads to Table 3.

#### 4.3. Impact Resistance Analysis of MLAC Based on Two-Parameter Weibull Distribution Model

#### 4.3.1. Parameter Determination of Two-Parameter Weibull Distribution Model

^{2}are shown in Table 5.

#### 4.3.2. Impact Life Analysis of MLAC under Multiple Factors

^{2}is 0.798, the maximum is 0.978, and both are greater than 0.7. The linear regression fit is good, and the test results are consistent with the distribution law of the Weibull probability density function, which means that Equation (8) holds. According to Formulas (5)–(8), Formula (9) can be obtained and used to obtain the impact life of an MLAC under different failure probabilities.

#### 4.3.3. Impact Damage Analysis of MLAC

## 5. Conclusions

- With the increase in coal gangue ceramsite, the mechanical properties of CGC first increased and then decreased. With the increase in fly ash ceramsite, the mechanical properties of FAC increased, decreased, increased again and finally decreased. With the increase in coral aggregate content, the CC increased then decreased. With the increase in pumice aggregate, the PC decreased. The comprehensive performance was CGC > FAC > CC > PC.
- When coal gangue ceramsite was 20%, the mechanical properties and impact resistance of concrete were the best. The compressive, flexural and splitting tensile strength and the impact energy consumption increased by 29.25%, 19.93%, 13.89% and 8.2%, respectively, compared with the reference concrete.
- The impact test results of MLAC obeyed the distribution law of the two-parameter Weibull distribution model, which can be used to predict and describe the impact life of multi-phase lightweight aggregate concrete under different failure probabilities.
- The impact resistance of MLAC under multiple factors was analyzed in depth. The analysis showed that the influence of the aggregate replacement rate on the impact resistance of multi-phase lightweight aggregate concrete was higher than the probability of failure or the failure of the concrete specimens.
- Through the establishment of the impact damage evolution equation, the damage degradation of each specimen under drop hammer impact was studied in depth. The variation law of the data derived from the equation was highly consistent with the experimental results. The damage degradation of MLAC under dynamic load can be reasonably described by the equation.

## 6. Prospect

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Global ABC/IEA/UNEP (Global Alliance for Buildings and Construction, International Energy Agency, and the U.N.E.P.). Global ABC Roadmap for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; Global ABC/IEA/UNEP: Paris, France, 2020. [Google Scholar]
- Jabłońska, B.; Kityk, A.V.; Busch, M.; Huber, P. The structural and surface properties of natural and modified coal gangue. J. Environ. Manag.
**2017**, 190, 80–90. [Google Scholar] [CrossRef] [PubMed] - Toniolo, N.; Boccaccini, A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int.
**2017**, 43, 14545–14551. [Google Scholar] [CrossRef] - Cristelo, N.; Castro, F.; Miranda, T.; Abdollahnejad, Z.; Fernández-Jiménez, A. Iron and aluminium production wastes as exclusive components of alkali activated binders—Towards a sustainable alternative. Sustainability
**2021**, 13, 9938. [Google Scholar] [CrossRef] - Bilir, T.; Aygun, B.F.; Shi, J.; Gencel, O.; Ozbakkaloglu, T. Influence of Different Types of Wastes on Mechanical and Durability Properties of Interlocking Concrete Block Paving (ICBP): A Review. Sustainability
**2022**, 14, 3733. [Google Scholar] [CrossRef] - Nicoara, A.I.; Stoica, A.E.; Vrabec, M.; Šmuc Rogan, N.; Sturm, S.; Ow-Yang, C.; Gulgun, M.A.; Bundur, Z.B.; Ciuca, I.; Vasile, B.S. End-of-life materials used as supplementary cementitious materials in the concrete industry. Materials
**2020**, 13, 1954. [Google Scholar] [CrossRef] [Green Version] - Ashfaq, M.; Heera Lal, M.; Moghal, A.A.B. Utilization of coal gangue for earthworks: Sustainability perspective. In Advances in Sustainable Construction and Resource Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 203–218. [Google Scholar]
- Gao, S.; Zhang, S.; Guo, L. Application of Coal Gangue as a Coarse Aggregate in Green Concrete Production: A Review. Materials
**2021**, 14, 6803. [Google Scholar] [CrossRef] - Kockal, N.U.; Ozturan, T. Durability of lightweight concretes with lightweight fly ash aggregates. Constr. Build. Mater.
**2011**, 25, 1430–1438. [Google Scholar] [CrossRef] - Jayabharath, P.; Kesavan, G. Study on Impact Strength of Fly Ash Aggregate Concrete. IOSR J. Mech. Civ. Eng.
**2017**, 14, 75–82. [Google Scholar] [CrossRef] - Dahim, M.; Abuaddous, M.; Al-Mattarneh, H.; Rawashdeh, A.; Ismail, R. Enhancement of road pavement material using conventional and nano-crude oil fly ash. App. Nanosci.
**2021**, 11, 2517–2524. [Google Scholar] [CrossRef] - Hemalatha, T.; Ramaswamy, A. A review on fly ash characteristics–Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod.
**2017**, 147, 546–559. [Google Scholar] [CrossRef] - Yıldırım, H.; Özturan, T. Impact resistance of concrete produced with plain and reinforced cold-bonded fly ash aggregates. J. Build. Eng.
**2021**, 42, 102875. [Google Scholar] [CrossRef] - Kurt, M.; Gül, M.S.; Gül, R.; Aydin, A.C.; Kotan, T. The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete. Constr. Build. Mater.
**2016**, 103, 36–46. [Google Scholar] [CrossRef] - Kotan, T.; Gül, R. Effect of atmospheric pressure steam curing to mechanical properties of lightweight concrete produced with Erzurum–Pasinler pumice. Mach. Technol. Mater. Int. Virtual J.
**2010**, 43, 4–5. [Google Scholar] - Öz, H.Ö. Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Constr. Build. Mater.
**2018**, 166, 601–609. [Google Scholar] [CrossRef] - Hossain, K.; Ahmed, S.; Lachemi, M. Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Constr. Build. Mater.
**2011**, 25, 1186–1195. [Google Scholar] [CrossRef] - Kurt, M.; Aydin, A.C.; Gül, M.S.; Gül, R.; Kotan, T. The effect of fly ash to self-compactability of pumice aggregate lightweight concrete. Sadhana
**2015**, 40, 1343–1359. [Google Scholar] [CrossRef] - Amel, C.L.; Kadri, E.-H.; Sebaibi, Y.; Soualhi, H. Dune sand and pumice impact on mechanical and thermal lightweight concrete properties. Constr. Build. Mater.
**2017**, 133, 209–218. [Google Scholar] [CrossRef] - Bakis, A. The usability of pumice powder as a binding additive in the aspect of selected mechanical parameters for concrete road pavement. Materials
**2019**, 12, 2743. [Google Scholar] [CrossRef] [Green Version] - Johra, H.; Margheritini, L.; Antonov, Y.I.; Frandsen, K.M.; Simonsen, M.E.; Møldrup, P.; Jensen, R.L. Thermal, moisture and mechanical properties of Seacrete: A sustainable sea-grown building material. Constr. Build. Mater.
**2021**, 266, 121025. [Google Scholar] [CrossRef] - Arumugam, R.; Ramamurthy, K. Study of compressive strength characteristics of coral aggregate concrete. Mag. Concr. Res.
**1996**, 48, 141–148. [Google Scholar] [CrossRef] - Kakooei, S.; Akil, H.M.; Jamshidi, M.; Rouhi, J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater.
**2012**, 27, 73–77. [Google Scholar] [CrossRef] - Niu, D.; Su, L.; Luo, Y.; Huang, D.; Luo, D. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater.
**2020**, 237, 117628. [Google Scholar] [CrossRef] - Rao, L.; Wang, L.; Zheng, Y. Experimental Research on Mechanical Properties and Compression Constitutive Relationship of PVA Fiber-Reinforced Coral Concrete. Materials
**2022**, 15, 1762. [Google Scholar] [CrossRef] - Cheng, S.; Shui, Z.; Sun, T.; Yu, R.; Zhang, G. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Constr. Build. Mater.
**2018**, 171, 44–53. [Google Scholar] [CrossRef] - Wang, Y.; Qiu, J.; Deng, W.; Xing, J.; Liang, J. Factors affecting brittleness behavior of coal-gangue ceramsite lightweight aggregate concrete. Front. Mater.
**2020**, 7, 554718. [Google Scholar] [CrossRef] - Shafigh, P.; Nomeli, M.A.; Alengaram, U.J.; Mahmud, H.B.; Jumaat, M.Z. Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J. Clean. Prod.
**2016**, 135, 148–157. [Google Scholar] [CrossRef] - ACI Committee 544. Measurement of Properties of Fiber Reinforced Concrete. ACI Mater. J.
**1998**, 85, 83–93. [Google Scholar] - Yoo, D.-Y.; Banthia, N. Impact resistance of fiber-reinforced concrete–A review. Cement Concr. Compos.
**2019**, 104, 103389. [Google Scholar] [CrossRef] - Ding, Q.; Xiang, W.; Zhang, G.; Hu, C. Effect of Pre-wetting Lightweight Aggregates on the Mechanical Performances and Microstructure of Cement Pastes. J. Wuhan Univ. Technol. Mater. Sci. Ed.
**2020**, 35, 140–146. [Google Scholar] [CrossRef] - Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr. Build. Mater.
**2012**, 37, 360–369. [Google Scholar] [CrossRef] - Mohammadi, Y.; Kaushik, S. Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels. J. Mater. Civil Eng.
**2005**, 17, 650–658. [Google Scholar] [CrossRef] - Murali, G.; Abid, S.R.; Amran, Y.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures
**2020**, 28, 1502–1515. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Coal gangue ceramsite; (

**b**) pumice aggregate; (

**c**) fly ash ceramsite; (

**d**) coral aggregate.

**Figure 6.**Relationship between impact resistance times of MLAC and aggregate content (

**a**) CGC; (

**b**) PC; (

**c**) FAC; (

**d**) CC.

No. | Bulk Density (kg/m ^{3}) | Apparent Density (kg/m ^{3}) | Water Absorption (%) | Tube Compressive Strength (MPa) | |
---|---|---|---|---|---|

1 h | 24 h | ||||

Coal gangue ceramsite | 975 | 1730 | 5.07 | 7.43 | 6.8 |

Pumice aggregate | 690 | 1593 | 16.44 | 17.32 | 2.98 |

Fly ash ceramsite | 650 | 1323 | 12.51 | 12.98 | 6.5 |

Coral aggregate | 915 | 1841 | 8.5 | 11.0 | 3.1 |

No. | Substitution Rate (kg/m^{3}) | Water (kg/m^{3}) | Cement (kg/m^{3}) | Fly Ash (kg/m^{3}) | Gravel (kg/m^{3}) | Lightweight Aggregate (kg/m^{3}) | Sand (kg/m^{3}) | Water Reducing Agent (kg/m ^{3}) |
---|---|---|---|---|---|---|---|---|

BC0 | 0 | 180 | 366.4 | 91.6 | 1070 | 0 | 656 | 2 |

CGC1 | 10 | 180 | 366.4 | 91.6 | 963 | 107 | 656 | 2 |

CGC2 | 20 | 180 | 366.4 | 91.6 | 856 | 214 | 656 | 2 |

CGC3 | 30 | 180 | 366.4 | 91.6 | 749 | 321 | 656 | 2 |

CGC4 | 40 | 180 | 366.4 | 91.6 | 642 | 428 | 656 | 2 |

PC1 | 10 | 180 | 366.4 | 91.6 | 963 | 107 | 656 | 2 |

PC2 | 20 | 180 | 366.4 | 91.6 | 856 | 214 | 656 | 2 |

PC3 | 30 | 180 | 366.4 | 91.6 | 749 | 321 | 656 | 2 |

PC4 | 40 | 180 | 366.4 | 91.6 | 642 | 428 | 656 | 2 |

FAC1 | 10 | 180 | 366.4 | 91.6 | 963 | 107 | 656 | 2 |

FAC2 | 20 | 180 | 366.4 | 91.6 | 856 | 214 | 656 | 2 |

FAC3 | 30 | 180 | 366.4 | 91.6 | 749 | 321 | 656 | 2 |

FAC4 | 40 | 180 | 366.4 | 91.6 | 642 | 428 | 656 | 2 |

CC1 | 10 | 180 | 366.4 | 91.6 | 963 | 107 | 656 | 2 |

CC2 | 20 | 180 | 366.4 | 91.6 | 856 | 214 | 656 | 2 |

CC3 | 30 | 180 | 366.4 | 91.6 | 749 | 321 | 656 | 2 |

CC4 | 40 | 180 | 366.4 | 91.6 | 642 | 428 | 656 | 2 |

No. | N_{1}/N_{2} | |||||
---|---|---|---|---|---|---|

1 | 2 | 3 | 4 | 5 | 6 | |

BC0 | 853/854 | 1003/1004 | 1065/1066 | 1046/1047 | 923/924 | 986/987 |

CGC1 | 861/863 | 927/928 | 902/903 | 952/953 | 763/765 | 894/895 |

CGC2 | 1274/1276 | 1167/1169 | 976/979 | 1102/1104 | 1077/1079 | 953/955 |

CGC3 | 796/797 | 853/854 | 965/967 | 1023/1024 | 1058/1059 | 871/872 |

CGC4 | 684/685 | 1034/1034 | 749/749 | 852/852 | 957/957 | 932/933 |

PC1 | 755/756 | 975/976 | 959/961 | 783/784 | 732/733 | 910/911 |

PC2 | 692/693 | 728/729 | 831/832 | 921/922 | 925/927 | 744/745 |

PC3 | 635/635 | 838/839 | 764/764 | 822/822 | 637/637 | 706/707 |

PC4 | 732/733 | 580/580 | 613/613 | 669/669 | 706/706 | 636/636 |

FAC1 | 954/955 | 891/892 | 933/935 | 967/968 | 1131/1132 | 1035/1036 |

FAC2 | 740/741 | 713/714 | 948/949 | 885/886 | 821/822 | 869/870 |

FAC3 | 1107/1108 | 1065/1066 | 1009/1010 | 853/854 | 864/865 | 965/966 |

FAC4 | 715/715 | 736/737 | 834/834 | 872/872 | 928/928 | 800/800 |

CC1 | 823/825 | 835/836 | 891/892 | 1084/1085 | 1102/1103 | 1054/1055 |

CC2 | 742/744 | 756/757 | 872/873 | 971/972 | 915/916 | 946/947 |

CC3 | 685/686 | 718/719 | 783/784 | 813/814 | 868/869 | 914/915 |

CC4 | 670/671 | 754/754 | 836/837 | 765/766 | 825/825 | 703/703 |

No. | Average of the Number of Impacts | Impact Energy Consumption/(w/J) | ||
---|---|---|---|---|

N_{1} | N_{2} | N_{2} − N_{1} | ||

BC0 | 976 | 977 | 1 | 21,564.833 |

CGC1 | 913 | 914 | 1 | 20,174.265 |

CGC2 | 1055 | 1057 | 2 | 23,330.633 |

CGC3 | 928 | 929 | 1 | 20,505.353 |

CGC4 | 873 | 873 | 0 | 19,269.293 |

PC1 | 852 | 853 | 1 | 18,827.843 |

PC2 | 807 | 808 | 1 | 17,834.58 |

PC3 | 734 | 734 | 0 | 16,201.215 |

PC4 | 656 | 656 | 0 | 14,479.56 |

FAC1 | 985 | 986 | 1 | 21,763.485 |

FAC2 | 829 | 930 | 1 | 20,527.425 |

FAC3 | 977 | 978 | 1 | 21,586.905 |

FAC4 | 814 | 814 | 0 | 17,967.015 |

CC1 | 965 | 966 | 1 | 21,322.035 |

CC2 | 867 | 868 | 1 | 19,158.93 |

CC3 | 797 | 798 | 1 | 17,613.855 |

CC4 | 759 | 759 | 0 | 16,753.028 |

No. | Regression Parameters | Correlation Coefficient | |
---|---|---|---|

$\mathit{a}$ | $\mathit{b}$ | R^{2} | |

BC0 | 10.949 | −75.854 | 0.973 |

CGC1 | 11.356 | −77.494 | 0.899 |

CGC2 | 8.208 | −57.866 | 0.927 |

CGC3 | 8.018 | −55.224 | 0.943 |

CGC4 | 5.803 | −39.674 | 0.976 |

PC1 | 6.807 | −46.364 | 0.863 |

PC2 | 7.011 | −47.357 | 0.880 |

PC3 | 7.21 | −47.997 | 0.898 |

PC4 | 10.342 | −67.519 | 0.978 |

FAC1 | 10.151 | −70.422 | 0.839 |

FAC2 | 8.243 | −55.833 | 0.956 |

FAC3 | 8.322 | −57.731 | 0.93 |

FAC4 | 9.088 | −61.345 | 0.956 |

CC1 | 6.249 | −43.373 | 0.798 |

CC2 | 7.699 | −52.519 | 0.902 |

CC3 | 8.279 | −55.746 | 0.973 |

CC4 | 11.148 | −74.181 | 0.809 |

No. | ${\mathit{P}}_{1}=0.1$ | ${\mathit{P}}_{1}=0.3$ | ${\mathit{P}}_{1}=0.5$ | ${\mathit{P}}_{1}=0.7$ | ${\mathit{P}}_{1}=0.9$ |
---|---|---|---|---|---|

BC0 | 831 | 929 | 987 | 1038 | 1101 |

CGC1 | 754 | 840 | 890 | 935 | 990 |

CGC2 | 876 | 1017 | 1102 | 1179 | 1276 |

CGC3 | 740 | 862 | 936 | 1003 | 1087 |

CGC4 | 632 | 780 | 874 | 962 | 1075 |

PC1 | 652 | 780 | 860 | 933 | 1026 |

PC2 | 622 | 741 | 814 | 881 | 966 |

PC3 | 570 | 675 | 740 | 799 | 874 |

PC4 | 551 | 620 | 661 | 697 | 742 |

FAC1 | 825 | 931 | 994 | 1049 | 1118 |

FAC2 | 665 | 771 | 836 | 894 | 967 |

FAC3 | 786 | 910 | 985 | 1053 | 1138 |

FAC4 | 667 | 763 | 820 | 872 | 936 |

CC1 | 721 | 876 | 975 | 1065 | 1181 |

CC2 | 685 | 802 | 875 | 940 | 1022 |

CC3 | 640 | 742 | 804 | 859 | 929 |

CC4 | 634 | 707 | 751 | 789 | 836 |

$BC:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{1020.356}\right)}^{10.949}\right]$ | $CGC1:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{919.547}\right)}^{11.356}\right]$ | $CGC2:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{1152.275}\right)}^{8.209}\right]$ |

$CGC3:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{979.671}\right)}^{8.018}\right]$ | $CGC4:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{932.017}\right)}^{5.803}\right]$ | $PC1:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{908.235}\right)}^{6.807}\right]$ |

$PC2:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{858.317}\right)}^{7.011}\right]$ | $PC3:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{778.508}\right)}^{7.21}\right]$ | $PC4:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{684.397}\right)}^{10.342}\right]$ |

$FAC1:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{1029.858}\right)}^{10.151}\right]$ | $FAC2:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{874.61}\right)}^{8.243}\right]$ | $FAC3:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{1029.962}\right)}^{8.322}\right]$ |

$FAC4:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{853.94}\right)}^{9.088}\right]$ | $CC1:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{1033.501}\right)}^{6.249}\right]$ | $CC2:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{917.754}\right)}^{7.699}\right]$ |

$CC3:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{840.127}\right)}^{8.279}\right]$ | $CC4:\hspace{0.33em}D\left(N\right)\hspace{0.33em}=1-\mathrm{exp}\left[-{\left(\frac{n}{776.011}\right)}^{11.148}\right]$ | — |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Meng, J.; Xu, Z.; Liu, Z.; Chen, S.; Wang, C.; Zhao, B.; Zhou, A.
Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete. *Sustainability* **2022**, *14*, 9606.
https://doi.org/10.3390/su14159606

**AMA Style**

Meng J, Xu Z, Liu Z, Chen S, Wang C, Zhao B, Zhou A.
Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete. *Sustainability*. 2022; 14(15):9606.
https://doi.org/10.3390/su14159606

**Chicago/Turabian Style**

Meng, Jian, Ziling Xu, Zeli Liu, Song Chen, Chen Wang, Ben Zhao, and An Zhou.
2022. "Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete" *Sustainability* 14, no. 15: 9606.
https://doi.org/10.3390/su14159606