A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data
Abstract
:1. Introduction
2. Related Work
- In [28], step functions are used for adjusting by taking into account the future energy demand. A 10% improvement compared to a non-predictive Online ECMS solution was reached.
- In [29], optimal recuperation is realized by predictive charging and discharging of the battery. A 6% improvement compared to a non-predictive Online ECMS solution is achieved.
- In [30], velocity prediction using a Convolutional Neural Network (CNN) for optimal determination is realized. A 0.2% to 0.5% improvement compared to the non-predictive Online ECMS is presented.
- In [31], velocity prediction is used to determine SOC nodes. A 9.7% improvement compared to the non-predictive Online ECMS solution is given.
- In [32], adaptation is realized considering future energy demand with a dynamic prediction horizon. An improvement between 0.3% and 4% compared to the non-predictive Online ECMS is achieved.
- In [33], velocity prediction at intersections considering traffic signal (TS) state and traffic flow leads to an improvement of 0–2% compared to the non-predictive Online ECMS.
3. Modeling
4. Methodology
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvas, E.; Hofman, T.; Murgovski, N.; Etman, P.; Steinbuch, M. Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 66, 57–70. [Google Scholar] [CrossRef]
- Tran, D.D.; Vafaeipour, M.; El Baghdadi, M.; Barrero, R.; van Mierlo, J.; Hegazy, O. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renew. Sustain. Energy Rev. 2020, 119, 109596. [Google Scholar] [CrossRef]
- Serrao, L. A Comparative Analysis Of Energy Management Strategies For Hybrid Electric Vehicles. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2009. [Google Scholar]
- Onori, S.; Serrao, L.; Rizzoni, G. Hybrid Electric Vehicles; Springer: London, UK, 2016. [Google Scholar]
- Rizzoni, G.; Onori, S. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University. Oil Gas Sci. Technol.-Rev. D’IFP Energ. Nouv. 2015, 70, 41–54. [Google Scholar] [CrossRef]
- Salmasi, F.R. Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends. IEEE Trans. Veh. Technol. 2007, 56, 2393–2404. [Google Scholar] [CrossRef]
- Xu, N.; Kong, Y.; Chu, L.; Ju, H.; Yang, Z.; Xu, Z.; Xu, Z. Towards a Smarter Energy Management System for Hybrid Vehicles: A Comprehensive Review of Control Strategies. Appl. Sci. 2019, 9, 2026. [Google Scholar] [CrossRef]
- Jiang, Q.; Ossart, F.; Marchand, C. Comparative Study of Real-Time HEV Energy Management Strategies. IEEE Trans. Veh. Technol. 2017, 66, 10875–10888. [Google Scholar] [CrossRef]
- Kim, N.; Cha, S.; Peng, H. Optimal Control of Hybrid Electric Vehicles Based on Pontryagin’s Minimum Principle. IEEE Trans. Control Syst. Technol. 2011, 19, 1279–1287. [Google Scholar]
- Kim, N.; Rousseau, A. Sufficient conditions of optimal control based on Pontryagin’s minimum principle for use in hybrid electric vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 1160–1170. [Google Scholar] [CrossRef]
- Serrao, L.; Onori, S.; Rizzoni, G. ECMS as a realization of Pontryagin’s minimum principle for HEV control. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; IEEE: Piscataway Township, NJ, USA, 2009; pp. 3964–3969. [Google Scholar]
- Zheng, C.H. Numerical Comparison Of Ecms And Pmp-Based Optimal Control Strategy In Hybrid Vehicles. Int. J. Automot. Technol. 2014, 15, 1189–1196. [Google Scholar] [CrossRef]
- Foerster, D.; Decker, L.; Doppelbauer, M.; Gauterin, F. Analysis of CO2 reduction potentials and component load collectives of 48 V-hybrids under real-driving conditions. Automot. Eng. Technol. 2021, 6, 45–62. [Google Scholar] [CrossRef]
- Mayer, A. Two-Dimensional ECMS for System Analysis of Hybrid Concepts featuring Two Electric Traction Motors. In Proceedings of the 2019 International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 1–3 October 2019. [Google Scholar]
- Paganelli, G.; Delprat, S.; Guerra, T.M.; Rimaux, J.; Santin, J.J. Equivalent consumption minimization strategy for parallel hybrid powertrains. In Proceedings of the IEEE 55th Vehicular Technology Conference, VTC Spring 2002 (Cat. No.02CH37367), Birmingham, AL, USA, 6–9 May 2002; IEEE: Piscataway Township, NJ, USA, 2002; pp. 2076–2081. [Google Scholar]
- Onori, S.; Serrao, L. On Adaptive-ECMS strategies for hybrid electric vehicles. Procedings of the Les Rencontres Scientifiques d’IFP Energies Nouvelles—International Scientific Conference on Hybrid and Electric Vehicles—RHEVE 2011, Columbus, OH, USA, 6–7 December 2011. [Google Scholar]
- Onori, S.; Serrao, L.; Rizzoni, G. Adaptive Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles; Ohio State University: Columbus, OH, USA, 2010. [Google Scholar]
- Musardo, C.; Rizzoni, G.; Staccia, B. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; IEEE Operations Center: Piscataway, NJ, USA, 2005. [Google Scholar]
- Kessels, J.; Koot, M.; van den Bosch, P.; Kok, D.B. Online Energy Management for Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2008, 57, 3428–3440. [Google Scholar] [CrossRef]
- Liu, T.; Zou, Y.; Liu, D.x.; Sun, F.c. Real-time control for a parallel hybrid electric vehicle based on Pontryagin’s Minimum Principle. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; IEEE: Piscataway Township, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Ouddah, O.; Adouane, L.; Abdrakhmanov, R. From Offline to Adaptive Online Energy Management Strategy of Hybrid Vehicle Using Pontryagin’s Minimum Principle. Int. J. Automot. Technol. Vol. 2017, 19, 571–584. [Google Scholar] [CrossRef]
- Sivertsson, M. Adaptive Control Using Map-Based ECMS for a PHEV. IFAC Proc. Vol. 2012, 45, 357–362. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, K.; Li, L.; Langari, R. Comparative Study of Equivalent Factor Adjustment Algorithm for Equivalent Consumption Minimization Strategy for HEVs. In Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA, 27–30 August 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–7. [Google Scholar]
- Fu, Z.; Liu, X. Equivalent Consumption Minimization Strategy Based on a Variable Equivalent Factor. In Proceedings of the IEEE 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar] [CrossRef]
- Enang, W.; Bannister, C. Robust proportional ECMS control of a parallel hybrid electric vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 99–119. [Google Scholar] [CrossRef]
- Chasse, A.; Sciarretta, A.; Chauvin, J. Online Optimal Control of a Parallel Hybrid with Costate Adaptation Rule; Institut Français du Pétrole: Rueil Malmaison, France, 2010. [Google Scholar]
- Gao, A.; Deng, X.; Zhang, M.; Fu, Z. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles. Math. Probl. Eng. 2017, 2017, 3095347. [Google Scholar] [CrossRef]
- Han, J.; Kum, D.; Park, Y. Synthesis of Predictive Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles Based on Closed-Form Solution of Optimal Equivalence Factor. IEEE Trans. Veh. Technol. 2017, 66, 5604–5616. [Google Scholar] [CrossRef]
- Kural, E.; Güvenc, B.A. Predictive-Equivalent Consumption Minimization Strategy for Energy Management of A Parallel Hybrid Vehicle for Optimal Recuperation. J. Polytech. 2015, 18, 113–124. [Google Scholar]
- Zhang, F.; Xi, J.; Langari, R. Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications. IEEE Trans. Intell. Transp. Syst. 2017, 18, 416–430. [Google Scholar] [CrossRef]
- Chen, D.; Kim, Y.; Stefanopoulou, A.G. Predictive Equivalent Consumption Minimization Strategy With Segmented Traffic Information. IEEE Trans. Veh. Technol. 2020, 69, 14377–14390. [Google Scholar] [CrossRef]
- Kazemi, H.; Fallah, Y.P.; Nix, A.; Wayne, S. Predictive AECMS by Utilization of Intelligent Transportation Systems for Hybrid Electric Vehicle Powertrain Control. IEEE Trans. Intell. Veh. 2017, 2, 75–84. [Google Scholar] [CrossRef]
- Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T. Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles. IFAC-PapersOnLine 2017, 50, 10046–10051. [Google Scholar] [CrossRef]
- Deufel, F.; Gießler, M.; Gauterin, F. Optimal Control of Electrified Powertrains in Offline and Online Application Concerning Dimensioning of Li-Ion Batteries. Vehicles 2022, 4, 464–481. [Google Scholar] [CrossRef]
- Deufel, F.; Gießler, M.; Gauterin, F. A Generic Prediction Approach for Optimal Control of Electrified Vehicles Using Artificial Intelligence. Vehicles 2022, 4, 182–198. [Google Scholar] [CrossRef]
- Deufel, F.; Jhaveri, P.; Harter, M.; Gießler, M.; Gauterin, F. Velocity Prediction Based on Map Data for Optimal Control of Electrified Vehicles Using Recurrent Neural Networks (LSTM). Vehicles 2022, 4, 808–824. [Google Scholar] [CrossRef]
- Görke, D. Untersuchungen zur Kraftstoffoptimalen Betriebsweise von Parallelhybridfahrzeugen und Darauf Basierende Auslegung Regelbasierter Betriebsstrategien; Springer: Wiesbaden, Germany, 2016. [Google Scholar] [CrossRef]
Drag Coefficient | 0.3 | |
Projected Frontal Area | A | 2.5 m2 |
Air Density | 1.2 kg/m3 | |
Vehicle Mass | m | 1600 kg |
Gravitational Acceleration | g | 9.81 m/s2 |
Rolling Resistance Coefficient | 0.012 |
Road Type | Avg. vel. in km/h | Max. vel. in km/h | Dist. in km | Dur. in h | Stand-Still in % |
---|---|---|---|---|---|
City | 28 | 69 | 6 | 0.2 | 26 |
19 | 60 | 4 | 0.2 | 39 | |
25 | 62 | 11 | 0.4 | 21 | |
Country Road | 73 | 110 | 39 | 0.5 | 1 |
57 | 90 | 17 | 0.3 | 6 | |
67 | 118 | 41 | 0.6 | 5 | |
Highway | 108 | 168 | 164 | 1.5 | 2 |
116 | 189 | 162 | 1.4 | 1 | |
101 | 176 | 74 | 0.7 | 6 |
Road Type | CO2 (g/km) | |
---|---|---|
2.61 | 134.16 | |
City | 2.55 | 139.87 |
2.61 | 144.42 | |
2.74 | 124.69 | |
Country Road | 2.70 | 122.31 |
2.64 | 172.21 | |
2.81 | 148.40 | |
Highway | 2.75 | 168.92 |
2.88 | 169.08 |
2.60 | |
3.57 |
Min | Max | |
---|---|---|
0 | 5 | |
in s | 5 s | 100 s |
Usable Energy in Wh | Horizon in s | Reduction CO2 % | |
---|---|---|---|
25 | 0.35 | 30 | 0.19 |
50 | 0.15 | 40 | 0.47 |
75 | 0.35 | 45 | 0.98 |
100 | 0.20 | 50 | 1.35 |
200 | 0.05 | 25 | 0.12 |
300 |
No additional CO2 reduction potentials by applying the proposed predictive Online ECMS considering TS | ||
400 | |||
500 | |||
1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deufel, F.; Freund, M.; Gauterin, F. A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data. World Electr. Veh. J. 2023, 14, 353. https://doi.org/10.3390/wevj14120353
Deufel F, Freund M, Gauterin F. A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data. World Electric Vehicle Journal. 2023; 14(12):353. https://doi.org/10.3390/wevj14120353
Chicago/Turabian StyleDeufel, Felix, Malte Freund, and Frank Gauterin. 2023. "A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data" World Electric Vehicle Journal 14, no. 12: 353. https://doi.org/10.3390/wevj14120353
APA StyleDeufel, F., Freund, M., & Gauterin, F. (2023). A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data. World Electric Vehicle Journal, 14(12), 353. https://doi.org/10.3390/wevj14120353