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Abstract: The standardized precipitation index (SPI), is one of the most used drought indices. However,
it is difficult to use to monitor the ongoing drought characteristics because it cannot be expeditiously
related to precipitation deficits. It also does not provide information regarding the drought probability
nor the temporal evolution of the droughts. By assigning the SPI to drought-triggering precipitation
thresholds, a copula-based continuous drought probability monitoring system (CDPMS), was
developed aiming to monitor the probability of having a drought as the rainy season advances. In
fact, in climates with very pronounced rainy seasonality, the absence of precipitation during the rainy
season is the fundamental cause of droughts. After presenting the CDPMS, we describe its application
to Mainland Portugal and demonstrate that the system has an increased capability of anticipating
drought probability by the end of the rainy season as new precipitation records are collected. The
good performance of the system results from the ability of the copula to model complex dependence
structures as those existing between precipitations at different time intervals. CDPMS is an innovative
and user-friendly tool to monitor precipitation and, consequently, the drought probability, allowing
the user to anticipate mitigation and adaptation measures, or even to issue alerts.
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1. Introduction

Drought is a natural phenomenon without a clear onset which makes it difficult to recognize. It is
the world’s costliest natural disaster and can provide impacts in a global perspective, not restricted to
places with low average precipitation amounts [1–3]. In Europe, the total cost of drought damages
recorded from 1976 to 2006 amounted to 100 billion € [4]. Therefore, the continuous monitoring of the
probability of drought events is crucial to deploy short term emergency measures and to mitigate the
social, environmental and economic costs and losses associated with those events.

Considerable disagreement exists about the definition of drought. However, all the definitions
relate the event to below-average precipitation over a period of time. If the event persists long
enough, it can progressively affect soil moisture, water resources, and, consequently, economic and
social development. According to its impacts, the droughts can be classified into four categories:
meteorological, agricultural, hydrological, and socioeconomic [1,5].

Drought indices are the most suitable tool for drought monitoring and evaluation. Many different
indices have been proposed in the last decades. Among the hydrological variables adopted to detect
and characterize drought occurrences, precipitation is the most widely used, not only due to its intrinsic
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link with the phenomenon and its consequences but also because precipitation is widely monitored
and there are relatively long historical records.

In 2009, the World Meteorological Organization (WMO) recommended the standardized
precipitation index (SPI) [6] to monitor meteorological drought conditions. Since then, the SPI is used
worldwide to detect anomalous precipitation over different time scales. The SPI has the advantage
of being independent of the magnitude of the mean precipitation, because it is a standardized index,
and hence, able to compare droughts in different climatic zones. However, because it provides a
standardized numerical value, it is difficult to connect it expeditiously to precipitation deficits, and,
consequently, to use it to recognize or to predict drought events.

The droughts have traditionally been studied in a univariate context, mostly aiming at identifying
and describing their occurrences. However, as many of the hydrological phenomena, they are
characterized by multiple aspects some of them expectably correlated. Since a univariate approach
ignores the dependence structure among those aspects, it may result in a poorer representation of
the phenomenon.

Before copulas approach, some multivariate techniques were introduced in hydrological studies,
such as in the case of the analysis of floods, droughts, and storms. Those techniques contribute to
improving the accuracy of the estimates and provide information about the dependence structure
among the characteristics. Most of them used bivariate probability distributions, such as bivariate
gaussian, exponential, gamma, and extreme value distributions. The disadvantage of such approaches
is that the marginals must have the same probability distribution and extensions to more than the
bivariate case are not clear [7,8]. However, copulas can overcome such difficulties [9]. The advantages
of using copulas to model complex relationships among variables are (1) flexibility in choosing
arbitrary marginals and structures of dependence, (2) capability to model more than two variables,
and (3) splitting of marginal and dependence structure analysis [7,8,10,11].

Multiple dependent random variables need more advanced and complex copulas than the common
ones that are applied to the bivariate case. An example is the vine-copulas, which are able of coupling
multiple variables into a pair-to-pair manner [12].

The application of copulas in hydrology has gained some relevance in the last decades. Regarding
drought analysis, one of the main uses of copulas is to model the frequency analysis, combining
different characteristics of the drought events (e.g. intensity, duration, magnitude, and spatial
distribution) [13–17]. Another important use of copulas is its application to the joint modeling of drought
indexes of different drought categories, such as meteorological, hydrological and agricultural [18–20].

In climatic regions like Mainland Portugal, insufficient precipitation during the short-duration and
well-defined rainy season is the main trigger of the drought events. An innovative use of copulas could
be its application in a multivariate context to monitor the evolution of the drought probability during
that season, based on the continuous updating of precipitation that already occurred and the one that
needs to occur, so that there is (or not) a drought by the end of the rainy season (a typical conditional
probability problem). The conditional probability theory coupled with copulas is frequently used
in hydrological applications to analyze multivariate dependence [17,21,22] and will be applied in
this study.

Aiming at exploring copula’s forecasting capabilities in a drought monitoring context, the concept
of a precipitation threshold for drought recognition developed by [23–25] was used. In each rain
gauge, if the cumulative precipitation in a given timespan falls below the precipitation threshold for
that timespan, a drought with a severity (from moderate to extreme), defined by the threshold, will
occur. Figure 1 exemplifies the application to Mainland Portugal of the precipitation surface threshold
concept applied to recognize moderate to extreme droughts from October to March (the rainy season).
If in a certain location the precipitation registered falls below the value given by one of the maps, then
the location experienced a drought, with the intensity given by the threshold to which the map relates.
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Figure 1. Mainland Portugal. Surfaces of precipitation thresholds, 𝑅∗ , for the 6-month period from 
October to March (SPI6), from the right to the left, for moderate (−0.84), severe (−1.28), and extreme 
(−1.65) droughts. Adapted from [23]. 

The application of the precipitation threshold concept in the scope of the present study can be 
formulated as follows: for a season of 𝑁  months to which the time scale of the SPI and the 
precipitation threshold, 𝑅∗ , refer, let 𝑅  denote the observed precipitation in the first 𝑛 months (1 ≤𝑛 ≤ 𝑁) and 𝑅  the total seasonal precipitation.  

A drought will occur by the end of the 𝑁 -month period if 𝑅  added to the (unknown) 
precipitation in the remaining (𝑁 − 𝑛) months, 𝑅( ), is not enough to meet the threshold, 𝑅∗ , i.e.,:  𝑅 + 𝑅( ) ≤  𝑅∗     ⟺    𝑅 ≤  𝑅∗  (1) 

Consider, for example, the six-month season, 𝑁 = 6, from October to March (during which most 
of the precipitation in Portugal falls) and, that at the end of December of a given year, an estimate of 
the probability of a moderate, severe or extreme drought occurrence is envisaged. Given the observed 
precipitation from October to December (𝑅  with 𝑛 = 3), the problem to be addressed for each drought 
intensity can be stated as what is the probability the precipitation from January to March (still 
unknown) added to the precipitation from October to December being below the drought threshold? 
The solution is the drought probability given by the following equation:  𝑃 (𝑅 ≤  𝑅∗ |𝑅 )    ⟺    𝑃 (𝑅 ≤  𝑅∗|𝑅 ) (2) 

By coupling a copulas approach with the precipitation threshold concept, the main objectives of 
this study were as follow: 1) to develop a methodology for a Continuous Drought Probability 
Monitoring System, CDPMS, 2) to evaluate the performance of CDPMS, and 3) to apply the CDPMS 
to a study area. To demonstrate the methodology, Mainland Portugal and its rainy season (from 
October to March) were selected. In Portugal, the precipitation regime is characterized by very 
pronounced seasonality, in average with 80% of the precipitation occurring from October to March, 
which makes it relevant to be able to anticipate if drought conditions are expected by the end of that 
period. 

2. Materials and Methods  

The development of the CDPMS was based on the stepwise approach described in Sections 2.1.1 
to 2.1.3 and shown in Figure 2, steps (a) to (c). First, the drought threshold for a given time span or 
scale of the SPI, 𝑁 , and drought severity is defined. After that, the copula candidates aiming at 
modeling the precipitation correlation structure are evaluated and those with best-fit are selected. 
Finally, the drought probability given by Equation (2) is computed. Having in mind that the goal of 
the CDPMS is to continuously monitor the probability of drought by the end of a 𝑁-month period, 
steps (b) and (c) are repeated from 𝑛 = 1 to 𝑛 = 𝑁−1. The Leave-One-Out Cross-Validation (LOOCV) 
methodology (steps (b) and (c) repeated from x = 1 until the length x of time series) was used to 
evaluate the model performance using the Brier and the Brier Skill scores (d).  

Figure 1. Mainland Portugal. Surfaces of precipitation thresholds, R∗N, for the 6-month period from
October to March (SPI6), from the right to the left, for moderate (−0.84), severe (−1.28), and extreme
(−1.65) droughts. Adapted from [23].

The application of the precipitation threshold concept in the scope of the present study can be
formulated as follows: for a season of N months to which the time scale of the SPI and the precipitation
threshold, R∗N, refer, let Rn denote the observed precipitation in the first n months (1 ≤ n ≤ N) and RN

the total seasonal precipitation.
A drought will occur by the end of the N-month period if Rn added to the (unknown) precipitation

in the remaining (N − n) months, R(N−n), is not enough to meet the threshold, R∗N, i.e.,:

Rn + R(N−n) ≤ R∗N ⇐⇒ RN ≤ R∗N (1)

Consider, for example, the six-month season, N = 6, from October to March (during which most
of the precipitation in Portugal falls) and, that at the end of December of a given year, an estimate of
the probability of a moderate, severe or extreme drought occurrence is envisaged. Given the observed
precipitation from October to December (Rn with n = 3), the problem to be addressed for each drought
intensity can be stated as what is the probability the precipitation from January to March (still unknown)
added to the precipitation from October to December being below the drought threshold? The solution
is the drought probability given by the following equation:

P (RN ≤ R∗N
∣∣∣Rn)⇐⇒ P (R6 ≤ R∗6

∣∣∣R3) (2)

By coupling a copulas approach with the precipitation threshold concept, the main objectives
of this study were as follow: 1) to develop a methodology for a Continuous Drought Probability
Monitoring System, CDPMS, 2) to evaluate the performance of CDPMS, and 3) to apply the CDPMS to
a study area. To demonstrate the methodology, Mainland Portugal and its rainy season (from October
to March) were selected. In Portugal, the precipitation regime is characterized by very pronounced
seasonality, in average with 80% of the precipitation occurring from October to March, which makes it
relevant to be able to anticipate if drought conditions are expected by the end of that period.

2. Materials and Methods

The development of the CDPMS was based on the stepwise approach described in
Sections 2.1.1–2.1.3 and shown in Figure 2, steps (a) to (c). First, the drought threshold for a
given time span or scale of the SPI, N, and drought severity is defined. After that, the copula candidates
aiming at modeling the precipitation correlation structure are evaluated and those with best-fit are
selected. Finally, the drought probability given by Equation (2) is computed. Having in mind that the
goal of the CDPMS is to continuously monitor the probability of drought by the end of a N-month
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period, steps (b) and (c) are repeated from n = 1 to n = N − 1. The Leave-One-Out Cross-Validation
(LOOCV) methodology (steps (b) and (c) repeated from x = 1 until the length x of time series) was
used to evaluate the model performance using the Brier and the Brier Skill scores (d).
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Figure 2. Development of the CDPMS and evaluation of its performance.

The CDPMS was applied to Mainland Portugal based on precipitation records at 45 rain gauges
(described later in Section 3).

2.1. CDPMS Definition

2.1.1. Seasonal Threshold Definition

The precipitation in Mainland Portugal falls mainly from October (beginning of the hydrological
year) to March, representing, on average, almost 70% and 85% of the annual precipitation in the North
and South, respectively. Therefore, it was considered relevant to estimate the probability of drought
occurrence by the end of the rainy season. The corresponding precipitation thresholds were obtained
by inverting the SPI from October to March, SPI6, for each of the drought intensities proposed by
Agnew [26] and presented in Table 1. For a given rain gauge and drought severity, the precipitation
threshold, R∗N, give the SPI value back to the precipitation field [23–25].

Table 1. Classes of drought intensity, associated probability, and SPI value according to [26].

Drought Class Probability SPI Value

Moderate Drought 0.20 Less than −0.84
Severe Drought 0.10 Less than −1.28

Extreme Drought 0.05 Less than −1.65

2.1.2. Copula Fitting

The analysis of the dependency structure between two or more random variables can be used
to indicate predictive relationships among them. The most common method is to measure the linear
relationship using the Pearson correlation coefficient. One of the main weaknesses of linear correlation
is that it tends to detect only the degree of dependence despite its dependence structure.

The consideration of non-linear dependence is possible by applying a rank correlation coefficient
such as Spearman rank correlation and Kendall’s Tau. The last coefficient is more used because its
value indicates directly the probability of observing concordant or discordant pairs. There exists a
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relationship between the rank correlation coefficient and copula function that allows the use of copulas
to study non-linear dependences.

According to Sklar’s theorem [27], if the random variables x1, . . . , xm follow a marginal probability
distribution function F1(x1), . . . , Fm(xm), respectively, there exists a copula, C, that can join these
marginal distribution functions in the form of a joint distribution function (Equation (3)),

H(x1, x2 . . . , xm) = C[(F1(x1), F2(x2), . . . , Fm(xm) = C(u1, u2, . . . , um) (3)

where, Fk(xk) = uk for k = 1, ..., m, with uk ~ u(0,1) and C(u1, ..., um ) being the copula function.
Although copulas may be implemented in multiple dimensions only bivariate copulas were

considered in the present study.
Different families of copulas have been described by Nelsen [27]. The families are commonly

classified in four main groups: Meta-elliptical copulas (Gaussian and t Student), Archimedean copulas
(Clayton, Gumbel, Frank, and Joe), Extreme value type (Gumbel, Husler-Reiss, Galambos, Tawn, and
t-EV), and miscellaneous type (Plackett and Farlie–Gumbel–Morgenstern).

The Archimedean copulas are very popular for hydrological analyses as they allow modeling
a great diversity of dependence structures, especially for dependent tail structures, and because of
its accessible generation properties [8,14,28]. At higher orders, the use of Archimedean copulas is
limited because their structure imposes restrictions related to dependence characteristics that are
extremely difficult to satisfy for more than two variables [29]. Meta-Elliptical copulas, on the other
hand, can model higher-order due to their simple structure that can better fit the complex dependence
of multi-dimensional problems [9,30].

The parameters for the copulas families can be estimated either by the method of moments,
inversion of Kendall’s Tau or by maximum likelihood estimation (MLE). The first method has the
disadvantage of being applicable only to one-parameter copulas. As for the MLE method, two
possibilities exist: The inference functions from margins (IFM) [31] or the maximum pseudo-likelihood
method (MPL) [32]. How the transformation to [0,1] interval was made will dictate which is the best
method, parametric for IFM and MPL for rank-based [33].

To model the dependence structure between the precipitation in a given sub-period of the rainy
season and the seasonal precipitation itself, as is the case of the current application, the most popular
Meta-Elliptical copulas (Gaussian and t Student), and Archimedean copulas (Clayton, Gumbel, and
Frank) were tested as candidates. The copula formulation for each candidate family and its parameters’
interval are presented in Table 2. For each month of the rainy season, the bivariate model was
constructed based on the two variables: precipitation in its initial n months (Rn) and the total seasonal
precipitation (RN).

Table 2. Copula candidate family formulation and parameter range.

Class Family C(u1,u2) Parameter Range

Archimedean Gumbel exp
{
−

[
(− ln u1)

θ + (− ln u2)
θ
] 1
θ θ ∈ [1, +∞)

Archimedean Frank 1
θ log

(
1 +

(eθ u1−1)(eθ u2−1)
(eθ−1)

)
θ ∈ (−∞, +∞)

Archimedean Clayton
(
u1
−θ + u2

−θ
− 1

) −1
θ ) θ ∈ (0, +∞)

Meta-Elliptical Gaussian φρ
(
φ−1(u1), φ−1(u2)

)
ρ ∈ (−1, 1)

Meta-Elliptical t Student Tρ,v
(
T−1

v (u1), T−1
v (u2)

)
ρ ∈ (−1, 1), v > 2

The parametersθ for Archimedean copulas and ρ and v for Meta-Elliptical copulas, with v standing
for the degrees of freedom (only needed for t Student copulas), were estimated for the candidate
copulas. The MPL method was used as in [9]. This method was chosen because it can estimate both one
and two parameters of the copula without requiring the establishment of the marginal distributions.

The Akaike Information Criterion (AIC) was applied to compare the bivariate copula models for
the candidate families. The AIC method penalizes the models with the highest number of parameters,
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allowing to find the model with maximum explanatory power and fewer parameters, according to the
parsimony principle.

2.1.3. Conditional Probability

The conditional probability theory associated with copulas is highly used in hydrological
applications to analyze multivariate dependence [17,21,22] and can be expressed by Equation (4). Let
two random variables X and Y with U1 = Fx(x), U2 = Fy(y) and u1 and u2 being specific values. The
conditional distribution of X given Y = y is given by:

H(X ≤ x |Y = y) = Cθ(U1|U2 = u2)=
∂
∂u2

Cθ(u1, u2) (4)

2.2. CDPMS Performance Assessment

The CDPMS performance was measured by the Brier Score based on the previous computation of
the probability of the coupled precipitation events for all the years with data but one (x − 1), according
to the LOOCV. The validity of the probabilistic prediction was evaluated by the Brier Skill Score. In the
LOOCV method, each of the x observed years is evaluated by removing one year of the time series, by
fitting the model to the remaining x − 1 years, and by estimating the removed data [34]. The process is
repeated x times to exclude any bias in performance verification. It is important to note that LOOCV is
not part of CDPMS, as it was used only to assess the model’s performance, as shown in Figure 2. The
model performance is compared against a random reference forecast.

2.2.1. Brier Score (BS)

The drought probability provided by the proposed copula-based model for each month can be
analyzed using the Brier Score (BS), a verification measure of binary events (yes/no) that is used
in multivariate models [35,36]. BS can mainly be regarded as the mean squared error between
the probability of the drought prediction (pi), and a value of a binary variable associated with the
observations (oi) by assigning 1, if the event occurs, and 0, if it does not, where x is the length of the
time series. The BS takes values in the range 0 to 1, with 0 being a perfect prediction, according to [34]:

BS =
1
x

x∑
i=1

(pi − oi)
2 (5)

2.2.2. Brier Skill Score (BSS)

The Brier Skill Score (BSS) was used to evaluate the reliability of the probabilistic prediction (or
skill). The score is calculated from the BS for the CDPMS (BSCDPMS) and from the BS for a reference
forecast (BSREF) according to Equation (6), whose results range from −∞ to 1. BSS = 0 means no skill
in comparison to the reference, and BSS = 1, perfect skill.

BSS = 1−
BSCDPMS

BSREF
(6)

In the application carried out, the reference forecast selected for the evaluation of the prediction
performance is the random probability of occurrence of a drought with a given intensity. Since this
score was only applied to moderate droughts (SPI < −0.84, corresponding to the 20th percentile [26])
the pi for the BSREF was set equal to 0.20.
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3. Precipitation Data

In order to construct a reliable bivariate statistical model for concurrent precipitation distributions,
long historical continuous observations are needed. In the application presented herein, 45 rain gauges
evenly distributed over mainland Portugal were selected (Figure 3, Table 3).

Table 3. Name, code, identification (ID), and geographic coordinates (WGS84 system) of the 45 rain
gauges of Figure 3.

Name Code ID Lat (◦) Long (◦)

Merufe 01G03UG RG01 42.0180 −8.3890
Travancas 03N01G RG02 41.8280 −7.3056

Leonte 03I03UG RG03 41.7650 −8.1470
Soutelo (Chaves) 03L02UG RG04 41.7530 −7.5348

Campo de Víboras 04R03UG RG05 41.5240 −6.5580
Cabeceiras de Basto 04J06UG RG06 41.5127 −7.9792

Santa Marta da Montanha 04K02G RG07 41.5008 −7.7460
Folgares 06N01C RG08 41.3032 −7.2828
Carviçais 06P02UG RG09 41.1790 −6.8900
Moncorvo 06O04UG RG10 41.1650 −7.0510
Adorigo 07L01U RG11 41.1460 −7.6070

Pindelo dos Milagres 09J02U RG12 40.8060 −7.9630
Freixedas 09O02U RG13 40.6880 −7.1630
Gouveia 11L01UG RG14 40.4940 −7.5930

Santo Varão 12F02C RG15 40.1840 −8.6020
Góis 13I01G RG16 40.1568 −8.1133

Soure 13F01G RG17 40.0521 −8.6250
Penha Garcia 13O01UG RG18 40.0420 −7.0180

Alvaiázere 15G01UG RG19 39.8270 −8.3810
Ladoeiro 14N02UG RG20 39.8269 −7.2660

Nisa 16L03UG RG21 39.5160 −7.6690
Castelo de Vide 17M01G RG22 39.4116 −7.4525

Pernes 17F01UG RG23 39.3910 −8.6630
Bemposta 17I02UG RG24 39.3490 −8.1410

Alter do Chão 18L01UG RG25 39.2182 −7.6844
Pragança 18C01G RG26 39.1990 −9.0640

Pavia 20I01G RG27 38.8965 −8.0136
Caia (Monte Caldeiras) 20O02UG RG28 38.8873 −7.0898

Santo Estevão 20E02UG RG29 38.8600 −8.7460
Estremoz 20L01G RG30 38.8416 −7.6159

Colares (Sarrazola) 21A01C RG31 38.8020 −9.4570
Évora−Monte 21K02UG RG32 38.7690 −7.7161
São Manços 23K01UG RG33 38.4605 −7.7505

Barragem de Pego do Altar 23G01C RG34 38.4196 −8.3952
Amieira 24L01C RG35 38.2793 −7.5605

Barrancos 25P01UG RG36 38.1321 −7.0013
Santa Vitória 26I01UG RG37 37.9645 −8.0227

Serpa 26L01UG RG38 37.9426 −7.6038
Relíquias 27G01G RG39 37.7030 −8.4825

Castro Verde 27I01G RG40 37.6976 −8.0933
Mértola 28L01UG RG41 37.6371 −7.6619

Rosário (Almodôvar) 28I02U RG42 37.6020 −8.0810
Barragem de Mira 28G01C RG43 37.5101 −8.4433

Santa Catarina (Tavira) 31K01UG RG44 37.1487 −7.7847
Valverde 31E03C RG45 37.0820 −8.7180
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Figure 3. Location of the 45 rain gauges used in the study.

The monthly precipitation records were acquired by the Portuguese Environmental Agency, APA,
and made available via the SNIRH database (Sistema Nacional de Informacão de Recursos Hídricos,
http://snirh.pt), which has high data quality standards. The SNIRH is the main source of Portuguese
hydrological and hydrometeorological data used by researchers and practitioners of water resources
engineering and science.

Some of the precipitation series had missing values that were filled by applying an approach based
on a linear regression analysis [37]. For each monthly gap in a given rain gauge, the approach identifies
the candidate rain gauges that can be used for filling it. These gauges are next ranked according to
the correlation coefficient between paired series for that month at the rain gauge with the gap and at
each of the candidate rain gauges. The candidate rain gauge with higher correlation coefficient is next
selected and used to fill the gap based on a linear regression model that is specific for each gap [37].
The length of the series after filling the missing values was x = 100 hydrological years, from 1918/1919
to 2017/2018.

4. CDPMS for Mainland Portugal: Definition and Performance

The following items describe the stepwise development and the performance assessment of the
CDPMS developed to continuously monitor the drought probability over Mainland Portugal during
the rainy season, based on the precipitation records at the 45 rain gauges of Figure 3. The application
to a specific site is presented in Section 5.

4.1. Precipitation Thresholds for Drought Recognition

Table 4 presents the precipitation thresholds, R∗N, in the 45 rain gauges obtained by inverting the
SPI for the time span of 6 months (SPI6), from October to March, for the different drought intensities
(moderate, severe and extreme). By the end of March, a drought with a given intensity occurs in a
given rain gauge whenever the precipitation for the period is smaller than the precipitation threshold
for that intensity.

http://snirh.pt
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Table 4. Precipitation thresholds, R∗N , (mm) for the six-month period, from October to March, for the
different drought intensities.

Rain
Gauge ID

Drought Intensity Rain
Gauge ID

Drought Intensity

Moderate Severe Extreme Moderate Severe Extreme

RG01 745.2 550.6 411.7 RG23 379.6 288.8 218.2
RG02 429.9 351.9 297.6 RG24 307.4 226.9 165.0
RG03 1250.0 933.9 701.4 RG25 269.9 190.0 126.2
RG04 338.9 272.4 228.7 RG26 442.1 357.1 294.9
RG05 252.7 212.2 189.9 RG27 245.4 181.4 132.1
RG06 624.0 467.6 350.5 RG28 228.6 169.4 122.5
RG07 774.4 614.7 500.8 RG29 272.3 208.9 160.4
RG08 250.9 197.3 158.8 RG30 281.6 208.1 151.8
RG09 290.0 221.5 172.2 RG31 371.7 309.3 263.1
RG10 225.0 175.0 137.3 RG32 265.6 201.5 152.4
RG11 280.2 223.0 182.2 RG33 238.9 178.1 130.7
RG12 601.4 479.3 393.2 RG34 269.6 214.9 174.6
RG13 311.6 232.8 170.6 RG35 256.2 202.4 162.6
RG14 517.3 419.1 345.1 RG36 260.6 204.4 160.0
RG15 446.4 361.0 294.2 RG37 251.9 197.7 155.9
RG16 557.5 449.0 364.9 RG38 237.9 182.4 140.6
RG17 415.4 320.1 246.6 RG39 311.3 242.3 191.1
RG18 383.7 310.8 255.6 RG40 267.9 215.7 175.7
RG19 586.6 468.6 378.5 RG41 184.5 146.8 120.9
RG20 288.6 234.7 194.2 RG42 284.4 223.2 176.3
RG21 331.5 256.7 199.4 RG43 292.3 225.8 173.2
RG22 370.7 284.5 221.8 RG44 318.5 239.5 180.3

RG45 289.5 229.0 182.3

4.2. Copula Fitting

In each rain gauge, the bivariate model was constructed by coupling the precipitation in the
rainy season, RN for N = 6, with the precipitation in the initial n months of that season, Rn (i.e., the
precipitation in October, for n = 1, from October and November, for n = 2 and so on until n = 5, from
October to February). The length of each coupled (RN, Rn) series is equal to the length of the recording
period (x = 100 years). The parameters were estimated by the MPL method, and the candidate copula
families were selected based on the AIC.

For the 45 rain gauges, the frequency of the copula families chosen for each value of n is presented
in Figure 4. Considering, for example, n = 1, the percentage of rain gauges where the different types
of families where selected is as follows: 31% copula Frank, a symmetric Archimedean copula, 38%
Clayton copula, an asymmetric copula with lower tail dependence, 4% Survival Clayton copula,
a 180 degrees rotated Clayton with upper tail dependence, 18% Gumbel copula, an asymmetric copula
with upper tail dependence, and 9% Gaussian copula, a symmetric Meta-Elliptical copula.
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As n increases, the percentage of rain gauges where Frank copula is selected decreases from 31
(n = 1) to 7% (n = 5). This is explained by the increase of the linear dependence between variables as
the precipitation in additional months of the rainy season is progressively known and provided to the
model. The same applies to the Meta-Elliptical copulas, Gaussian and t Student: less than 10% of the
rain gauges for n = 1 to approximately 60% of the rain gauges for n from 3 to 5.

4.3. Drought Risk Monitoring

After the bivariate model has been set up for each rain gauge, the CDPMS was applied to estimate
the drought probability, i.e., the temporal evolution of the conditional probability of drought occurrence
as new precipitation records are progressively acquired (Equation (2)).

Figure 5 shows the spatial distribution of the moderated drought probability thus achieved for the
rainy season of October 2012 to February 2013, chosen as an example. The probability surfaces were
obtained by averaging the results at the 45 rain gauges according to the inverse distance weighting
(IDW) method with exponent 2.

It is possible to see that, for n = 1 (that is, by the end of October), two regions presented a higher
probability of drought occurrence: northwest and southeast regions. For n = 3 (end of December), the
probability of drought in those regions increased and even expanded into some of the central areas. As
the precipitation in the following months is progressively known, only a few regions of the country
have a drought risk smaller than 50%. This could justify issuing an alert regarding a possible drought
at the end of March—with caution in December (n = 3), for sure in January (n = 4) and definitely in
February (n = 5). Such an early warning could raise the awareness of water resources managers and
of civil protection authorities, urging the implementation of some anticipatory measures aiming at
mitigating the consequences of a possible scenario of drought and water scarcity.

The last map of Figure 5 shows what happened by the end of March. The almost perfect match
between the areas where the drought probability progressively increased with n (areas shaded from
blue to orange and red) and those that in fact experienced drought by the end of March (red circles)
clearly indicates the ability of the model to identify areas of increasing drought probability.
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Figure 5. Example of the application of the CDPMS to the continuous monitoring of the likelihood of
moderate drought at the end of the six months period from October 2012 to February 2013. Drought
probability from the end of October (n = 1) to the end of February (n = 5). The last map identifies the
rain gauges that in fact did or did not experience drought by the end of March of 2013.
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4.4. CDPMS Performance Assessment

The performance of the CDPMS was assessed based on the BSS computed for each one of the
45 rain gauges and values of n, according to the LOOCV methodology (Section 2.2).

The results achieved for predicted moderate droughts are presented in Table 5. The values closer
to 1 indicate better model performance, and the negative values indicate that the reference forecast
outperformed the CDPMS. The ability of the CDPMS to predict the drought probability increases as
the number of months, n, with known precipitation increases: for n = 1 the average performance for
the complete set of rain gauges is 0.03 while for n = 5 is 0.70.

Table 5. Moderate droughts. BSS values for n = 1 to n = 5.

Rain Gauge ID n = 1 n = 2 n = 3 n = 4 n = 5 Average

RG01 0.15 0.27 0.46 0.57 0.69 0.43
RG02 −0.02 0.10 0.13 0.37 0.55 0.23
RG03 0.05 0.19 0.47 0.63 0.83 0.44
RG04 0.04 0.10 0.25 0.44 0.65 0.30
RG05 0.00 0.18 0.35 0.51 0.65 0.34
RG06 0.15 0.27 0.44 0.55 0.77 0.44
RG07 0.06 0.18 0.35 0.52 0.66 0.35
RG08 0.04 0.11 0.23 0.41 0.56 0.27
RG09 −0.03 0.25 0.27 0.53 0.62 0.33
RG10 0.01 0.16 0.22 0.41 0.52 0.27
RG11 0.02 0.14 0.22 0.53 0.64 0.31
RG12 0.01 0.13 0.28 0.44 0.59 0.29
RG13 −0.03 0.14 0.39 0.71 0.79 0.40
RG14 0.00 0.11 0.23 0.52 0.66 0.30
RG15 0.02 0.19 0.32 0.44 0.70 0.33
RG16 0.01 0.11 0.23 0.50 0.73 0.32
RG17 0.02 0.13 0.31 0.54 0.81 0.36
RG18 0.00 0.12 0.23 0.44 0.58 0.27
RG19 −0.02 0.09 0.21 0.50 0.70 0.29
RG20 0.01 0.07 0.21 0.33 0.65 0.25
RG21 0.01 0.10 0.29 0.42 0.74 0.31
RG22 0.00 0.13 0.31 0.47 0.69 0.32
RG23 0.01 0.31 0.44 0.74 0.83 0.47
RG24 0.03 0.23 0.38 0.56 0.81 0.40
RG25 0.02 0.15 0.30 0.57 0.73 0.35
RG26 −0.05 0.12 0.25 0.60 0.78 0.34
RG27 0.03 0.17 0.30 0.41 0.67 0.32
RG28 0.03 0.18 0.29 0.47 0.72 0.34
RG29 0.02 0.10 0.14 0.41 0.55 0.24
RG30 −0.04 0.11 0.27 0.40 0.54 0.25
RG31 0.03 0.07 0.24 0.51 0.73 0.32
RG32 0.05 0.15 0.25 0.49 0.62 0.31
RG33 0.08 0.21 0.37 0.48 0.67 0.36
RG34 0.01 0.13 0.27 0.41 0.68 0.30
RG35 0.01 0.11 0.32 0.57 0.71 0.34
RG36 0.04 0.19 0.29 0.54 0.68 0.35
RG37 −0.01 0.14 0.29 0.57 0.84 0.36
RG38 0.07 0.24 0.31 0.48 0.57 0.33
RG39 0.04 0.17 0.15 0.54 0.71 0.32
RG40 0.03 0.13 0.31 0.61 0.80 0.37
RG41 0.10 0.28 0.47 0.70 0.81 0.47
RG42 0.07 0.16 0.42 0.66 0.78 0.42
RG43 0.08 0.20 0.37 0.54 0.70 0.38
RG44 0.03 0.08 0.35 0.66 0.82 0.39
RG45 0.01 0.14 0.19 0.47 0.76 0.32

Average 0.03 0.16 0.30 0.51 0.70 0.34
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The rain gauges where CDPMS had a better performance for n = 1 were RG01, RG06, RG33, RG38,
RG41, RG42, and RG43 indicating a higher correlation between the precipitation in October and from
October to March (BBS ≥ 0.07). Only for n = 1 and for seven rain gauges (RG02, RG09, RG13, RG19,
RG26, RG30, and RG37) did the CDPMS perform worse than the reference forecast (BBS < 0). This
means that for these rain gauges the knowledge of the precipitation in October does not allow accurate
forecasts of the probability of having or not having drought by the end of March. However, the CDPMS
performance increases every month, indicating sustained improvement in the monitoring capabilities
as new precipitation data is being collected and provided to the model.

Figure 6 shows the spatial distribution and the evolution of the BSS values for moderate droughts
as a function of n, allowing to identify the areas where the CDPMS has better monitoring capabilities
(higher values of BSS). The spatial interpolation technique used was also the inverse distance weighting
(IDW) with exponent 2.
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In order to further analyze the variance of the CDPMS performance, box plots were drawn based
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Figure 7 shows that the variance of the performance measure, BSS, increases in the last two months
(n = 4 and n = 5) indicating that, in some rain gauges, a high probability may not result in a drought
event as there is still precipitation to fall. The opposite is also true, low risk does not mean drought
cannot happen, because the above threshold precipitation tendency presented in the initial months of
the rainy season may not be enough to counterbalance the deficits during the last months. However,
both specific cases are less likely to occur.

Drought occurrence in mainland Portugal is associated with a substantial interannual and decadal
variability, strongly linked to precipitation shortage during the rainy season [38,39]. The dynamic
interactions among weather types associated with mainland Portugal due to its location between the
Atlantic Ocean and the Mediterranean Sea, strong orographic influence and small size contribute
to explain high spatial variability and relative disconnection from general circulation [39–42]. The
complex interactions between different weather types during the rainy season, also as a result of the
different geographic conditions, might explain the variability between the model performances.

Overall, due to copula’s high flexibility, a great variety of copula families can be chosen to model
the temporal dependence structure of the precipitation in each specific rain gauge, and, by this way, to
represent its spatial variability.

The increasing performance of the CDPMS over time means that it consistently learns with the
addition of the precipitation in the following months. It also consistently outperforms the reference
forecasts, indicating that it can be a valuable source for assessing drought probability.

The application of the LOOCV excluded any bias in the performance verification by not choosing
specific years that could best fit the expected performance, such as very dry or very wet years. Therefore,
the CDPMS proved to be a valuable tool for drought probability monitoring. However, its application
to Mainland Portugal to monitor under real-time conditions the probability of drought by the end
of the rainy season requires a continuous updating of the precipitation records at the rain gauges of
Figure 2, which may not be an easy task. Alternatively, the CDPMS can be applied to a specific site, as
exemplified in the next item.

5. CDRMS Applied to a Single Site

This item refers to the CDPMS development and application to a single site in Mainland Portugal
aiming at exemplifying how the system can be operated as a drought monitoring, but also forecasting
tool. For this purpose, the rainy season of the hydrological year of 2017/2018 (October 2017 to March
2018) at the rain gauge of Santa Marta da Montanha (RG07) was selected. It was assumed that the
precipitation was progressively recorded and provided to the model until February 2018 aiming at
estimating the drought probability by the end of the rainy season. As already said, such knowledge is
extremely important to develop anticipatory actions and to mitigate impacts related to water scarcity.

5.1. CDRMS Development for Santa Marta da Montanha

The dependence structure for each coupled (RN, Rn) precipitation series in RG07 rain gauge
was modeled by the Archimedean (Frank) and Meta-Elliptical copulas (Gaussian and t Student).
Table 6 presents the bivariate models selected for each n, from October (n = 1) to February (n = 5). The
parametersθ (for the Archimedean copulas) and ρ and v (for the Meta-Elliptical copulas) were estimated
using MPL, and the copula families were selected based on the AIC, as described in Section 2.1.2.
The Kendall’s Tau was applied to verify the non-linear dependence between RN and Rn modeled by
the copulas. A hypothesis test was applied to determine whether RN and Rn presented a relevant
dependence structure, a small p-value provides strong evidence against the null hypothesis that they
are independent, for the 95% confidence level.
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Table 6. Santa Marta da Montanha (RG07) rain gauge. Bivariate models for each coupled (RN, Rn)
series, their parameters, Kendall Tau correlation (according to the model and empirical), AIC, and
p values.

Rn Family
Parameters Kendall’s Tau

AIC p-Value
θ or ρ v Model Empirical

n = 1 Frank 1.75 - 0.19 0.19 −6.16 <0.05
n = 2 Gaussian 0.60 - 0.41 0.40 −37.86 <0.05
n = 3 t Student 0.76 30.00 0.55 0.53 −75.34 <0.05
n = 4 Gaussian 0.91 - 0.72 0.72 −161.84 <0.05
n = 5 Gaussian 0.96 - 0.83 0.83 −251.14 <0.05

The values of the empirical Kendall Tau correlation coefficient presented in Table 6 indicate that
as the precipitation in the rainy season is progressively recorded and introduced in the model, the
dependence between RN and Rn becomes stronger. In fact, for n = 1 the precipitation in October
explains only 19% of the precipitation of the rainy season, while for n = 2 it explains 40%, and for
n = 5, 83%. The small differences between model and empirical Kendall’s Tau values show that the
dependence between RN and, Rn was properly modeled by the copulas.

The bivariate model adopted for each coupled (RN, Rn) series in Santa Marta da Montanha rain
gauge is presented in Figure 8. The axes in the figure were graduated in terms of the standard normal
deviates that correspond to the non-exceedance probability given by the marginal distributions. The
figure shows that as n increases the copulas become narrower due to stronger correlations between RN

and Rn.
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series along the rainy season of 2017/2018, from n = 1 to 5.

5.2. CDRMS Application—Drought Risk Monitoring

After the bivariate model has been established, the CDPMS was applied to monitor the drought
probability in Santa Marta da Montanha rain gauge during the rainy season of 2017/2018. The results
obtained are exemplified in the table of Figure 9 for the three categories of droughts, moderate, severe,
and extreme droughts. The figure includes the precipitation thresholds, R∗N, for the different droughts
categories, the precipitation that fell along the season (monthly and cumulative precipitations) and the
historical average monthly precipitations.

From October 2017 to March 2018, the total precipitation was 697.6 mm, i.e., below the threshold
for moderate drought and above the thresholds for the other drought categories, meaning that a
moderate drought event really occurred by the end of March.

In what concerns the moderate droughts, the CDPMS proved to the able to detect the increasing
probability of drought: 31% (October 2017), 57% (November 2017), 56% (December 2017), 71% (January
2018), and 97% (February 2018) which could justify issuing a drought alert, at least in January and for
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sure in February. Despite the considerable above-the-average precipitation that occurred in March,
there was a moderate drought, confirming the prediction of CDPMS.Water 2019, 11, x FOR PEER REVIEW 15 of 18 
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Severe (618.83 mm)
Extreme (503.49 mm)

Mean monthly precipitation (mm)
Observed precipitation 

(mm)
Drought category (Threshold) Drought risk

Moderate (779.93 mm)

Figure 9. Santa Marta da Montanha (RG07) rain gauge. Probability of moderate, severe, and extreme
drought events along the rainy season of 2017/2018 according to the CDPMS (dashed cells).

The CDPMS also identified an increased risk of severe drought by the end of March, though
with much smaller probability, only 31% in January and 61% in February. However, there was not a
severe drought event, which suggests a poorer performance of the CDPMS. This circumstance can be
explained by the anomalous and unforeseeable precipitation that took place in March that dampened
the expectations of a severe drought.

The last row of the table of Figure 9 indicates very small probabilities of having an extreme
drought by the end of March, which was confirmed.

This example shows the capability of CDPMS in detecting moderate droughts. However, the
model was not able to distinguish the intensity of the event, once severe and extreme droughts are very
sensitive to an individual precipitation event. Precipitation thresholds for the droughts with higher
intensity are lower and can be easily exceeded by a few millimeters of precipitation.

6. Discussion and Conclusion

Drought is a harsh natural disaster with onsets difficult to perceive. Therefore, it is relevant and
challenging to develop a trustful tool able to recognize its occurrences and to initiate actions aiming at
mitigating its impacts. This study developed such a tool, based on copulas applied to the continuous
monitoring of the drought probability, using only precipitation data, the CDPMS.

Such a model uses a kind of stepwise procedure applied to each specific location where the drought
probability evaluation is required. It starts with the computation of drought-triggering precipitation
thresholds, which enable assigning precipitations to the drought categories given by the SPI [23]. The
next step refers to the setting up of the copula-based bivariate model that, by using historical monthly
precipitation data, “couples” the seasonal precipitation of the rainy season (RN) with the precipitation
until the last but one month of such season (Rn), according to the dependence structure between RN

and Rn.
The last step relates to the application of the CDPMS under current conditions to monitor the

drought probability during the rainy season aiming to answer the following question: will there be a
drought by the end of the rainy season? Once the precipitation in each month of the current rainy
season is progressively known and incorporated into the CDPMS, the model returns the drought
probability, that is, the probability of the precipitation being smaller than the one required to avoid
drought conditions by the end of the season. Based on that probability, drought warnings can be issued
and anticipatory drought mitigation and adaptation measures implemented. The application based on
a single rain gauge was exemplified for the rainy season from October 2017 to March 2018.

The CDPMS can also be applied to monitor the evolution of the drought probability during the
rainy season in a region, instead of a single site, based on the continuous updating of the precipitation
deficits or surplus in the region. Such an innovative application was demonstrated by the application
of the CDPMS to Mainland Portugal to monitor the drought probability during the rainy season
from October 2012 to March 2013, based on 100-year of precipitation data at 45 rain gauges evenly
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distributed over the country. The application demonstrated that the CDPMS is able to anticipate the
regions that later experienced, in fact, drought conditions.

The study showed that the continuous drought probability monitoring system has the ability
to detect drought events simply based on precipitation data. However, it has lower confidence in
distinguishing among the drought intensities, probably because the differences among precipitation
thresholds for the different intensities are too small and can be easily exceeded by also small, but
unforeseeable, amounts of precipitation during the rainy season. The dynamic interactions among
weather types associated with Mainland Portugal due to its location between the Atlantic Ocean
and the Mediterranean Sea, the strong orographic influence in the precipitation spatial and temporal
patterns and its small area may result in the CDPMS performing better in some regions than in others.

Notwithstanding, the CDPMS can help decision-makers to anticipate actions and strategies to
decrease potential negative impacts, based on the assignment of a quantitative measure (the probability)
to the imminence of a drought event. It also contributes to a systematic warning for water managers
and civil protection authorities, allowing them to gradually adjust the public awareness as the threat of
a possible drought event becomes more reliable.

The marked seasonality of the rainfall regime in Mainland Portugal makes the precipitation
shortages during the rainy season a fundamental trigger of droughts, which explains the good
performance of CDPMS despite only based on precipitation data. However, previous studies suggest
that, due to the location of the country, the addition of other variables linked to climate, such as
teleconnection indexes (North Atlantic Oscillation and sea surface temperature), may improve the
drought forecasting capabilities [43,44]. In addition, other climatic and hydrological variables such as
temperature and runoff could also be incorporated into the model. Further studies could also try to
implement a time-varying copula model for bivariate modeling precipitation (RN and Rn) designed to
address the nonstationary behavior of some of the hydrological variables that is expected to result
from climate change [45].
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