Priority of Water Allocation during Drought Periods: The Case of Jaguaribe Metropolitan Inter-Basin Water Transfer in Semiarid Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Governance in the State of Ceará
2.3. Data Analysis Procedure
2.3.1. Axis 1: Meteorological and Hydrological Drought Evolution
2.3.2. Axis 2: Water Users’ Perception of Drought
2.3.3. Axis 3: Water Allocation during the Drought
2.3.4. Axis 4: Drought Impact on Water Consumption
2.3.5. Axis 5: Drought Impact on Agricultural Production
3. Results and Discussion
3.1. Meteorological and Hydrological Drought Evolution
3.2. Water User’s Perception of Drought
3.3. Water Allocation during the Drought
Decision Making concerning Water Allocation
3.4. Drought Impact on Water Consumption
3.5. Drought Impact on Agricultural Production
4. Conclusions
- The drought was longer and more severe in the region that provided water than in the region that received it, which brings up a new aspect to be discussed regarding the fairness of water transfer.
- The beginning and evolution of the meteorological drought did not induce a reduction in water consumption, which was observed only when the hydrological drought was already taking place. This behavior was observed even for irrigation water users, whose drought perception was strongly related to the meteorological drought.
- In the FMR, the drought perception was delayed and more related to mitigating actions, such as rationing and contingency fees.
- Water transfer to the FMR decreased as the Castanhão dam’s storage decreased. However, the allocation for Jaguaribe IPs decreased proportionally more, except when the FMR’s local reservoir had enough storage.
- Human consumption was prioritized both in Jaguaribe and in the FMR. The consumption remained around the same in Jaguaribe and reduced by only 8% in the FMR.
- Jaguaribe irrigation was strongly affected by a reduction in water availability, with likely negative consequences for the local economy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Liu, Y.; Qiao, H. An Empirical Study on the Spatial Distribution of the Population, Economy and Water Resources in Northeast China. Phys. Chem. Earth Parts A/B/C 2015, 79–82, 93–99. [Google Scholar] [CrossRef]
- Morote, A.F.; Hernández, M.; Rico, A.M.; Eslamian, S. Inter-Basin Water Transfer Conflicts. The Case of the Tagus-Segura Aqueduct (Spain). Int. J. Hydrol. Sci. Technol. 2020, 10, 364–391. [Google Scholar] [CrossRef]
- Ahmadi, A.; Zolfagharipoor, M.A.; Afzali, A.A. Stability Analysis of Stakeholders’ Cooperation in Inter-Basin Water Transfer Projects: A Case Study. Water Resour. Manag. 2019, 33, 1–18. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Abutalebi, M.; Chu, X.; Loáiciga, H.A. Assessment of Potential of Intraregional Conflicts by Developing a Transferability Index for Inter-Basin Water Transfers, and Their Impacts on the Water Resources. Environ. Monit. Assess. 2020, 192, 40. [Google Scholar] [CrossRef]
- Roman, P. The São Francisco Interbasin Water Transfer in Brazil: Tribulations of a Megaproject through Constraints and Controversy. Water Altern. 2017, 10, 395–419. [Google Scholar]
- Boelens, R.; Vos, J. Legal Pluralism, Hydraulic Property Creation and Sustainability: The Materialized Nature of Water Rights in User-Managed Systems. Curr. Opin. Environ. Sustain. 2014, 11, 55–62. [Google Scholar] [CrossRef]
- Prakash, A.; Singh, S.; Brouwer, L. Water Transfer from Peri-Urban to Urban Areas. Environ. Urban. ASIA 2015, 6, 41–58. [Google Scholar] [CrossRef]
- Wei, S.; Yang, H.; Abbaspour, K.; Mousavi, J.; Gnauck, A. Game Theory Based Models to Analyze Water Conflicts in the Middle Route of the South-to-North Water Transfer Project in China. Water Res. 2010, 44, 2499–2516. [Google Scholar] [CrossRef]
- Veisi, K.; Bijani, M.; Abbasi, E. A Human Ecological Analysis of Water Conflict in Rural Areas: Evidence from Iran. Glob. Ecol. Conserv. 2020, 23, e01050. [Google Scholar] [CrossRef]
- Van Huynh, C.; van Scheltinga, C.T.; Pham, T.H.; Duong, N.Q.; Tran, P.T.; Nguyen, L.H.K.; Pham, T.G.; Nguyen, N.B.; Timmerman, J. Drought and Conflicts at the Local Level: Establishing a Water Sharing Mechanism for the Summer-Autumn Rice Production in Central Vietnam. Int. Soil Water Conserv. Res. 2019, 7, 362–375. [Google Scholar] [CrossRef]
- Ma, Y.; Chang, J.; Guo, A.; Wu, L.; Yang, J.; Chen, L. Optimizing Inter-Basin Water Transfers from Multiple Sources among Interconnected River Basins. J. Hydrol. 2020, 590, 125461. [Google Scholar] [CrossRef]
- Pereira, G.R.; Cuellar, M.D.Z. Conflitos Pela Água Em Tempos de Seca No Baixo Jaguaribe, Estado Do Ceará. Estud. Avançados 2015, 29, 115–137. [Google Scholar] [CrossRef] [Green Version]
- IBGE. Estimativas da População Residente para os Municípios e para as Unidades da Federação Com Data de Referência em 1o de Julho de 2019: [Notas Metodológicas]; IBGE: Rio de Janeiro, Brazil, 2019.
- IPECE. Ceará em Números; IPECE: Fortaleza, Brazil, 2020. [Google Scholar]
- da Costa, E.S.; Costa, A.A. Study of the Transport of Atmospheric Pollutants in the Pecém Industrial and Port Complex (Cipp), Ceará, Brazil. Rev. Bras. Meteorol. 2021, 36, 615–624. [Google Scholar] [CrossRef]
- FIEC. Available online: https://arquivos.sfiec.org.br/nucleoeconomia/files/files/Outras%20publicacoes/distrito-industrial-nova-identidade-vfinal.pdf (accessed on 15 April 2022).
- IPECE. Available online: https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2014/02/TD_44.pdf (accessed on 15 April 2022).
- Ponte, A.G.R. Impactos Econômicos do Complexo Industrial e Portuário do Pecém-CIPP; Universidade Federal do Ceará: Fortaleza, Brazil, 2022. [Google Scholar]
- CEARÁ. A Importância da Duplicação do Eixão das Águas para o Desenvolvimento Regional do Vale do Jaguaribe e Região Metropolitana de Fortaleza (RMF); Ceará State Government: Fortaleza, Brazil, 2021.
- Costa, A.C.; Foerster, S.; de Araújo, J.C.; Bronstert, A. Analysis of Channel Transmission Losses in a Dryland River Reach in North-Eastern Brazil Using Streamflow Series, Groundwater Level Series and Multi-Temporal Satellite Data. Hydrol. Process. 2012, 2274, 2267–2274. [Google Scholar] [CrossRef] [Green Version]
- FORTALEZA. Fortaleza 2040; Ceará State Government: Fortaleza, Brazil, 2020.
- CEARÁ. Plano de Segurança Hídrica da Região Metropolitana de Fortaleza; Ceará State Government: Fortaleza, Brazil, 2016.
- Pontes, P.A.; Aragão, K. Os Perímetros Irrigados Do Ceará: Os Grandes Projetos de Irrigação Têm Impacto Sobre a Renda Local ? In Proceedings of the XXXVII Encontro da ANPAD, Rio de Janeiro, Brazil, 7–11 September 2013; pp. 1–13. [Google Scholar]
- dos Santos, F.S.S.; Campos, K.C.; Coelho, E.L.; da Silva, F.L.; Oliveira, V.R. De Avaliação de Perímetros Públicos Irrigados No Ceará. Rev. Política Agrícola 2014, 23, 29–42. [Google Scholar]
- Silva Neto, O.L.S.; Cunha, L.E.M.; Schilling Marquesan, F.F. As implicações socioeconômicas da seca sobre a população de um perímetro irrigado. In Proceedings of the Congresso Internacional da Diversidade do Semiárido, Campina Grande, Brazil, 10 November 2016. [Google Scholar]
- CEARÁ. Ceará 2050; Ceará State Government: Ceará, Brazil, 2018.
- CEARÁ. Plano de Ações Estratégicas do Estado do Ceará; Ceará State Government: Ceará, Brazil, 2018.
- de Assis Souza Filho, F.; Formiga-Johnsson, R.M.; de Carvalho Studart, T.M.; Abicalil, M.T. From Drought to Water Security: Brazilian Experiences and Challenges; Water Resources Development and Management: Singapore, 2018; ISBN 9789811079139. [Google Scholar]
- de Carvalho Studart, T.M.; Campos, J.N.B.; de Souza Filho, F.A.; Pinheiro, M.I.T.; Barros, L.S. Turbulent Waters in Northeast Brazil: A Typology of Water Governance-Related Conflicts. Environ. Sci. Policy 2021, 126, 99–110. [Google Scholar] [CrossRef]
- SRH. Diagnóstico da Alocação Negociada de Água; Ceará State Government: Fortaleza, Brazil, 2021.
- BRASIL. Lei N° 9433: Política Nacional de Recursos Hídricos; Secretaria de Recursos Hídricos: Brasília, Brazil, 1997; 72p. [Google Scholar]
- CEARÁ. Casa Civil. Lei N°. 14.844: Política Estadual de Recursos Hídricos. Diário Oficial do Estado do Ceará, 30 December 2010, p. 245. Fortaleza–CE. Série 3, Ano I, N°. Available online: http://extwprlegs1.fao.org/docs/pdf/bra183427.pdf (accessed on 15 May 2021).
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference of Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Pontes Filho, J.D.; Portela, M.M.; Marinho de Carvalho Studart, T.; de Souza Filho, F.A. A Continuous Drought Probability Monitoring System, CDPMS, Based on Copulas. Water 2019, 11, 1925. [Google Scholar] [CrossRef] [Green Version]
- WMO. Standardized Precipitation Index User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- COGERH. Portal Hidrológico do Ceará. 2020. Available online: http://www.hidro.ce.gov.br/hidro-ce-zend/app/pagina/show/162 (accessed on 14 April 2020).
- Xavier, L.C.P.; Carvalho, T.M.N.; Filho, J.D.P.; de Souza Filho, F.A.; da Silva, S.M.O. Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water 2020, 12, 1546. [Google Scholar] [CrossRef]
- Carneiro, H.A.; Mylonakis, E. Google Trends: A Web-Based Tool for Real-Time Surveillance of Disease Outbreaks. Clin. Infect. Dis. 2009, 49, 1557–1564. [Google Scholar] [CrossRef]
- Fu, C.; Miller, C. Using Google Trends as a Proxy for Occupant Behavior to Predict Building Energy Consumption. Appl. Energy 2022, 310, 118343. [Google Scholar] [CrossRef]
- Thompson, J.J.; Wilby, R.L.; Matthews, T.; Murphy, C. The Utility of Google Trends as a Tool for Evaluating Flooding in Data-scarce Places. Area 2021, 54, 1–10. [Google Scholar] [CrossRef]
- SNIS. Diagnóstico dos Serviços de Água e Esgoto-2019; National Sanitation Department: Brasília, Brazil, 2019. [Google Scholar]
- Pontes Filho, J.D.; de Souza Filho, F.A.; Martins, E.S.P.R.; Studart, T.M.C. Copula-Based Multivariate Frequency Analysis of the 2012-2018 Drought in Northeast Brazil. Water 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Hughes, N.; Soh, W.Y.; Boult, C.; Lawson, K. Defining Drought from the Perspective of Australian Farmers. Clim. Risk Manag. 2022, 35, 100420. [Google Scholar] [CrossRef]
- Nunes Carvalho, T.M.; de Souza Filho, F.A. A Data-Driven Model to Evaluate the Medium-Term Effect of Contingent Pricing Policies on Residential Water Demand. Environ. Challenges 2021, 3, 100033. [Google Scholar] [CrossRef]
- Swyngedouw, E. Privatizando o H2O: Transformando Águas Locais Em Dinheiro Global. Rev. Bras. Estud. Urbanos E Reg. 2004, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Abers, R.N.; Formiga-Johnsson, R.M.; Frank, B.; Keck, M.E.; Lemos, M.C. Inclusão, Deliberação e Controle: Três Dimensões Dedemocracia Nos Comitês e Consórcios de Bacias Hidrográficas No Brasil. Ambient. Soc. 2009, 12, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Formiga-Johnsson, R.M.; Britto, A.L. Water Security, Metropolitan Supply and Climate Change: Some Considerations Concerning the Rio de Janeiro Case. Ambient. Soc. 2020, 23, 1–22. [Google Scholar] [CrossRef]
- Wilhite, D.A. Planning for Drought: A Methodology. In Drought Assessment, Management, and Planning: Theory and Case Studies; Springer: Boston, MA, USA, 1993; pp. 87–108. [Google Scholar]
- Wilhite, D.A.; Sivakumar, M.V.K.; Wood, D.A. Early Warning Systems for Drought Preparedness and Drought Management. In Proceedings of the An Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; World Meteorological Organization: Geneva, Switzerland. [Google Scholar]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa Estácio, Á.B.; Melo Rocha, M.A.; Caetano de Oliveira, M.; Oliveira da Silva, S.M.; de Souza Filho, F.d.A.; Marinho de Carvalho Studart, T. Priority of Water Allocation during Drought Periods: The Case of Jaguaribe Metropolitan Inter-Basin Water Transfer in Semiarid Brazil. Sustainability 2022, 14, 6876. https://doi.org/10.3390/su14116876
Sousa Estácio ÁB, Melo Rocha MA, Caetano de Oliveira M, Oliveira da Silva SM, de Souza Filho FdA, Marinho de Carvalho Studart T. Priority of Water Allocation during Drought Periods: The Case of Jaguaribe Metropolitan Inter-Basin Water Transfer in Semiarid Brazil. Sustainability. 2022; 14(11):6876. https://doi.org/10.3390/su14116876
Chicago/Turabian StyleSousa Estácio, Ályson Brayner, Maria Aparecida Melo Rocha, Marcílio Caetano de Oliveira, Samiria Maria Oliveira da Silva, Francisco de Assis de Souza Filho, and Ticiana Marinho de Carvalho Studart. 2022. "Priority of Water Allocation during Drought Periods: The Case of Jaguaribe Metropolitan Inter-Basin Water Transfer in Semiarid Brazil" Sustainability 14, no. 11: 6876. https://doi.org/10.3390/su14116876