Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chemicals and Reagents Used
2.3. Sampling Procedures
2.4. Physiochemical Analysis of Samples
2.5. Lead and Cadmium Contents of the Water Samples
2.6. Human Health Risk Assessment Due to PTEs Intake and Dermal Contact
2.7. Quality Assurance and Quality Control of Data
2.8. Data Analysis
3. Results
3.1. Physiochemical Parameters of the Water Samples
3.2. PTE Contents of the Water Samples
3.3. Interrelationships between Physicochemical Parameters and PTEs
3.4. Human Health Risks from Intake and Dermal Contact with Contaminated Water
4. Discussion
4.1. Physicochemical Profile of Water Samples
4.2. PTE Concentrations in the Water Samples
River (Country) | Pb | Cd | References |
---|---|---|---|
Pager River (Uganda) | 0.296–0.576 | 0.278–0.524 | This study |
Manafwa River (Uganda) | 0.002–0.010 | 0.001–0.002 | Opolot et al. [60] |
River Nyamwamba (Uganda) | 0.40–8.21 | 0.05–1.40 | Masereka et al. [61] |
0.27–0.40 | — | Mwesigye and Tumwebaze [80] | |
0.047 | — | Mukisa et al. [64] | |
River Mubuku (Uganda) | 0.053 | — | |
River Rwimi (Uganda) | 0.067 | — | |
Kagera River & tributaries (Rwanda) | 0.045 | 0.965 | Nshimiyimana et al. [81] |
Mara River (Tanzania) | 0.01–0.71 | BDL–0.11 | Kihampa and Wenaty [71] |
Tisa River (Romania) | 0.0016–0.00514 | 0.00011–0.00206 | Dippong et al. [72] |
Turag River (Bangladesh) | — | 0.0068–0.017 | Ahmed et al. [53] |
Bolong river (China) | 0.00034–0.00064 | 0.00011–0.00054 | Luo et al. [70] |
Rongna River (China) | 0.00049–0.00241 | 0.00012–0.00064 | |
Nyabarongo river (Rwanda) | 0.05–0.75 | BDL-0.106 | Omara et al. [50,82] |
Nyabugogo river (Rwanda) | 0.59 | BDL | Omara et al. [50] |
Sosiani river (Kenya) | 0.02–1.89 | — | Amadi [73] |
Marimba River (Zimbabwe) | 0.213–0.544 | — | Mvungi et al. [83] |
Dzindi, Mvudi, and Madanzhe Rivers (South Africa) | 0.0105–0.0201 | 0.0016–0.0093 | Okonkwo et al. [84] |
River Ganga (India) | 0.037–0.163 | 0.001–0.059 | Gupta et al. [85] |
Akcay River (Turkey) | BDL–0.00036 | — | Leventeli and Yalcin [86] |
River Kabul (Pakistan) | 0.337–0.81 | 0.015–0.038 | Afzaal et al. [74] |
Kor River (Iran) | — | 0.02–17.36 | Mokarram et al. [75] |
4.3. Interrelationships between Physicochemical Parameters and PTEs of the Water Samples
4.4. Human Health Risk Assessment Results
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Water ‘Vital to Human Survival, Economic Development, Prosperity of Every Nation’, Says Secretary-General in Message for World Day Observance. Available online: https://press.un.org/en/2023/sgsm21727.doc.htm#:~:text=Water%20is%20the%20lifeblood%20of,and%20prosperity%20of%20every%20nation (accessed on 5 June 2023).
- Kılıç, Z. The importance of water and conscious use ofwater. Int. J. Hydrol. 2020, 4, 239–241. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Revs. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Biswas, A.K. Urban water security for developing countries. River 2022, 1, 15–24. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Liu, M.; Ma, Z.; Fang, W.; Bi, J. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China. Water Res. 2022, 224, 119059. [Google Scholar] [CrossRef] [PubMed]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Calmant, S. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef]
- UN Water/Africa. The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development. 2020. Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/african%20water%20vision%202025%20to%20be%20sent%20to%20wwf5.pdf (accessed on 5 June 2023).
- Bender, M. Water Management in East Africa. In Oxford Research Encyclopedia of African History; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Shehu, Z.; Nyakairu, G.W.A.; Tebandeke, E.; Odume, O.N. Overview of African water resources contamination by contaminants of emerging concern. Sci. Total Environ. 2022, 852, 158303. [Google Scholar] [CrossRef]
- Ligate, F.; Ijumulana, J.; Ahmad, A.; Kimambo, V.; Irunde, R.; Mtamba, J.O.; Mtalo, F.; Bhattacharya, P. Groundwater resources in the East African Rift Valley: Understanding the geogenic contamination and water quality challenges in Tanzania. Sci. Afr. 2021, 13, e00831. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Eid, R.; Arab, N.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.M.; Eweida, E.A.; Farag, A. Heavy metals in drinking water and their environmental impact on human health. In Proceedings of the International Conference for Environmental Hazard Mitigation ICEHM 2000, Giza, Egypt, 9–12 September 2000; Cairo University: Cairo, Egypt, 2000. [Google Scholar]
- Debnath, B.; Singh, S.W.; Manna, K. Sources and toxicological effects of lead on human health. Indian J. Med. Spec. 2019, 10, 66. [Google Scholar]
- WHO. Exposure to Lead: A Major Public Health Concern, 2nd ed.; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037656 (accessed on 6 September 2023).
- Saeed, S.; Hasan, S.; Kuldeep, K.; Choudhury, P. Lead Poisoning: A Persistent health Hazard-General and oral aspects. Biomed Pharmacol. J. 2017, 10, 439–445. [Google Scholar] [CrossRef]
- WHO. Lead in Drinking-Water: Health Risks, Monitoring and Corrective Actions. 2022. Available online: https://apps.who.int/iris/rest/bitstreams/1460455/retrieve (accessed on 5 September 2023).
- Kim, H.C.; Jang, T.W.; Chae, H.J.; Choi, W.J.; Ha, M.N.; Ye, B.J.; Kim, B.G.; Jeon, M.J.; Kim, S.Y.; Hong, Y.S. Evaluation and management of lead exposure. Ann. Occup. Environ. Med. 2015, 27, 30. [Google Scholar] [CrossRef] [PubMed]
- Wenxin, L.; Levin, R.; Schwartz, J. Lead contamination of public drinking water and academic achievements among children in Massachusetts: A panel study. BMC Public Health 2022, 22, 107. [Google Scholar]
- Demchenkov, E.L.; Nagdalian, A.A.; Budkevich, R.O.; Oboturova, N.P.; Okolelova, A.I. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol. Environ. Saf. 2021, 208, 111683. [Google Scholar] [CrossRef]
- Idrees, N.; Tabassum, B.; Abd Allah, E.F.; Hashem, A.; Sarah, R.; Hashim, M. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India. Saudi J. Biol. Sci. 2018, 25, 1365–1368. [Google Scholar] [CrossRef]
- Browar, A.W.; Leavitt, L.L.; Prozialeck, W.C.; Edwards, J.R. Levels of Cadmium in Human Mandibular Bone. Toxics 2019, 7, 31. [Google Scholar] [CrossRef]
- Haney, I., Jr. Development of an inhalation unit risk factor for cadmium. Regul. Toxicol. Pharmacol. 2016, 77, 175–183. [Google Scholar] [CrossRef]
- Abalo, D.O. Assessment of the Water Quality of River Pager in Areas of Kitgum Municipality in Kitgum District. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2022. [Google Scholar]
- UN-Habitat. Kitgum Urban Profile. 2012. Available online: https://unhabitat.org/sites/default/files/download-manager-files/Kitgum%20Urban%20Profile%20%20Uganda.pdf (accessed on 6 September 2023).
- Ocungi, J. Kitgum Residents Dump Waste in Pager River. 2019. Available online: https://ugandaradionetwork.net/story/kitgum-residents-dump-waste-in-pager-river (accessed on 5 June 2023).
- Komakech, D.M. Pager, Akeca Rivers Polluted by Strange Whitish Chemical. 2021. Available online: https://ugandaradionetwork.net/story/pager-akeca-rivers-polluted-by-chemicals-?districtId=545 (accessed on 5 June 2023).
- US EPA. Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- Ocitti, J.P. Kitgum: An Urban Study. E Afr. Geogr. Rev. 1966, 4, 37–48. [Google Scholar]
- Open Street Map. Pager River. Available online: https://ug.geoview.info/pager_river,141321125w (accessed on 7 June 2023).
- Onen, P.; Niringiyimana, E.; Odokonyero, I.; Kissa, J.; Byaruhanga, I.; Ampaire, W.; Jogunomi, T.B.; Ogenrwot, A.D. Production and Physiochemical Characterization of Biodiesel from Nile cabbage grown in Pager River, Kitgum Municipality, Northern-Uganda. Bull Sci. Res. 2023, 5, 33–41. [Google Scholar] [CrossRef]
- USAID. Uganda Water Resources Profile Overview. 2021. Available online: https://winrock.org/wp-content/uploads/2021/08/Uganda_Country_Profile_Final.pdf (accessed on 4 September 2023).
- Hendy, A. Blackfly Ecology and Onchocerca Volvulus Transmission in Three Formerly Hyperendemic Foci in Uganda, Tanzania and Cameroon. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2018. [Google Scholar]
- The Independent. Government to Construct 20 Fish Ponds in Kitgum. 2020. Available online: https://www.independent.co.ug/government-to-construct-20-fish-ponds-in-kitgum/ (accessed on 6 September 2023).
- The Independent. Minister Anywar Asks Kitgum Locals to Vacate River Banks. 2021. Available online: https://www.independent.co.ug/minister-anywar-asks-kitgum-locals-to-vacate-river-banks/ (accessed on 6 September 2023).
- Kulabako, R.; Kinobe, J.; Mujunga, J.; Olwenyi, S.; Sleytr, K. Greywater use in peri-urban households in Kitgum, Uganda. Sust. Sanit Pract. 2009, 1, 16–24. [Google Scholar]
- Gumisiriza, N.; Mubiru, F.; Siewe Fodjo, J.N.; Kayitale, M.M.; Hotterbeekx, A.; Idro, R.; Makumbi, I.; Lakwo, T.; Opar, B.; Kaducu, J.; et al. Prevalence and incidence of nodding syndrome and other forms of epilepsy in onchocerciasis-endemic areas in northern Uganda after the implementation of onchocerciasis control measures. Infect. Dis. Poverty 2020, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Oguttu, D.W. Interventions and Progress towards Onchocerciasis Elimination in Uganda. DNDi Partners’ Meeting, 3 October 2018. Available online: https://dndi.org/wp-content/uploads/2018/05/Oguttu_CountryProgressUganda_UgandaMeeting2018.pdf (accessed on 4 September 2023).
- Kilama, D.; Ayella, D.O.; Asiimwe, I.; Nakibuuka, B.; Laker, F.; Bongomin, F. Undiagnosed Hypertension Among Market Salespersons in Kitgum Central Market, Northern Uganda. Integr. Blood Press Control 2023, 16, 37–46. [Google Scholar] [CrossRef]
- Onyutha, C.; Asiimwe, A.; Ayugi, B.; Ngoma, H.; Ongoma, V.; Tabari, H. Observed and Future Precipitation and Evapotranspiration in Water Management Zones of Uganda: CMIP6 Projections. Atmosphere 2021, 12, 887. [Google Scholar] [CrossRef]
- Ordonez, A.; Alvarez, R.; Charlesworth, S.; De Miguel, E.; Loredo, J. Risk assessment of soils contaminated by mercury mining, Northern Spain. J. Environ. Monit. 2011, 128, 136. [Google Scholar] [CrossRef]
- Omara, T.; Karungi, S.; Kalukusu, R.; Nakabuye, B.; Kagoya, S.; Musau, B. Mercuric pollution of surface water, superficial sediments, Nile tilapia (Oreochromis nilotica Linnaeus 1758 [Cichlidae]) and yams (Dioscorea alata) in auriferous areas of Namukombe stream, Syanyonja, Busia, Uganda. PeerJ 2019, 7, e7919. [Google Scholar] [CrossRef]
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V.; Eragu, R.; Nakisozi, H.; Ogwang, P. Dietary content and potential health risks of metals in commercial black tea in Kampala (Uganda). J. Food Res. 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess 2012, 185, 3867–3878. [Google Scholar] [CrossRef]
- Alidadi, H.; Tavakoly, S.S.B.; Zarif, G.O.B.; Mohamad, T.; Shamszade, H.; Fakhari, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in Northeast Iran. Environ. Health Prev. Med. 2019, 24, 59. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Nawrot, N.; Walkusz-Miotk, J.; Matej-Łukowicz, K.; Pazdro, K. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability 2019, 11, 563. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Omara, T.; Nteziyaremye, P.; Akaganyira, S.; Opio, D.W.; Karanja, L.N.; Nyangena, D.M.; Maiyo, A. Physicochemical quality of water and health risks associated with consumption of African lung fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers, Rwanda. BMC Res Notes 2020, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; Volume 1—Recommendations Incorporating the First and Second Addenda; 2008; Available online: https://www.who.int/publications/i/item/9789241547611 (accessed on 4 September 2023).
- Ahmed, K.S.; Rahman, A.K.M.L.; Sarkar, M.; Islam, J.B.; Jahan, I.A.; Moniruzzaman, M.; Saha, B.; Bhoumi, N.C. Assessment on the level of contamination of Turag river at Tongi area in Dhaka. Bangladesh J. Sci. Ind. Res. 2016, 51, 193–202. [Google Scholar] [CrossRef]
- Nkurunziza, G.; Omara, T.; Nakiguli, C.K.; Mukasa, P.; Byamugisha, D.; Ntambi, E. Physicochemical Quality of Water from Chuho Springs, Kisoro District, Uganda. Fr-Uk. J. Chem. 2021, 09, 12–26. [Google Scholar] [CrossRef]
- Olajire, A.A.; Imeokparia, F.E. Water Quality Assessment of Osun River: Studies on Inorganic Nutrients. Environ. Monit. Assess 2001, 69, 17–22. [Google Scholar] [CrossRef]
- Palamuleni, L.; Akoth, M. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa. J. Environ. Res. Public Health 2015, 12, 8619–8630. [Google Scholar] [CrossRef]
- Reda, A.H. Physico-Chemical Analysis of Drinking Water Quality of Arbaminch Town. J. Environ. Anal. Toxicol. 2016, 6, 356. [Google Scholar]
- Hansen, T.H.; Thomassen, M.T.; Madsen, M.L.; Kern, T.; Bak, E.G.; Kashani, A.; Allin, K.H.; Hansen, T.; Pedersen, O. The effect of drinking water pH on the human gut microbiota and glucose regulation: Results of a randomized controlled cross-over intervention. Sci. Rep. 2018, 8, 16626. [Google Scholar] [CrossRef]
- Omara, T.; Nassazi, W.; Adokorach, M.; Kagoya, S. Physicochemical and Microbiological Quality of Springs in Kyambogo University Propinquity. OALib J. 2019, 6, e5100. [Google Scholar] [CrossRef]
- Opolot, M.; Omara, T.; Adaku, C.; Ntambi, E. Spatio-temporal Variations and Potential Health Risks of Heavy Metals in Water from River Manafwa, Uganda. Letts. Appl. NanoBioSci. 2022, 13, 23. [Google Scholar]
- Masereka, J.; Byamugisha, D.; Adaku, C. Physicochemical Quality and Health Risks Associated with Use of Water from Nyamwamba River, Kasese, Western Uganda. Asian J. Appl. Chem. Res. 2022, 12, 19–33. [Google Scholar] [CrossRef]
- Chatanga, P.; Ntuli, V.; Mugomeri, E.; Keketsi, T.; Chikowore, N.V.T. Situational analysis of physico-chemical, biochemical and microbiological quality of water along Mohokare River, Lesotho. Egypt. J. Aquat. Res. 2019, 45, 45–51. [Google Scholar] [CrossRef]
- Busulwa, H.S.; Bailey, R.G. Aspects of the physico-chemical environment of the Rwenzori rivers, Uganda. Afr. J. Ecol. 2004, 42, 87–92. [Google Scholar] [CrossRef]
- Mukisa, W.; Yatuha, J.; Andama, M.; Aventino, K. Heavy metal pollution in the main rivers of Rwenzori region, Kasese district South-western Uganda. Octa J. Environ. Res. 2020, 8, 078–090. [Google Scholar]
- Ochieng, H.; Odong, R.; Okot-Okumu, J. Comparison of temperate and tropical versions of Biological Monitoring Working Party (BMWP) index for assessing water quality of River Aturukuku in Eastern Uganda. Glob. Ecol. Conserv. 2020, 23, e01183. [Google Scholar] [CrossRef]
- Bwire, G.; Sack, D.A.; Kagirita, A.; Obala, T.; Debes, A.K.; Ram, M.; Komakech, H.; George, C.M.; Orach, C.G. The quality of drinking and domestic water from the surface water sources (lakes, rivers, irrigation canals and ponds) and springs in cholera prone communities of Uganda: An analysis of vital physicochemical parameters. BMC Publ. Health 2020, 20, 1128. [Google Scholar] [CrossRef] [PubMed]
- Turinayo, Y.K. Physicochemical Properties of Sugar Industry and Molasses Based Distillery Effluent and its Effect on Water Quality of River Musamya in Uganda. Int. J. Environ. Agric. Biotechnol. 2017, 2, 1064–1069. [Google Scholar] [CrossRef]
- Butu, A.W.; Emeribe, C.N.; Muoka, I.O.; Emeribe, O.F.; Ogbomida, E.T. Downstream Effects of Industrial Effluents Discharge on Some Physicochemical Parameters and Water Quality Index of River Rido, Kaduna State, Nigeria. Trop. Aqua. Soil Pollut. 2022, 2, 90–108. [Google Scholar] [CrossRef]
- Uddin, M.N.; Alam, M.S.; Mobin, M.N.; Miah, M.A. An Assessment of the River Water Quality Parameters: A case of Jamuna River. J. Environ. Sci. Nat. Resour. 2014, 7, 253–260. [Google Scholar] [CrossRef]
- Luo, Y.; Rao, J.; Jia, Q. Heavy metal pollution and environmental risks in the water of Rongna River caused by natural AMD around Tiegelongnan copper deposit, Northern Tibet, China. PLoS ONE 2022, 17, e0266700. [Google Scholar] [CrossRef] [PubMed]
- Kihampa, C.; Wenaty, A. Impact of mining and farming activities on water and sediment quality of the Mara river basin, Tanzania. Res. J. Chem. Sci. 2013, 3, 15–24. [Google Scholar]
- Dippong, T.; Mihali, C.; Marian, M.; Rosca, O.M.; Resz, M.-A. Correlations between chemical, hydrological and biotic factors in rivers from the protected area of Tisa Superioară, Romania. Process Safe Environ. Prot. 2023, 176, 40–55. [Google Scholar] [CrossRef]
- Amadi, E.K. Nutrient loads and heavy metals assessment along Sosiani River, Kenya. Chem. Mat. Res. 2013, 3, 14–20. [Google Scholar]
- Afzaal, M.; Hameed, S.; Liaqat, I.; Khan, A.A.A.; Manan, H.A.; Shahid, R.; Altaf, M. Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Pract. Technol. 2022, 17, 253–1272. [Google Scholar] [CrossRef]
- Mokarram, M.; Saber, A.; Sheykhi, V. Effects of heavy metal contamination on river water quality due to release of industrial effluents. J. Clean. Prod. 2020, 277, 123380. [Google Scholar]
- Huang, X.; Luo, D.; Zhao, D.; Li, N.; Xiao, T.; Liu, J.; Liu, G. Distribution, source and risk assessment of heavy metal(oid)s in water, sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Sidhu, G.P.S.; Bali, A.S. Cd in the environment: Uptake, toxicity and management. In Appraisal of Metal (Loids) in the Ecosystem; Elsevier: Amsterdam, The Netherlands, 2022; pp. 283–300. [Google Scholar]
- Vijayakumar, V.; Abern, M.R.; Jagai, J.S.; Kajdacsy-Balla, A. Observational Study of the Association between Air Cadmium Exposure and Prostate Cancer Aggressiveness at Diagnosis among a Nationwide Retrospective Cohort of 230,540 Patients in the United States. Int. J. Environ. Res. Public Health 2021, 18, 8333. [Google Scholar] [CrossRef]
- Mwesigye, A.R.; Tumwebaze, S.B. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere 2017, 169, 281–287. [Google Scholar]
- Nshimiyimana, F.; Nhapi, I.; Wali, U.G.; Nsengimana, H.; Banadda, N.; Nansubuga, I.; Kansiime, F. Assessment of Heavy Metal Pollution in a Trans-Boundary River: The Case of the Akagera River. Int. J. Math. Comput. 2010, 9, 10. [Google Scholar]
- Nteziyaremye, P.; Omara, T. Bioaccumulation of priority trace metals in edible muscles of West African lungfish (Protopterus annectens Owen, 1839) from Nyabarongo River, Rwanda. Cogent Environ. Sci. 2020, 6, 1779557. [Google Scholar] [CrossRef]
- Mvungi, A.; Hranova, R.K.; Love, D. Impact of home industries on water quality in a tributary of the Marimba River, Harare: Implications for urban water management. Phys. Chem. Earth. 2003, 28, 1131–1137. [Google Scholar] [CrossRef]
- Okonkwo, J.O.; Mothiba, M. Physico-chemical characteristics and pollution levels of heavy metals in the rivers in Thohoyandou, South Africa. J. Hydrol. 2005, 308, 122–127. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, D.; Dwivedi, A.; Vishwakarma, U.; Malik, D.S.; Paroha, S.; Mohan, N.; Gupta, N. Heavy metal contamination in river water, sediment, groundwater and human blood, from Kanpur, Uttar Pradesh, India. Environ. Geochem. Health 2023, 45, 1807–1818. [Google Scholar] [CrossRef]
- Leventeli, Y.; Yalcin, F. Data analysis of heavy metal content in riverwater: Multivariate statistical analysis and inequality expressions. J. Inequal. Appl. 2021, 2021, 14. [Google Scholar] [CrossRef]
- Khan, T.A. Trace Elements in the Drinking Water and Their Possible Health Effects in Aligarh City, India. J. Water Res. Protect. 2011, 3, 522–530. [Google Scholar] [CrossRef]
- Baguma, G.; Musasizi, A.; Twinomuhwezi, H.; Gonzaga, A.; Nakiguli, C.K.; Onen, P.; Angiro, C.; Okwir, A.; Opio, B.; Otema, T.; et al. Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants 2022, 2, 407–421. [Google Scholar] [CrossRef]
- Opolot, M.; Omara, T.; Adaku, C.; Ntambi, E. Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda. Pollutants 2023, 3, 74–88. [Google Scholar] [CrossRef]
- Nazzal, Y.; Ghrefat, H.; Rosen, M.A. Heavy Metal Contamination of Roadside Dusts: A Case Study for Selected Highways of the Greater Toronto Area, Canada Involving Multivariate Geostatistics. Res. J. Environ. Sci. 2014, 8, 259–273. [Google Scholar] [CrossRef]
Parameter 1 | A | B | C | D | E | F | WHO [51] |
---|---|---|---|---|---|---|---|
pH | 7.49 ± 0.06 | 7.43 ± 0.00 | 7.32 ± 0.01 | 7.51 ± 0.04 | 7.38 ± 0.06 | 7.33 ± 0.10 | 6.5–8.5 |
Electrical conductivity (µS/cm) | 0.163 ± 0.006 | 0.170 ± 0.000 | 0.170± 0.000 | 0.157 ± 0.006 | 0.153 ± 0.006 | 0.150 ± 0.000 | 1500 |
Temperature (°C) | 27.7 ± 0.5 | 28.3 ± 0.5 | 28.3 ± 0.5 | 29.5 ± 0.8 | 28.5 ± 0.5 | 28.3 ± 0.5 | 15 |
Total dissolved solids (mg/L) | 0.10 ± 0.00 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.07 ± 0.00 | 1000 |
Turbidity (NTU) | 49.0 ± 3.1 | 50.1 ± 1.1 | 42.3 ± 5.0 | 46.4 ± 0.6 | 43.5 ± 0.2 | 40.7 ± 2.1 | 5.0 |
Daily Dose | Age Group | Sampling Point | Pb | Cd |
---|---|---|---|---|
DITwater (×10−2 mg/kg/day) | Children | A | 5.35 | 4.48 |
B | 6.52 | 3.34 | ||
C | 4.09 | 6.29 | ||
D | 4.48 | 4.50 | ||
E | 6.91 | 6.11 | ||
F | 3.55 | 5.59 | ||
DCwater (×10−7 mg/L/day) | A | 1.67 | 1.39 | |
B | 2.03 | 1.03 | ||
C | 1.27 | 1.96 | ||
D | 1.39 | 1.40 | ||
E | 2.15 | 1.90 | ||
F | 1.11 | 1.74 | ||
DITwater (×10−1 mg/kg/day) | Adults | A | 1.56 | 1.31 |
B | 1.90 | 0.97 | ||
C | 1.19 | 1.83 | ||
D | 1.31 | 1.31 | ||
E | 2.01 | 1.78 | ||
F | 1.04 | 1.63 | ||
DCwater (×10−6 mg/L/day) | A | 1.27 | 1.06 | |
B | 1.54 | 0.79 | ||
C | 0.97 | 1.49 | ||
D | 1.06 | 1.07 | ||
E | 1.64 | 1.45 | ||
F | 0.84 | 1.32 | ||
Oral reference dose (mg/kg/day) [47] | 1.4 × 10−1 | 1 × 10−3 | ||
Dermal reference dose (mg/L/day) [30] | 5.25 × 10−4 | 6.0 × 10−5 |
Age Group | Pathway | Sampling Point | Target Hazard Quotient | Total Target Hazard Quotient | |
---|---|---|---|---|---|
Pb | Cd | ||||
Children | Ingestion | A | 0.382 | 44.8 | 45.182 |
B | 0.466 | 33.4 | 33.866 | ||
C | 0.292 | 62.9 | 63.192 | ||
D | 0.320 | 45.0 | 45.320 | ||
E | 0.494 | 61.1 | 61.594 | ||
F | 0.254 | 55.9 | 56.154 | ||
Dermal contact | A | 0.00032 | 0.0023 | 0.00262 | |
B | 0.00039 | 0.0017 | 0.00209 | ||
C | 0.00024 | 0.0033 | 0.0354 | ||
D | 0.00026 | 0.0023 | 0.00256 | ||
E | 0.00041 | 0.0032 | 0.00361 | ||
F | 0.00021 | 0.0029 | 0.00311 | ||
Adults | Ingestion | A | 1.11 | 131 | 132.11 |
B | 1.36 | 97 | 98.36 | ||
C | 0.85 | 183 | 183.85 | ||
D | 0.94 | 131 | 131.94 | ||
E | 1.44 | 178 | 179.44 | ||
F | 0.74 | 163 | 163.74 | ||
Dermal contact | A | 0.0024 | 0.0177 | 0.0201 | |
B | 0.0029 | 0.0132 | 0.0161 | ||
C | 0.0018 | 0.0248 | 0.0266 | ||
D | 0.0020 | 0.0178 | 0.0198 | ||
E | 0.0031 | 0.0241 | 0.0272 | ||
F | 0.0016 | 0.0220 | 0.0236 |
Age Group | Sampling Point | Cancer Risk Value | Total Cancer Risk Value | |
---|---|---|---|---|
Pb | Cd | |||
Children | A | 0.4548 | 0.1700 | 0.6248 |
B | 0.5542 | 0.1270 | 0.6812 | |
C | 0.3805 | 0.2390 | 0.6195 | |
D | 0.3808 | 0.1710 | 0.5518 | |
E | 0.5874 | 0.2320 | 0.8194 | |
F | 0.0302 | 0.2120 | 0.2422 | |
Adults | A | 0.0133 | 0.0500 | 0.0633 |
B | 0.0162 | 0.3700 | 0.3862 | |
C | 0.0120 | 0.7000 | 0.7120 | |
D | 0.0110 | 0.5000 | 0.5110 | |
E | 0.0020 | 0.6800 | 0.6820 | |
F | 0.0009 | 0.6200 | 0.6209 | |
Ingestion cancer slope factor (kg day/mg) [47] | 8.5 × 10−6 | 3.8 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onen, P.; Akemkwene, R.; Nakiguli, C.K.; Nimusiima, D.; Ruma, D.H.; Khanakwa, A.V.; Angiro, C.; Bamanya, G.; Opio, B.; Gonzaga, A.; et al. Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda. J. Xenobiot. 2023, 13, 544-559. https://doi.org/10.3390/jox13040035
Onen P, Akemkwene R, Nakiguli CK, Nimusiima D, Ruma DH, Khanakwa AV, Angiro C, Bamanya G, Opio B, Gonzaga A, et al. Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda. Journal of Xenobiotics. 2023; 13(4):544-559. https://doi.org/10.3390/jox13040035
Chicago/Turabian StyleOnen, Patrick, Robin Akemkwene, Caroline K. Nakiguli, Daniel Nimusiima, Daniel Hendry Ruma, Alice V. Khanakwa, Christopher Angiro, Gadson Bamanya, Boniface Opio, Allan Gonzaga, and et al. 2023. "Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda" Journal of Xenobiotics 13, no. 4: 544-559. https://doi.org/10.3390/jox13040035
APA StyleOnen, P., Akemkwene, R., Nakiguli, C. K., Nimusiima, D., Ruma, D. H., Khanakwa, A. V., Angiro, C., Bamanya, G., Opio, B., Gonzaga, A., & Omara, T. (2023). Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda. Journal of Xenobiotics, 13(4), 544-559. https://doi.org/10.3390/jox13040035