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Abstract: The 2012–2018 drought was such an extreme event in the drought-prone area of Northeast
Brazil that it triggered a discussion about proactive drought management. This paper aims at
understanding the causes and consequences of this event and analyzes its frequency. A consecutive
sequence of sea surface temperature anomalies in the Pacific and Atlantic Oceans, at both the decadal
and interannual scales, led to this severe and persistent drought. Drought duration and severity
were analyzed using run theory at the hydrographic region scale as decision-makers understand
impact analysis better at this scale. Copula functions were used to properly model drought joint
characteristics as they presented different marginal distributions and an asymmetric behavior. The
2012–2018 drought in Ceará State had the highest mean bivariate return period ever recorded,
estimated at 240 years. Considering drought duration and severity simultaneously at the level of
the hydrographic regions improves risk assessment. This result advances our understanding of
exceptional events. In this sense, the present work proposes the use of this analysis as a tool for
proactive drought planning.
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1. Introduction

The northeast of Brazil (NEB) has experienced one of its worst droughts ever recorded, from
2012 to 2018, leading to devastating widespread impacts on water storage, agriculture, livestock, and
industry [1–9]. Solely in Ceará State, 39 out of 153 monitored reservoirs completely collapsed, another
42 reservoirs reached their minimum operating water level, and 52% of the State’s municipalities
experienced water supply interruptions by the end of 2016 [10].

Droughts have been reported in NEB since the colonial period [3,11,12]. Historically, the States
of Ceará, Rio Grande do Norte, Paraiba, and Pernambuco are concentrated drought hotspots [13].
Drought hazards have caused massive migration and significant population death, such as the drought
of 1877–1879, with human drought-related deaths estimated to be around 500,000 persons in Ceará
State alone [12]. The population had no warning alert, and countless citizens chose to endure with
minimal provisions before migrating to less impacted areas. Many perished in the process.

The inherent characteristics of the semi-arid region (strong seasonality coupled with high rainfall
and discharge variability), shallow soils (most above the crystalline rock basement), and elevated
evapotranspiration rates amplified drought-related impacts in NEB.

Societies adapt to the environment shaped by climate factors [12] and, in the case of Ceará, this
adaptation was centered on two pillars. The first was the construction of large dams, used as public
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policy to help cope with drought. These large reservoirs were designed to operate in Ceará’s climate,
taking into account its interannual rainfall variability, i.e., the drastic oscillations between wet and dry
years [14,15]. The second was based on the transparent water allocation process and hydrosystems
management supported by an early warning operation system [16–19], vital to Ceará’s resilience to
drought. These initiatives were successful in preventing migration and the devastating loss of life but
were insufficient to address other economic severe losses resulting from the 2012–2018 drought.

Research [1,12] has shown that the adaptive capacity that had been built in Ceará State, e.g.,
hydraulic infrastructure and management actions, coupled with emergency measures taken to cope
with the 2012–2018 drought, reduced its vulnerability. Despite the lessons learned, such measures are
still bound by a “reactive” management paradigm. We evaluate that without proactive management
and preventive drought measures, reduced efficiency was achieved by these past measures. Proactive
drought management is the planning of preventive measures necessary to mitigate drought impacts.

One of the most striking social features of droughts is the loss or “washing away” of memory,
which usually happens when the first rains arrive. It is this feature that makes most planning reactive.
Our research team found that remnants of this memory can be used and have great potential for
proactive drought planning. It would be possible, for example, to use frequency analysis of specific
events as a memory holder, since it informs the estimated return period of an event, i.e., the expected
recurrence interval of an event with magnitude equal to or greater than a specified one [20]. Frequency
analysis is only possible through consistent monitoring. It enables the identification of current drought
exceptionality and permits the use of this information as a preparation tool for the mitigation of
future droughts.

The univariate approach has traditionally dominated the drought frequency analysis. However,
multiple aspects of drought characteristics present a dependence structure that can be entirely ignored
by the univariate approach, resulting in an incomplete representation of the phenomenon [21–23].
For instance, drought with the same duration could present completely different impacts, depending
on their respective severity. Shiau [24] developed a way to calculate the return period of a drought as a
function of its duration and severity. Based on the understanding of drought from the Standardized
Precipitation Index (SPI) of a rain gauge in Taiwan, he analyzed the bivariate nature of droughts by
calculating the joint return period of drought duration and severity. His main contribution was the
use of copula functions to model the complex dependence of drought characteristics. Copulas are
functions capable of modeling the dependency structure flexibly by not restricting the use of the same
distribution for its marginals [25–28], and many applications were applied all over the world [29–34],
primarily on a punctual approach.

The limitation of the punctual approach is its focus on a local region, but the occurrence of
drought may cover large areas. Thus, regional analysis has proven to be more efficient for drought
management than the punctual approach [35,36]. Regionalization techniques are essential to reduce
random fluctuations of a point-based approach and homogenizing drought analysis [37–39]. Clustering
techniques that consider the point-wise correlation of a temporal series are essential and are increasing
in use in hydrological applications [16,40–43]. Even though these types of regionalization do not
conserve any correlation with the political planning unit, the traditional use of the hydrographic
region’s scale is proposed as it reinforces the correlation with socio-economic impacts felt in this
planning scale. In this sense, this scale is more appropriate for drought analysis for the water sector
since it is the water planning unit defined by Brazilian water law and can be used as an essential
planning scale for proactive drought management.

Many drought analyses have been performed but used either a univariate or point-scale approach.
However, droughts have multivariate characteristics and may cover large areas. The purpose of this
study was to use a statistical model capable of representing drought multivariate characteristics at
a useful scale for decision-makers. The improved understanding of exceptional droughts by using
the proposed framework should help to improve proactive drought management. We organized the
article into six sections. Section 2 presents the study area and the principal mechanisms causing rainfall
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in the area. Section 3 investigates the large-scale dynamics that caused the 2012–2018 drought event
and the main consequences derived from this event. Section 4 presents the data and methods used to
define and model drought and its characteristics. Section 5 introduces the results of these analyses,
including the duration and severity of the drought initiated in 2012 for each hydrographic region, and
their univariate and bivariate return period. Section 6 places a summary with concluding remarks and
discussions of the main results in comparison with the results from other authors.

2. Study Area

The State of Ceará is located in the northern portion of the northeast of Brazil (NNEB) (Figure 1).
The hydrographic regions’ code numbers are defined as a function of latitude. The hydrographic
regions located in the North are classified as HR01 to HR07, those located in the Central area are
HR08 to HR10, and the Southern hydrographic regions are HR11 and HR12. Ceará has more than
90% of its territory located in the Brazilian semiarid region (characterized by low precipitation levels,
less than 800 mm per year, high evaporation rates, and shallow soils). Such characteristics make the
region remarkably vulnerable to droughts. This vulnerability is increasing due to permanent land
degradation, which puts 94% of NEB into moderate to high risk of desertification [7].
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Figure 1. Location of Ceará State, its hydrographic regions and main reservoirs (storage capacity higher
than 100 hm3).

The rainy season in Ceará State is characterized by a distinct seasonality, extending from December
to July. The main rainy season occurs from February to May, depending on oceanic and atmospheric
conditions, and the principal mechanism that influences rainfall in this period is the Intertropical
Convergence Zone (ITCZ) [12,14]. When the difference of the sea surface temperature (SST) of tropical
north and south Atlantic, i.e., the Interhemispheric Tropical Atlantic Gradient (IHTAG), is weaker, the
ITCZ reaches its southernmost position, which usually occurs around March-April [14,44,45].
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The interannual climatic variability of the NNEB is highly modulated by thermodynamic patterns
that occur over the tropical Pacific and Atlantic Oceans. El Niño South Oscillation (ENSO) and IHTAG
can perturb Walker and Hadley cells, causing drifts and consequently changing the intensity and
period of the rainy season in the area [14,15,45–47].

Depending on the intensity and period of the year in which it occurs, the ENSO warm phase is
responsible for displacing the descending portion of the Walker cell. This phenomenon causes a zone
of high pressure over NEB, which makes cloud formation in the region difficult and, consequently,
influencing in years considered dry or very dry in the region [15,44,45]. The IHTAG, on the other hand,
is capable of causing drought in the region when abnormal warming of tropical North Atlantic SST
occurs, which creates a low-pressure zone in this part of the Atlantic Ocean and attracts the ITCZ
towards North, avoiding precipitation over South American continent [45,46,48,49]. In addition, the
association of the positive phase of North Atlantic SST concomitant with an El Niño event provides
accentuated regional impacts on the climatic condition [50].

Despite the high-frequency interannual variability, there is also decadal climatic variability that
can be influenced by low-frequency modes of SST anomalies. The pacific SST varies at a decadal time
scale, a mode of SST variability known as Pacific Decadal Oscillation (PDO).

Kayano and Andreoli [47] found a significant climate teleconnection between the precipitation in
NNEB and PDO. The Atlantic Ocean also has its low-frequency variability mode, referred to as Atlantic
Multidecadal Oscillation (AMO) [51,52]. Linkages between AMO and seasonal climate variability
over NNEB have also been found [53–57]. Periods with simultaneously positive (or negative) PDO
and AMO phases result in a more predictable behavior of rainfall in the region, with values below (or
above) than normally expected [58].

3. The 2012–2018 Drought

The shock of the 2012–2018 drought raised awareness in Ceará’s management community to the
importance of proactive drought management, primarily due to the severity of its impacts. It was also
an opportunity to better comprehend the complex interactions between ocean and atmosphere and the
consequences in the rainfall over NNEB. The leading causes of this event were related to the serial
combination of high and low-frequency anomalies in SSTs that caused its persistence. Therefore, the
2012–2018 event can be understood as a series of consecutive one-year droughts.

Although El Niño is usually associated with dry periods and La Niña with wet periods in the
NNEB, this drought started under the influence of a La Niña event. Rodrigues and McPhaden [59],
analyzing how the 2011–2012 La Niña event could have caused the drought in 2012, found two different
types of La Niña event: (1) the cooling concentrated in the eastern Pacific, causing a cooling of the
tropical North Atlantic and warming of the tropical South Atlantic; and (2) the cooling concentrated
in the central Pacific, causing the opposite SST gradient in the IHTAG. The first type, the classical
understanding of La Niña, can bring rain to the NNEB. The second is the one that caused the drought
of 2012, which induced migration of ITCZ towards the north. ENSO is a complex phenomenon and
the full comprehension of its interactions with precipitation over the studied area is still in progress as
new events occur. Additionally, an upper-level convergence over NEB associated with an upper-level
divergence in Amazonia during the main rainy season in 2012 contributed to this drought [60].

The years of 2013 and 2014 did not present explicit forcing in the inter/intra annual scales, and the
AMO/PDO process may have influenced the drought in these years. In 2013, the ENSO phenomenon
presented conditions of neutrality; although, ITCZ operated north of its climatological position in
response to the near-neutral but still warming condition of surface waters in the tropical North Atlantic.
The ITZC position, combined with westward anomalous displacement of humidity at high levels,
contributed to rainfall below average in NNEB.

In 2014, neither El Niño nor IHTAG presented strong signals, and spatial variability of rainfall
anomalies was found in NEB. However, a climatic condition that may have contributed to drought
during the period was an anticyclonic anomaly detected in southeastern Brazil and considered one of
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the most critical factors of the 2014–2015 drought that affected Southeast Brazil [61]. This system had
an extension to NEB, affecting the area since 2012 [2].

In 2015, the expansion of positive SST anomalies along the equatorial Pacific Ocean indicated the
full establishment of the ENSO phenomenon. This El Niño persisted and gained force during 2015 and
2016, influencing the below-average rainfall in 2016 and 2017. In 2017, the El Niño condition retreated,
and a La Niña configuration initiated. This state was favorable to indicate the end of the drought, but
the warming of the North Tropical Atlantic Ocean was also detected, negatively influencing the rain
in NEB.

In 2018, IHTAG indicated a negative phase, especially around the end of the rainy season, and,
in association with La Niña configuration over the equatorial Pacific, contributed to rainfall around
the climatological average over NNEB. This configuration provided enough rainfall to recover from
the drought state in the majority of NNEB; however, few places still present persistence of this event.
Figure 2 presents the time series of the cumulative rainfall anomaly and main climatic indexes that
present teleconnections to precipitation in the region, NINO 3.4, IHTAG, PDO and AMO for the period
of 2009 to 2018 (https://www.esrl.noaa.gov/psd/data/climateindices/list/). The accumulated rainfall
deficit of the 2012–2018 drought is 1225 mm, 1.5 times the yearly climatological rainfall, 800.6 mm.
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The long duration and severity of the 2012 drought caused many impacts on the socio-economy
and environment in NEB. Figure 3 presents the stored water volume per hydrographic region and the
total accumulation in the state of Ceará. The total water storage capacity of Ceará State is 18,500 hm3

(26% in the north, 57% in central and 17% in the south region). This storage water decreased by 63%,
from 131 × 106 hm3 in December 2011 to 13 × 106 hm3 by the end of 2016, with some hydrographic
regions with total collapse. This issue was more accentuated and prolonged in central and southern
regions, i.e., HR8–HR12, which represent 74% of the state’s total accumulation capacity. With the
prolongation of the drought, the small and medium reservoirs (with storage capacity below 75 hm3

according to Ceará State’s declaration no. 23.068/1994 [62]) started to collapse, both in terms of quantity
and quality, enhancing the costs of capturing and distributing water at longer distances.
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Figure 3. Stored volumes for each hydrographic region in December of 2011 to December of 2018.

The water shortage also affected the water quality of those reservoirs, especially regarding
eutrophication and an increase in the concentration of salts due to the low inflow periods, higher
evaporation, and anthropogenic actions. Santos et al. [63], for instance, monitored the water quality of
the biggest reservoir in Ceará State (i.e., the Castanhão, located at HR10) from November 2011 to May
2014 and found that it went from an initial oligotrophic condition, i.e., low nutrient values, in 2011 to
an eutrophication condition, i.e., high nutrient values, with the decrease in its accumulated volume by
2014. Increased water treatment costs arose from this condition.

In response to this water shortage, federal and state actions were taken to build a series of
emergency pipelines, drill wells, construct water cisterns and distribute water through water tank
trucks to meet the demands in rural and urban areas in Ceará. The reactive characteristic of the measures
taken is implied in increased associated costs, as no previous planning for these actions existed.

The impacts on the state’s agriculture were felt at different timescales, depending on the type of
agriculture used. In the first two years of the drought, 2012–2013, rainfed agriculture was strongly
impacted, and many farmers completely abandoned their cultures. The abandoned soil enabled natural
vegetation, adapted to dry conditions, to recover, even during prolonged drought periods. Irrigated
agriculture, on the other hand, suffered practically no impact at the start of the drought, since the large
multi-annual reservoirs guaranteed its supply. Those reservoirs initiated the drought with elevated
accumulated levels regarding the previous rainy year of 2011. With the persistence of drought and
the consequent decrease in accumulated levels, the reduction and posterior interruption of water use
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permits for irrigation were determined to save water for the prioritized human water supply, according
to Brazilian water law.

In this sense, a series of crises management measures were promoted by Federal programs, such
as: Programa Garantia Safra, granted to farmers that lost at least 50 percent of their production; Bolsa
Estiagem, that distributed US$40/month for smallholder farmers; subsidized prices for selling maize
to feed animals; expansion of emergency credit lines for farmers, traders and industry sectors; and
revised debt of farmers [1]. Despite the devastating impacts on agricultural, livestock, and industrial
activities, this extreme drought did not lead to human losses nor migration as happened in the past;
this lower social disturbance is associated with government social programs [1,12].

4. Data and Methods

4.1. Data

The series of daily precipitation from 1911 to 2018 used to analyze drought in Ceará State
was obtained from the Brazilian National Water Agency (http://www.snirh.gov.br/hidroweb/). The
average areal rainfall for each of the twelve hydrographic regions of the Ceará State was obtained by
interpolating the daily precipitation at each rain gauge according to the inverse distance weighting
(IDW) method with exponent two into grid points with 0.05◦ size. Further, the average of the
interpolated values was extracted for those inside each analyzed area. The use of hydrographic region’
scale tends to reduce random fluctuations of a point-based approach, homogenizing drought analysis,
and reinforcing correlation with socio-economic impacts felt in this planning scale.

4.2. Drought Analysis

The drought analysis was based on the calculation of the Standard Precipitation Index (SPI) [64]
with 12 months aggregated timescale (SPI12). The time scale used for the calculation of the index
is directly related to the time required for the effects of drought to be felt on the different activity
sectors and the region’s water resources [65]. A new time-series was created with only December SPI12
values (SPI12DEC) to represent the accumulated annual information. This discretization process was
performed to remove the continuous information provided by SPI moving window. By doing so, the
objective was to archive independent random variables that represent the total annual precipitation,
smoothing the temporal series and avoiding spurious information of SPI influenced by above or
below-average precipitation in months of the dry season (July to December).

The calculation of drought duration and severity characteristics for each hydrographic region
was obtained through run theory, as proposed by Yevjevich [66]. Each drought event is defined as
the proportion of time all values of a variable Xt are below a selected truncation level. Specifically
for SPI, the duration of a given drought event is determined by summing the periods that this event
remained below a certain threshold, in this paper, Xt = 0. Shiau [24] used this threshold as it avoids
the division of spurious droughts that occurs inside one longer drought, which makes sense as social
and environmental impacts are more significant in prolonged droughts than in consecutive shorter
droughts. Figure 4 illustrates this process. Drought events 1, 2, and 3 are orange. The severity is given
by the summation of SPI values during one event, according to Equation (1):

S = −
D∑

i=1

SPI12DEC (1)

where S is the severity, and D is the duration, and SPI12DEC is the SPI value discretized for every
December considering the aggregated time-period of 12 months.

http://www.snirh.gov.br/hidroweb/
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4.3. Statistical Inference

Once the drought duration and severity characteristics were separated from the original time
series by run theory application, data analysis could be performed to deduce the properties of the
variables samples and adjust to a population. The distribution function that better represents drought
duration and severity has not yet established an agreement. Exponential and Gamma were proposed
by Shiau [24] for univariate modeling the drought characteristics; however, many authors prefer to
perform a goodness-of-fit test to find the families that best represent the analyzed sample for each
region and drought [31,67].

Thus, both duration and severity time series were adjusted for the univariate Log-normal,
Exponential, Weibull, Gamma, and Logistic probability distribution families. The parameters were
chosen based on the maximum likelihood estimation (MLE) method. The Akaike information criteria
(AIC) indicated the candidate distributions that best fitted the data. AIC is a parsimonious estimator of
the relative quality of statistical models that penalizes overfitting.

Regarding the bivariate model, this study focused on the use of copula functions to model the
dependence structure among marginal distribution functions. The bivariate joint distribution function
H(d, s), where D and S are the random correlated variables, drought duration, and severity, with
respective marginal distributions FD(d) and FS(s), is given by the copula function C[FD(d), FS(s)],
according to the Equation (2):

H(d, s) = C[FD(d), FS(s)] = C(u, v) (2)

where FD(d) and FS(s) are equal to u and v, with u, v ∈ (0, 1).
The copula functions can be classified as Meta-elliptic and Archimedean copulas: the first is

symmetric, presenting no tail dependence; the second is more flexible and can present upper or
lower tail dependence. In this study, three Archimedean copulas, Clayton, Frank, and Gumbel,
and two Meta-elliptic copulas, Gaussian and t-Student, were used as candidates to identify the
family that was best suited to model the dependence structure between the duration and severity.
Equations (3)–(7) present the formulations of the candidate copula families, where θ, ρ, and v are the
copula function parameters.

Clayton
(
u1
−θ + u2

−θ
− 1

) −1
θ ) (3)

Frank −
1
θ log

(
1 +

(e−θ u1−1)(e−θ u2−1)
(e−θ−1)

)
(4)

Gumbel exp
{
−

[
(− ln u1)

θ + (− ln u2)
θ
] 1
θ (5)

Gaussian φρ

(
φ−1(u1), φ−1(u2)

)
(6)

t-Student Tρ,v
(
T−1

v (u1), T−1
v (u2)

)
(7)
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The inference function from margins (IFM) method [68] was used to estimate copula parameters.
IFM is a parametric method that consists of the previous definition of marginal distributions used to
transform samples in the (0,1) interval. Thus, transformed samples are jointly modeled by estimating
the parameters for the families of the candidate copula using the maximum likelihood method. The
minimum value of AIC was used to find the best fit model around the candidate copulas. Brechmann
and Schepsmeier [69] defined the AIC relationship with a bivariate copula model and its respective
parameter (θ), according to Equation (8).

AIC = −2
N∑

i=1

ln[C (u1, v1|θ)] + 2k (8)

where i = 1, . . . , N are the observations of the variables modeled and k the number of estimated
parameters in the model.

4.4. Frequency Analysis

To better prepare for the occurrence of future droughts, one analysis that can be integrated into the
risk management is the estimation of return periods of past drought events through a process known
as frequency analysis. Independent and stationary time series are needed to perform the frequency
analysis [20].

4.4.1. Univariate Return Period

The calculation of the return period represents the expected period between the occurrence of
two events with the same or superior magnitude. The return period of drought duration (TD) and
severity (TS) are described as a function of the expected interarrival time E(L) and the cumulative
distribution functions (CDF) of the drought characteristic FD(d) and FS(s), as expressed in Equations
(9) and (10) [24,67,70,71]. For the return period of a time series with annual recurrences, such as annual
maxima precipitation, the E(L) is equal to one. However, droughts are not supposed to occur every
year, and E(L) is found by estimating the mean value between the occurrences of droughts.

TD =
E(L)

P(D ≥ d )
=

E(L)
1− P(D ≤ d )

=
E(L)

1− FD(d)
(9)

TS =
E(L)

P(S ≥ s )
=

E(L)
1− P(S ≤ s )

=
E(L)

1− FS(s)
(10)

4.4.2. Bivariate Return Period

According to Shiau [24], the joint return period of duration and severity can be defined in two
cases: the return period for D ≥ d or S ≥ s and return period for D ≥ d and S ≥ s. Both definitions
of joint return period for copula-based drought events are described by Equations (11) and (12),
respectively:

TDorS =
E(L)

P(D ≥d or S≥ s) =
E(L)

1−FDS(d,s)

=
E(L)

1−C(FD(d),FS(s))

(11)

TD&S =
E(L)

P(D ≥d, S≥ s) =
E(L)

1−FD(d)−FS(s)+FDS(d,s)

=
E(L)

1−FD(d)−FS(s)+C(FD(d),FS(s))

(12)

where TDorS is the return period for D ≥ d or S ≥ s; TD&S is the return period for D ≥ d and S ≥ s.
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5. Results

5.1. Drought Analysis

Droughts areby definition, extreme events and any proactive measure must be previously defined
based on magnitude and frequency of occurrence. In drought-prone areas such as the Brazilian
semi-arid region, the high interannual variability of hydrologic conditions must be considered on
the standard operational routine, and only exceptional events should justify special treatment and
institutional intervention [72]. Therefore, a scientific criterion is required to quantify the frequency of
each event.

Figure 5 indicates the SPI calculated for the mean precipitation over the Ceará State for the
aggregated time-period of 1 to 35 months. The darker colors in 2012–2013 indicate that this was the
most critical period of the analyzed drought, and the following individual years were smoothed.
Therefore, the gravity was the combination of its strong beginning with the abnormal sequence of
dry years.
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Figure 5. Standardized Precipitation Index (SPI) for the aggregated period of 1 to 36 months, from
1973 to 2019. Warm colors represent periods of drought in Ceará State.

Source: FUNCEME (2019).
Drought events for the twelve hydrographic regions of Ceará State were identified using SPI12DEC.

For the sake of simplicity, SPI12DEC will be treated by SPI from now on. The SPI values for the
2011–2018 drought exceeded the extreme condition (threshold equals −2.0, according to Mckee, 1993)
for the majority of hydrographic regions during the drought onset in 2012. However, it was not the first
time a drought with such magnitude had occurred in the region, such as the events around 1920, and
during the 1950s decade, as shown in Figure 6. The columns in Figure 6 also show the spatial coverage
of extreme events, such as the warm colors at the dry years of 1915, 1919, 1932, 1958, 1983, 1993 and
2012, and the cold colors at the wet years of 1917, 1924, 1964, 1974 and 1985. This fact is associated with
large-scale systems such as ENSO teleconnections and Atlantic circulation. This regional behavior
is detrimental to drought management as all basins are uniformly affected, making it challenging to
transfer water between hydrographic regions.

From Figure 6, it is also possible to see that the drought that started in 2012 has different ending
times. For the hydrographic regions closer to the ocean, it ended between 2016 and 2017, indicated by
light green colors. For those regions located more centrally and in the southern regions, the drought
persisted until 2018, with no clear definition of ending for some of them yet. Also, consecutive drought
years such as the analyzed one and covering almost all hydrographic regions can present enormous
negative impacts and be detected in 1930–1933, 1941–1943, 1951–1956, 1979–1983 and 1990–1993,
showing the high climatic variability existent in the region.
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Figure 6. SPI values for the 12 hydrographic regions of Ceará State organized from northern to
southernmost position, HR01–HR12. Warm colors represent dry years and cold colors represent wet
years. Spatial coverage of extreme events can be visually detected.

The analysis of the descriptive statistics of drought events (Table 1) showed that the hydrographic
regions presented between 22 and 26 drought events over the period 1911–2018. In this period,
a drought occurred every 4 to 5 years in each hydrographic region in Ceará State, as shown by the
average inter-arrival time. In general, in the North, there were more droughts; however, they were
shorter in duration and less severe than in the central and southern regions, where generally fewer
droughts happened, but these were longer-lasting and more severe. The longest drought occurred
in region 08, lasting 10 years, and the most severe in region 11, both located in the central and
southern regions. HR08 presents the highest coefficient of variation (CV) for both duration and severity,
indicating that this hydrographic region has the highest exposure to extreme droughts. Table 1 also
shows that, for most hydrographic regions, the current drought is the most severe and prolonged
ever recorded.

Although this analysis indicated that the 12 hydrographic regions of Ceará State have similar
univariate descriptive statistics, the dependence structure between modeled variables dictates the
joint behavior that is the object of analysis in this paper. To be able to model the joint distribution, the
construction of the marginal distribution approach was used. Using the AIC as decision criteria to
choose best-fit distributions, the duration series were best modeled by Log-normal distribution, while
an Exponential distribution better represented the severity series.
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Table 1. Descriptive statistics of drought events and the variables duration and severity by river basin
in the period 1911–2018. In bold, when the current drought event initiated in 2012 is equal to the
maximum event in time series.

Region
No.

Drought
Events

Inter-
Arrival
Time

Duration (Years) Severity

Max 2012–2018
Drought Mean CV Max 2012–2018

Drought Mean CV

HR01 25 4.32 6 5 2.08 0.71 5.10 5.10 1.69 0.91
HR02 26 4.15 6 5 2.00 0.85 5.06 4.27 1.65 0.93
HR03 26 4.15 6 5 2.00 0.82 5.11 5.11 1.64 0.91
HR04 25 4.32 6 6 2.04 0.74 6.01 6.01 1.73 0.95
HR05 24 4.5 6 6 2.04 0.73 7.47 7.47 1.85 0.95
HR06 26 4.15 6 5 2.00 0.85 4.85 4.85 1.69 0.93
HR07 26 4.15 7 7 1.96 0.82 5.38 5.38 1.62 0.98
HR08 22 4.91 10 7 2.64 0.90 6.76 6.76 1.92 1.01
HR09 22 4.91 6 6 2.36 0.77 7.07 7.07 1.99 0.91

HR010 23 4.7 7 7 2.39 0.76 6.24 6.24 1.85 0.89
HR011 23 4.7 7 7 2.43 0.71 7.54 7.54 1.85 0.97
HR012 23 4.7 7 7 2.43 0.79 5.88 5.88 1.83 0.94

Figure 7 shows the scatterplot of drought severity and duration. The 2012–2018 drought is one of
the most adverse events ever recorded for most hydrographic regions, being compared to the droughts
of 1951–1956 and 1978–1983. The dependence structure of drought duration and severity presented
a tendency to become narrowly correlated with the increase of the values showing an upper tail
correlation (Figure 7). Thus, a simple linear regression model hardly models this kind of asymmetric
correlation. Copula functions, however, can meet this type of dependence structure. The drought
initiated in 2012 is plotted in red. This analysis agrees with the one presented in Table 1, putting this
event as one of the most severe ever recorded for all the hydrographic regions, which associated with
population growth, increased water consumption and the reactive measures taken may explain the
massive impacts caused by this drought.Water 2019, 11, x FOR PEER REVIEW 13 of 23 
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By knowing the marginal distributions, the copula functions could be fitted to the data. The
Survival Clayton (180◦ rotated Clayton) and Gumbel, both asymmetric Archimedean copulas, were
chosen. Table 2 shows the marginal distribution function, the copula functions, their respective
parameters, and the Kendall’s Tau correlation coefficient (τ) for each hydrographic region. The
moderate τ values show that the founded duration and severity are not highly correlated. One possible
reason for this is that the drought threshold equals zero, which selected a high number of droughts that
lasted only one year. The asymmetric behavior of drought characteristics provided by this threshold is
still able to be modeled by taking advantage of copula capabilities to model tail dependence. Also, this
threshold is still adequate as it incorporates the impacts of drought enhancement and recovery. This
moderate correlation additionally shows the importance of doing a multivariate analysis as drought
duration does not necessarily indicate extreme severity.

Table 2. Marginal distribution functions and Copula functions (associated parameters).

Hydrographic Region Duration Severity Copula

HR01
Log-normal Exponential Gumbel

(µ = 0.53, σ = 0.61) (λ = 0.59) (θ = 2.26, τ = 0.56)

HR02
Log-normal Exponential Survival Clayton

(µ = 0.43, σ = 0.67) (λ = 0.61) (θ = 1.78, τ = 0.47)

HR03
Log-normal Exponential Gumbel

(µ = 0.44, σ = 0.65) (λ = 0.61) (θ = 2.38, τ = 0.58)

HR04
Log-normal Exponential Survival Clayton

(µ = 0.49, σ = 0.64) (λ = 0.58) (θ = 2.56, τ = 0.56)

HR05
Log-normal Exponential Survival Clayton

(µ = 0.50, σ = 0.63) (λ = 0.54) (θ = 2.28, τ = 0.56)

HR06
Log-normal Exponential Survival Clayton

(µ = 0.43, σ = 0.67) (λ = 0.59) (θ = 1.70, τ = 0.46)

HR07
Log-normal Exponential Survival Clayton

(µ = 0.43, σ = 0.64) (λ = 0.62) (θ = 1.56, τ = 0.44)

HR08
Log-normal Exponential Survival Clayton

(µ = 0.65, σ = 0.77) (λ = 0.52) (θ = 2.32, τ = 0.54)

HR09
Log-normal Exponential Survival Clayton

(µ = 0.60, σ = 0.7) (λ = 0.50) (θ = 2.33, τ = 0.54)

HR010
Log-normal Exponential Survival Clayton

(µ = 0.62, σ = 0.70) (λ = 0.54) (θ = 1.90, τ = 0.49)

HR011
Log-normal Exponential Survival Clayton

(µ = 0.66, σ = 0.68) (λ = 0.54) (θ = 2.23, τ = 0.53)

HR012
Log-normal Exponential Survival Clayton

(µ = 0.62, σ = 0.71) (λ = 0.55) (θ = 3.20, τ = 0.62)

5.2. Frequency Analysis

As stated by Haan [20], in order to perform frequency analysis, it is primarily necessary to check
for independence and stationarity of the SPI time series. The independence was achieved by the
discretization of the SPI12 into SPI12DEC, as discussed in Section 4.2. Figure 8 shows the autocorrelation
to the time series of SPI12 and SPI12DEC for the HR04 as an example. The SPI12 time series presented
strong serial dependence, i.e., values at some time t are statistically dependent to other lagged values,
due to the moving window used to compute SPI12 values. The discretization performed by using
SPI12DEC time series provided the required independence to perform frequency analysis.
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for HR04. The SPI12 time series presented strong autocorrelation due to the moving window used
to compute its values. In order to provide frequency analysis, independence of the time series was
archived by performing a discretization by using SPI12DEC

The Mann–Kendall (MK) test [73,74] was used to detect the trends in SPI12DEC time series for
the hydrographic regions, which is commonly used in hydrology and meteorology [75]. The null
hypothesis of no trend was tested against the alternative hypothesis of the monotonic trend (not
shown). From the 12 hydrographic regions tested, only two, HR05 and HR09, presented a statistically
significant downward trend at a significance level of 0.05 in the SPI12DEC time series. Therefore, for
those regions, the return period can be expected to be overestimated, which means that more frequent
events can happen. However, those regions have smaller population density and do not contribute to
the water transfer systems that provide water to coastal areas with higher population densities.

Once the considerations to perform frequency analysis are analyzed, the joint distribution function
modeled based on the marginals and using copula functions can calculate the return period as indicated
by Equations (7) and (8). Figure 9 presents the return periods for the hydrographic regions for both
the “and” and “or” cases. The return periods are presented in the form of contour lines. Different
combinations of drought duration and severities can provide the same value for the return period.
In the “or” case, contour lines do not cross the axes, while horizontal and vertical axes bound the
“and” cases. It can be seen that “and” cases have higher return periods than the “or” ones, as the first
analysis is more restrictive than the second. The information provided by Figure 9 can also specify
the return period of a given event by providing its duration and severity. This functionality enables
its use in proactive drought plans as the return period of any given drought can easily be found by
providing the associated duration and severity. The 2012 event is highlighted in red. Most of the
drought events that occurred in all hydrographic regions have a return period below the 64-year isoline.
More extreme events, such as 1930–1933, 1941–1943, 1951–1956, 1979–1983 and 1990–1993, in addition
to the 2012–2018 event, have a more extended return period.

Table 3 summarizes the information from return period for univariate, duration and severity, and
multivariate, “or” and “and” cases for these droughts and rank those return periods with the set of
events recorded. The comparison between univariate return periods (TD and TS) of the 2012–2018
drought for all analyzed regions presented no clear pattern of which one presents the highest values.
For HR05, HR08, HR09, and HR11, hydrographic regions located in the south, central and southern
regions, TS > TD, for the others TD > TS.
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Figure 9. The drought return period of the “or” and “and” cases, i.e., TDorS and TD&S, for each
hydrograph region, HR01–HR12. Contour lines correspond to the return period (years); blue dots are
the drought events that occurred over the time series, and in red is the drought started in 2012. The
“and” cases have higher return periods than the “or” ones, as the first is more restrictive than the second.
The return period of any given drought can be found by providing the associated duration and severity.

Table 3. Description of the 2012 onset drought event for each hydrographic region. The univariate
return period (years) of drought duration (TD) and severity (TS ), and the bivariate TDorS and TD&S

return periods (years).

Hydrographic
Region

Drought
Period

TD TS TDorS TD&S
Rank in the Set of Events

Duration Severity Joint

HR01 2012–2016 113 88 72 155 2 1 2
HR02 2012–2016 106 56 52 124 3 3 3
HR03 2012–2016 115 94 77 157 3 1 3
HR04 2012–2017 206 141 131 234 1 1 1
HR05 2012–2017 223 254 191 313 1 1 1
HR06 2012–2016 106 73 63 136 3 1 3
HR07 2012–2018 465 117 115 499 1 1 1
HR08 2012–2018 106 165 98 188 2 1 2
HR09 2012–2017 111 168 102 193 1 1 1
HR010 2012–2018 161 136 112 215 1 1 1
HR011 2012–2018 160 275 150 309 1 1 1
HR012 2012–2018 152 119 110 171 1 1 1
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It is important to observe that compound events must satisfy following inequalities: TDorS <
min( TD, TS), i.e., the compound return period for the “or” case must be inferior to the minimum of
univariate return period of those drought characteristics. As it is a more permissive event, only one of
the two conditions must be satisfied. Also, TD&S > max( TD, TS) implies that the compound return
period for the “and” case must be superior to the maximum of the univariate return periods. As it is a
more restrictive event, both conditions must be satisfied. Therefore, the joint return periods for the
“and” cases are consistently higher than the univariate approach. These results indicate the necessity to
consider the joint relationship between drought characteristics to real represents its recurrence as the
correlation between drought characteristics are proportional to its damage potential. The rank also
shown in Table 3 put the 2012–2018 drought as one of the three highest, most exceptional droughts that
occurred between 1911–2018 for all hydrographic regions. Also, although more extended droughts
had occurred in some hydrographic regions, the severity of this drought is highlighted, indicating the
importance of multivariate analysis of drought events.

Drought risk for any region is a product of the region’s exposure to a predefined event and the
vulnerability of society to this event [76]. The return period can express the drought exposure as it
incorporates the probability of the occurrence of an event. Therefore, it is interesting to analyze the
exposure to drought hazard in the different hydrographic regions of an event with similar characteristics
to the 2012–2018 drought. Thus, the return period of an event with average characteristics of the
analyzed drought in the 12 regions (duration equals 6 years and severity equals 6) was calculated
(Figure 10). It shows a clear distinction between northern regions with central and southern areas. The
south is the region which is more susceptible to severe and persistent droughts, such as the 2012–2018
event, and it is where the main reservoirs are located. The north is less affected by long drought as it is
affected by intra-annual variability caused by oceanity conditions. Also, it is less dependent on ITCZ
position as even a slight modification of its climatological position can still provide precipitation to the
area. On the contrary, precipitation in the central and southern regions is more dependent on ITCZ,
and consequently, to IHTAG modulation.
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The presented drought frequency analysis indicates the recurrence of an event with magnitude
equal to or greater than the one of the 2012–2018 drought for each hydrographic region in Ceará. It
indicates that the joint return period is always higher than the univariate approach. This result indicates
the necessity to consider the joint characteristics to understand the real exceptionality of extreme events.
Another impressive result was that the northern areas are less susceptible to exceptional droughts,
such as the analyzed one. As the main reservoir storage capacity is localized in central and southern
regions, this indicates that Ceará’s water reserves are concentrated in the more vulnerable areas to the
occurrence of prolonged and severe droughts.

6. Discussions and Conclusions

The northeast of Brazil (NEB) has experienced one of its worst droughts ever recorded, from
2012 to 2018. The leading causes were associated with anomalies in SST in the equatorial Pacific and
Atlantic oceans caused by decadal and interannual variability modes. The serial combination and
association of the climatic phenomenon (i.e., La Niña with the cooling occurring at central Pacific,
the prevalence of tropical North Atlantic warming, AMO/PDO low-frequency modulations and El
Niño) influenced the ITCZ and the Walker Circulation Cell to inhibit the occurrence of precipitation
over NNEB. In Ceará State, the accumulated rainfall deficit of the 2012–2018 drought was 1225 mm,
1.5 times the yearly climatological rainfall.

NEB is known as a drought-prone region with considerable adaptive capacity, both in terms
of increased water infrastructure and management. This resilience is based on learned experiences,
acquired from its drought antecedents. This capacity has recently been questioned due to the magnitude
of the current drought and the emergency measures taken to cope with it. Those measures helped to
mitigate social damage that historically occurred in the most extreme droughts, such as human losses
and massive migration [12]; however, they were taken under a “reactive” management paradigm,
which could not handle some of the higher economic losses suffered by Ceará State.

We believe that proactive drought management can deal with some of the issues not addressed
by its “reactive” predecessor. As stated by Gutiérrez et al. [1], this drought was the trigger needed to
start a discussion regarding proactive drought management in NEB. Institutional relations between
different public bodies and forums discussing the topic of drought have improved their performance by
establishing monitoring processes and by incorporating active memory to elaborate proactive drought
plans. Frequency analysis should be used in proactive drought plans to preserve the memory of past
events. Therefore, proactive drought plans should use frequency analysis as it enables a scientific
identification of drought recurrence, which can be used as a preparation tool for the mitigation of
future droughts.

The univariate approach to calculate the drought return period has traditionally dominated the
drought frequency analysis and it is a common practice in Brazil [2,5,6,10,72,77]. Martins et al. [10]
estimated the return period of the 2012–2016 drought that occurred on the most significant water
system in NEB, São Francisco River Basin, as 135 years using the univariate approach. However, the
impact caused by a drought event may vary according to its duration and severity. Although these
characteristics are correlated, their associated behavior can provide synergetic impacts that could be
missed by a univariate approach.

The framework of bivariate frequency analyses can represent the exceptionality of drought events
as the correlation between droughts characteristics are proportional to its damage potential, i.e., the
negative impacts associated with a short but extremely severe drought may be stronger than another
longer but less severe drought. Copula functions were useful to accurately model the dependence
structure of drought characteristics as they presented different marginal distributions and due to
observed upper tail dependence in the joint behavior. Thus, Gumbel and Survival Clayton asymmetric
Archimedean copulas were chosen.

The hydrographic region was chosen as the planning scale in line with Brazilian water law that
states it as the territorial management unit. There are significant benefits to use this scale, including
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better representation of socio-economic and environmental relationship existent between water supply
and demand (e.g., precipitation, runoff, water reserves accumulated in reservoirs, associated demands
for agricultural and urban uses). Also, it benefits from the capability to consolidate information that
could otherwise randomly fluctuate in a point-based analysis.

The 2012–2018 drought in Ceará State had the highest mean bivariate return period ever recorded,
presenting long persistence, substantial severity and spatial coverage. The mean joint return period,
considering the “and” case, was 240 years (maximum of 499 years in HR05). The mean univariate return
period of the 2012–2018 drought for the 12 hydrographic regions located in Ceará State was 169 years
for the duration (maximum of 465 years in HR07), and 141 years for drought severity (maximum of
275 years in HR11). The bivariate analysis consistently presented higher values than the univariate,
indicating the necessity to consider the joint behaviors to avoid underestimation of drought impacts.
Similar characteristics to this drought were presented earlier in the 1951–1956 and 1978–1983 events for
some regions, with a mean joint return period of 145 and 135 years, respectively.

The severity of this drought was influenced by the first two years, 2012 and 2013, added to the long
final sequence; although the devastating impacts suffered from the current drought, having started
with the most severe part of the drought, served as a critical warning. This opportunity increased the
capability to mitigate drought effects in the area, but early warning and monitoring systems must be
prepared to anticipate actions in future droughts that may not start with the same severity. Most of
the other events presented a bivariate return period of less than 64 years for all hydrographic regions.
Ceará State is more likely to present another drought with the same characteristics as the one here
analyzed than California to a drought that occurred over the same period, 2012–2015, which has a
return period estimated as 1400 years by Kwon and Lall [67]. This fact reflects the extreme variability
and frequent drought recurrence existent in the region, showing the necessity to cope drought events
with state-of-art techniques proper.

Knowing the exposure to drought is fundamental when planning measures to mitigate drought.
The analysis presented here can inform decision-makers as to which areas are more susceptible to the
occurrence of future droughts. This analysis indicated that the northern region of Ceará State is less
susceptible to severe and persistent drought, such as the 2012–2018 event. Possible explanations are the
intra-annual variability caused by proximity to the ocean. Another fact is that the higher latitudes are
less impacted by ITCZ being positioned north of its climatological position. Therefore, in the central
and southern regions, which contain 74% of the state’s potential storage capacity, an extreme event
can be more recurrent and water security can be compromised. Such analysis can be incorporated in
drought plans to detect more exposed areas to drought. A limitation of the present approach is that it
reflects meteorological drought exposure and does not consider water transfer between hydrographic
regions, which may cause different levels of drought risk depending on where the supply is provided.

Classical approaches such as univariate analysis underestimates events frequency, while others
cannot be associated with impacts if analyzed at inappropriate scales. This paper has argued that
simultaneously considering drought duration and severity at a useful scale improves risk assessment.
The return period, calculated as 240 years, reinforces the importance of proper documentation of
the capabilities developed during this event once the same generation of decision-makers is not
expected to face such an extreme event. The presented framework has shown that hydrographic
region scale is adequate to couple drought impacts with the awareness given by bivariate analysis
and can be replicated in drought plans for other regions. Copula functions were vital to jointly
model drought characteristics, as other models cannot cope with their asymmetric behavior. Further
investigation should analyze the scale that best represents specific impacts such as reservoir operation,
water transfer between regions, and urban and agricultural supplies. Also, efforts should be made
to understand the influence of events with different expected intervals with potential impacts on
reservoirs levels, streamflow volumes and ecosystem thresholds. Several changes need to be considered
in order to mitigate drought impacts; transforming statistical information into useful information for
decision-makers is one of them.
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