Efficient MultiPhase Converter for EMobility
Abstract
:1. Introduction
 ○
 The output power and output voltage of the presented converter are 33.38 kW and 500 V. The inductor ripple current is reduced by 25.76%, hence the size and cost of the inductor are also less compared to the existing converter, such as BC and IBC.
 ○
 Circuit size reduces due to the reduction in the size of the passive components, which is a major advantage for the EV model.
 ○
 Based on the interleaved techniques the total power loss is reduced and the total inductor current is reduced by 26.92% compared to the existing converter.
 ○
2. MultiPhase Interleaved Boost Converter
2.1. N Phase IBC Schematic Diagram
2.2. Design Parameter Calcultaion
3. MPIBC Simulation Result and Discussion
Power Loss and Efficiency Calculation of MPIBC
4. Hardware Setup for MPIBC
4.1. Two Phase IBC Hardware Results and Discussion
4.2. Six Phase IBC Hardware Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
N  no phase for MPIBC 
D  duty ratio 
V_{in}  input voltage (V) 
f_{s}  switching frequency (Hz) 
∆I_{in}  input current ripple 
∆V_{out}  output voltage ripple 
I_{out}  output current (A) 
V_{out}  output voltage (V) 
L_{N}  inductance at Nth phase (H) 
C_{N}  capacitance at Nth phase (H) 
R_{DS(on)}  drain source resistance (Ω) 
r_{D}  series resistance of diode (Ω) 
V_{F}  diode forward voltage (V) 
r_{L}  internal series resistance of the inductor (Ω) 
r_{C}  internal Series resistance of the capacitor (Ω) 
P_{input}  input power (W) 
P_{output}  output power (W) 
P_{switch}  losses due to switching operation (W) 
P_{diode}  losses due to diode (W) 
P_{inductor}  losses due to diode (W) 
P_{inductor}  capacitor power loss (W) 
$\eta $  efficiency 
References
 Chakraborty, S.; Vu, H.N.; Hasan, M.M.; Tran, D.D.; Baghdadi, M.E.; Hegazy, O. DCDC converter topologies for electric vehicles, plugin hybrid electric vehicles and fast charging stations: State of the art and future trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
 Elsied, M.; Salem, A.; Oukaour, A.; Gualous, H.; Chaoui, H.; Youssef, F.T.; Belie, D.; Melkebeek, J.; Mohammed, O. Efficient powerelectronic converters for electric vehicle applications. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–6. [Google Scholar]
 Lai, C.M. Development of a novel bidirectional DC/DC converter topology with high voltage conversion ratio for electric vehicles and DCmicrogrids. Energies 2016, 9, 410. [Google Scholar] [CrossRef] [Green Version]
 Zahira, R.; Amirtharaj, S.; Selvarani, M.; Lakshmi, D. Design of MOSFET Inverter for a Grid Connected Photovoltaic System. In Proceedings of the AICTE Sponsored National Conference on Recent Advances in OnBoard Ship Automation (RAOBSA2019), Chennai, India, 26–27 September 2019; pp. 253–256. [Google Scholar]
 Guo, J.; Rodriguez, R.; Gareau, J.; Schumacher, D.; Alizadeh, M.; Azer, P.; Bauman, J.; Bilgin, B.; Emadi, A. A Comprehensive Analysis for HighPower Density, HighEfficiency 60 kW Interleaved Boost Converter Design for Electrified Powertrains. IEEE Trans. Veh. Technol. 2020, 69, 7131–7145. [Google Scholar] [CrossRef]
 Sunddararaj, S.P.; Rangarajan, S.S.; Subashini, N.; Subramaniam, U.; Collins, E.R.; Senjyu, T. A novel TType Multilevel Inverter for Electric Vehicle and Gridconnected applications. In Proceedings of the 2021 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 11–13 February 2021; pp. 166–170. [Google Scholar]
 Subramaniam, U.; Ganesan, S.; Bhaskar, M.S.; Padmanaban, S.; Blaabjerg, F.; Almakhles, D.J. Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plugin Electric Vehicles. Energies 2019, 12, 2834. [Google Scholar] [CrossRef] [Green Version]
 Sunddararaj, S.P.; Rangarajan, S.S.; Subramaniam, U.; Collins, E.R.; Senjyu, T. A new topology of DCDC Converter with Bidirectional Power Flow Capability Coupled with a Nine Multilevel Inverter for EV Applications. In Proceedings of the 2021 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 11–13 February 2021; pp. 177–182. [Google Scholar]
 Dawidziuk, J. Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applications. Bull. Pol. Acad. Sci. Tech. Sci. 2011, 59, 499–506. [Google Scholar] [CrossRef]
 Wang, L.; Jiao, H.; Yang, G.; Li, J.; Zhang, Y. Current sharing compensation control method for interleaved current source isolated bidirectional DC/DC converters. J. Power Electron. 2022, 22, 1–9. [Google Scholar] [CrossRef]
 Zhang, Z.; Xie, S.; Wu, Z.; Xu, J. Softswitching and low conduction loss currentfed isolated bidirectional DC–DC converter with PWM plus dual phaseshift control. J. Power Electron. 2020, 20, 664–674. [Google Scholar] [CrossRef]
 Geetha, E.; Maddah, M.; Khosravi, M.M.; Kokabi, A.; Samavatian, V. Dynamic enhancement of interleaved stepup/stepdown DCDC converters using passive damping networks. J. Power Electron. 2020, 20, 657–663. [Google Scholar] [CrossRef]
 Lai, C.M.; Pan, C.T.; Cheng, M.C. Highefficiency modular high stepup interleaved boost converter for DCmicrogrid applications. IEEE Trans. Ind. Appl. 2011, 48, 161–171. [Google Scholar] [CrossRef]
 Subramaniam, U.; Palanisamy, K.; Deb, S.; Paul, S.; Bharadwaj, S.C.; Dutta, N. A Solution to Fast Battery Charging Technology With BiDirectional Series Parallel Resonant Converter LCC In Grid to Vehicle Ambient. In Proceedings of the Innovations in Power and Advanced Computing Technologies (iPACT), Vellore, India, 22–23 March 2019; pp. 1–6. [Google Scholar]
 Henn, G.A.; Silva, R.N.A.L.; Praca, P.P.; Barreto, L.H.; Oliveira, D.S. Interleavedboost converter with high voltage gain. IEEE Trans. Power Electron. 2010, 25, 2753–2761. [Google Scholar] [CrossRef]
 Sunddararaj, S.P.; Rangarajan, S.S.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Performance of P/PI/PID Based controller in DCDC Converter for PV applications and Smart Grid Technology. In Proceedings of the 2021 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 11–13 February 2021; pp. 171–176. [Google Scholar]
 Iqbal, A.; Bhaskar, M.S.; Meraj, M.; Padmanaban, S.; Rahman, S. Closedloop control and boundary for CCM and DCM of nonisolated inverting N× multilevel boost converter for highvoltage stepup applications. IEEE Trans. Ind. Electron. 2019, 67, 2863–2874. [Google Scholar] [CrossRef]
 Abhiram, J.S.; Kumar, S.S.; Jayaprakash, P.; Subramaniam, U. Design and Analysis of a High StepUp DCDC Converter Fed Grid Connected Fuel Cell System. In Proceedings of the 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA), Kannur, India, 27–28 November 2020; pp. 1–6. [Google Scholar]
 Kim, J.H.; Jung, Y.C.; Lee, S.W.; Lee, T.W.; Won, C.Y. Power loss analysis of interleaved soft switching boost converter for singlephase PVPCS. J. Power Electron. 2010, 10, 335–341. [Google Scholar] [CrossRef]
 Wang, S.; Wang, Y.; Wang, F. Low current ripple high stepup interleaved boost converter with switchedcapacitors and switchedinductors. J. Power Electron. 2021, 21, 1646–1658. [Google Scholar] [CrossRef]
 Murali, A.; Wahab, R.S.; Gade, C.S.R.; Annamalai, C.; Subramaniam, U. Assessing Finite Control Set Model Predictive Speed Controlled PMSM Performance for Deployment in Electric Vehicles. World Electr. Veh. J. 2021, 12, 41. [Google Scholar] [CrossRef]
 Meraj, M.; Bhaskar, M.S.; Iqbal, A.; AlEmadi, N.; Rahman, S. Interleaved multilevel boost converter with minimal voltage multiplier components for highvoltage stepup applications. IEEE Trans. Power Electron. 2020, 35, 12816–12833. [Google Scholar] [CrossRef]
 Ghaffarpour, S.H.; Afjei, S.E.; Salemnia, A. A novel softswitched interleaved high stepup DC–DC converter for highefficiency conversion. Int. J. Circuit Theory Appl. 2021, 49, 2515–2532. [Google Scholar] [CrossRef]
 Suresh, S.; Zahira, R. Hardware Implementation of Two Stage Interleaved Boost Converter for Electric Vehicle Application. Int. J. Veh. Struct. Syst. 2021, 13, 373–377. [Google Scholar] [CrossRef]
 Lipu, M.S.H.; Faisal, M.; Ansari, S.; Hannan, M.A.; Karim, T.F.; Ayob, A.; Hussain, A.; Miah, M.; Saad, M.H.M. Review of Electric Vehicle Converter Configurations, Control Schemes and Optimizations: Challenges and Suggestions. Electronics 2021, 10, 477. [Google Scholar] [CrossRef]
 Zhang, Y.; Liu, Q.; Li, J.; Sumner, M. A common ground switched Quasi Z –Source Bidirectional DCDC Converter with wide voltage –Gain range for EVs with Hybrid Energy Sources. IEEE Trans. Ind. Electron. 2017, 65, 5188–5200. [Google Scholar] [CrossRef]
 Zhao, C.; Round, S.D.; Kolar, J.W. An isolated three port bidirectional DCDC converter with decoupled with power flow management. IEEE Trans. Power Electron. 2018, 23, 2443–2453. [Google Scholar] [CrossRef]
 Maalandish, M.; Hosseini, S.H.; Ghasemzadeh, S.; Babaei, E.; Alishah, R.S.; Jalilzadeh, T. Sixphase interleaved boost dc/dc converter with highvoltage gain and reduced voltage stress. IET Power Electron. 2017, 10, 1904–1914. [Google Scholar] [CrossRef]
DCDC Converter  Ripple (Voltage/Current)  Switching Frequency  Complicity of Control Circuit  High Power Conversion  Cost 

IBC [1]  Reasonable  High  Reasonable  Suitable  Low 
QZBC [26]  Simple  High  Multifaceted  Suitable  Medium 
MPIC [27]  Multifaceted  Low  Multifaceted  Suitable  High 
MPIBC  Simple  Low  Reasonable  Suitable  Medium 
DCDC Converter  Objective  Outcomes  Benefits 

IBC [1] 



QZBC [26] 



MPIC [27] 



MPIBC 



Parameter  Value  Unit 

Solar PV voltage  20  V 
Output voltage  40  V 
Output current  1.25  A 
Output power  50  W 
L_{1} = L_{2} = L (2 phase IBC)  3.225 m  H 
L_{1} = L_{2} = L_{3} = L (3 phase IBC)  2.15 m  H 
L_{1} = L_{2} = L_{3} = L_{4} = L (4 phase IBC)  1.613 m  H 
L_{1} = L_{2} = L_{3} = L_{4} = L_{5} = L_{6} = L (6 phase IBC)  1.075 m  H 
C (2 phase IBC)  504 µ  F 
C (3 phase IBC)  336 µ  F 
C (4 phase IBC)  252 µ  F 
C (6 phase IBC)  168 µ  F 
R_{load}  32  Ω 
L_{load}  120 m  H 
Switching frequency (f_{s})  31 k  Hz 
Input Current Ripple (∆I_{in})  5%   
Output Voltage Ripple (∆V_{out})  2%   
Duty ratio (D)  50%   
Drain Source Resistance (R_{DS(on)})  0.045  Ω 
Series resistance of Diode (r_{D})  0.30  Ω 
Internal Series resistance of the inductor (r_{L})  0.25  Ω 
Internal Series resistance of the capacitor (r_{C})  0.05  Ω 
Equation  Equation Meaning  Equation Number 

${P}_{switch}=N\ast {R}_{DS(on)}\ast D\ast {\left[\frac{{I}_{out}}{N\ast (1D)}\right]}^{2}$  Switching loss  (4) 
${P}_{diode}=(({r}_{D}\ast {I}_{out}^{2})+({V}_{F}\ast {I}_{out}))$  Diode loss  (5) 
${P}_{inductor}={r}_{L}\ast {\left[\frac{{I}_{out}}{(1D)}\right]}^{2}$  Inductor loass  (6) 
${P}_{capacitor}={r}_{C}\ast {I}_{out}^{2}$  Capactior loss  (7) 
${P}_{input}={P}_{output}+{P}_{switch}+{P}_{diode}+{P}_{inductor}+{P}_{capacitor}$  Input power  (8) 
$\%\eta =\left(\frac{{P}_{output}}{{P}_{input}}\right)\times 100$  Efficiency  (9) 
Number of Phases of MPIBC  Output Voltage (V_{out}) in V  Output Current (I_{out}) in A  Output Power (P_{o}) in W 

2  38.74  1.211  46.914 
3  38.89  1.215  47.251 
4  38.96  1.218  47.453 
6  39.04  1.220  47.628 
Number of Phases of MPIBC  Output Voltage (V_{out}) in V  Output Current (I_{out}) in A  Output Power (P_{o}) in kW 

2  434  13.56  5.887 
3  435.7  13.62  5.933 
4  436.6  13.64  5.956 
6  437.4  13.67  5.979 
Number of Phases of MPIBC  P_{loss} (W)  P_{input} (W)  P_{output} (W)  %Efficiency 

2  3.1772  50.1772  46.914  93.66 
3  3.1565  50.1565  47.251  93.74 
4  3.1448  50.1448  47.453  93.78 
6  3.1330  50.1330  47.628  93.82 
Number of Phases of MPIBC  P_{loss} (W)  P_{input} (kW)  P_{output} (kW)  %Efficiency 

2  267.347  6.154  5.887  95.66 
3  266.880  6.199  5.933  95.71 
4  266.263  6.222  5.956  95.72 
6  266.010  6.245  5.979  95.74 
Parameters  BC [1]  IBC [1]  MPIBC 

Input Voltage (V)  200  200  200 
Output Voltage (V)  400  400  500 
Number of Phase  1  4  6 
Output Power (kW)  30  30  34.38 
Switching Freqency (kHz)  20  20  20 
Inductor Current (A)  250  250  182.7 
Inductor (µH)  400  100  66.67 
Capactior (µF)  780  195  168 
Duty Cycle  0.5  0.5  0.5 
Inductor Current Ripple (A)  12.5  12.5  9.28 
Parameters  Six Phase IBC [28]  Six Phase MPIBC 

Input Voltage (V)  24  24 
Number of Phase  6  6 
Switching Freqency (kHz)  25  25 
Duty Cycle  0.6  0.6 
Output Voltage (V)  207  213.8 
Output Power (W)  453  487.6 
%Efficiency  96.90  98.68 
V_{in} (V)  Switching Frequency f_{s} = 5 kHz  Switching Frequency f_{s} = 10 kHz  

V_{out} (V) at D = 0.3  V_{out} (V) at D = 0.4  V_{out} (V) at D = 0.5  V_{out} (V) at D = 0.7  V_{out} (V) at D = 0.3  V_{out} (V) at D = 0.4  V_{out} (V) at D = 0.5  V_{out} (V) at D = 0.7  
0.5  1.2  1.4  1.2  1.2  1.4  1.2  1  1.6 
1  2.6  2.8  2.8  3.2  2.8  3.2  2  3.2 
1.5  4.4  4.2  4.4  4.4  4.4  4  4.2  5 
2  6  5.4  5.6  6  5.6  5.8  6.4  6.4 
2.5  6.8  7.2  7.2  7.6  7.2  7.4  8.2  8.2 
3  8  8.6  8.8  9.4  8.2  9.6  9.2  10.8 
3.5  9.8  9.8  10.2  11  9.4  10  11.6  11.8 
V_{in} (V)  Switching Frequency f_{s} = 5 kHz  Switching Frequency f_{s} = 10 kHz  

V_{out} (V)  I_{out} (mA)  P_{out} (mW)  V_{out} (V)  I_{out} (mA)  P_{out} (mW)  
0.5  1.4  14  19.6  1.4  14  19.6 
1.1  2.3  23  52.9  2.8  28  78.4 
1.5  4.3  43  184.9  3.6  36  129.6 
2  5.12  51.2  262.14  4.4  44  193.6 
2.5  7.38  73.8  544.64  6.2  62  384.4 
3  9.46  94.6  894.92  7.4  74  547.6 
3.5  9.83  98.3  966.29  8.6  86  739.6 
4  11.22  112.2  1258.88  10.2  102  1040.4 
4.5  12.54  125.4  1572.52  11  110  1210 
5  13.2  132  1742.4  12.4  124  1537.6 
Inductor_{1} Voltage (V)  Inductor_{2} Voltage (V)  I_{L1} (A)  I_{L2} (A)  P_{L1} (W)  P_{L2} (W) 

0.28  0.28  0.35  0.23  0.098  0.065 
0.36  0.36  0.45  0.30  0.162  0.108 
0.72  0.56  0.9  0.47  0.648  0.261 
0.76  0.68  0.95  0.57  0.722  0.385 
0.96  0.84  1.2  0.70  1.152  0.588 
1.16  1.04  1.45  0.87  1.682  0.901 
1.32  1.2  1.65  1.00  2.178  1.200 
1.44  1.28  1.8  1.07  2.592  1.365 
1.56  1.48  1.95  1.23  3.042  1.825 
1.64  1.64  2.05  1.37  3.362  2.241 
Inductor_{1} voltage (V)  Inductor_{2} voltage (V)  I_{L1} (A)  I_{L2} (A)  P_{L1} (W)  P_{L2} (W) 

0.360  0.240  0.450  0.200  0.162  0.048 
0.440  0.280  0.550  0.233  0.242  0.065 
0.560  0.400  0.700  0.333  0.392  0.133 
0.720  0.520  0.900  0.433  0.648  0.225 
0.920  0.720  1.150  0.600  1.058  0.432 
1.000  0.760  1.250  0.633  1.250  0.481 
1.200  0.960  1.500  0.800  1.800  0.768 
1.320  1.040  1.650  0.867  2.178  0.901 
1.520  1.160  1.900  0.967  2.888  1.121 
1.560  1.280  1.950  1.067  3.042  1.365 
V_{in} (V)  Switching Frequency f_{s} = 5 kHz  

V_{out} (V)  I_{out} (mA)  P_{out} (W)  
0.5  11  110  1.21 
1.0  11.6  116  1.34 
1.5  11.8  118  1.39 
2  12.1  121  1.46 
2.5  12.4  124  1.53 
3  12.8  128  1.64 
3.5  13.1  131  1.72 
4  13.6  136  1.85 
4.5  14  140  1.96 
5  15.6  156  2.43 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, S.; Rahiman, Z.; Chenniappan, S.; Sundaram, E.; Subramaniam, U.; Padmanaban, S. Efficient MultiPhase Converter for EMobility. World Electr. Veh. J. 2022, 13, 67. https://doi.org/10.3390/wevj13040067
Sampath S, Rahiman Z, Chenniappan S, Sundaram E, Subramaniam U, Padmanaban S. Efficient MultiPhase Converter for EMobility. World Electric Vehicle Journal. 2022; 13(4):67. https://doi.org/10.3390/wevj13040067
Chicago/Turabian StyleSampath, Suresh, Zahira Rahiman, Sharmeela Chenniappan, Elango Sundaram, Umashankar Subramaniam, and Sanjeevikumar Padmanaban. 2022. "Efficient MultiPhase Converter for EMobility" World Electric Vehicle Journal 13, no. 4: 67. https://doi.org/10.3390/wevj13040067