You are currently viewing a new version of our website. To view the old version click .

Future Internet

Future Internet is an international, peer-reviewed, open access journal on internet technologies and the information society, published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Computer Science, Information Systems)

All Articles (3,176)

This paper presents an innovative approach to the design of intelligent software architecture for Digital Library Systems (DLSs) and the evaluation of this in the context of sustainable education. By leveraging Artificial Intelligence (AI) technologies, global cooperation and best practices in Software Engineering, we propose the design of a model that enhances the management, access and usability of digital libraries. Our framework introduces intelligent services for decision-making processes, research activities, and personalized learning experiences. Through global collaboration, our architecture aims to contribute significantly to achieving Sustainable Development Goal 4 (SDG4), ensuring inclusive and equitable education worldwide.

19 December 2025

Traditional DLS architecture.

Autonomous Unmanned Aerial Vehicles (UAVs) are widely used in smart agriculture, logistics, and warehouse management, where precise trajectory prediction is important for safety and efficiency. Traditional approaches require complex physical modeling including mass properties, moment of inertia measurements, and aerodynamic coefficient calculations, which creates significant barriers for custom-built UAVs. Existing trajectory prediction methods are primarily designed for motion forecasting from dense historical observations, which are unsuitable for scenarios lacking historical data (e.g., takeoff phases) or requiring trajectory generation from sparse waypoint specifications (4–6 constraint points). This distinction necessitates architectural designs optimized for spatial interpolation rather than temporal extrapolation. To address these limitations, we present a segmented LSTM framework for complete autonomous flight trajectory prediction. Given target waypoints, our architecture decomposes flight operations, predicts different maneuver types, and outputs the complete trajectory, demonstrating new possibilities for mission-level trajectory planning in autonomous UAV systems. The system consists of a global duration predictor (0.124 MB) and five segment-specific trajectory generators (∼1.17 MB each), with a total size of 5.98 MB and can be deployed in various edge devices. Validated on real Crazyflie 2.1 data, our framework demonstrates high accuracy and provides reliable arrival time predictions, with an Average Displacement Error ranging from 0.0252 m to 0.1136 m. This data-driven approach avoids complex parameter configuration requirements, supports lightweight deployment in edge computing environments, and provides an effective solution for multi-UAV coordination and mission planning applications.

20 December 2025

Temporal knowledge graphs (TKGs) incorporate temporal information into traditional triplets, enhancing the dynamic representation of real-world events. Temporal knowledge graph reasoning aims to infer unknown quadruples at future timestamps through dynamic modeling and learning of nodes and edges in the knowledge graph. Existing TKG reasoning approaches often suffer from two main limitations: neglecting the influence of temporal information during entity embedding and insufficient or unreasonable processing of relational structures. To address these issues, we propose DERP, a relation-aware reasoning model with dynamic evolution mechanisms. The model enhances entity embeddings by jointly encoding time-varying and static features. It processes graph-structured data through relational graph convolutional layers, which effectively capture complex relational patterns between entities. Notably, it introduces an innovative relational-aware attention mechanism (RAGAT) that dynamically adapts the importance weights of relations between entities. This facilitates enhanced information aggregation from neighboring nodes and strengthens the model’s ability to capture local structural features. Subsequently, prediction scores are generated utilizing a convolutional decoder. The proposed model significantly enhances the accuracy of temporal knowledge graph reasoning and effectively handles dynamically evolving entity relationships. Experimental results on four public datasets demonstrate the model’s superior performance, as evidenced by strong results on standard evaluation metrics, including Mean Reciprocal Rank (MRR), Hits@1, Hits@3, and Hits@10.

19 December 2025

Federated Learning-Based Intrusion Detection in Industrial IoT Networks

  • George Dominic Pecherle,
  • Robert Ștefan Győrödi and
  • Cornelia Aurora Győrödi

Federated learning (FL) is a promising privacy-preserving paradigm for machine learning in distributed environments. Although FL reduces communication overhead, it does not itself provide low-latency guarantees. In IIoT environments, real-time responsiveness is primarily enabled by edge computing and local inference, while FL contributes indirectly by minimizing the need to transmit raw data across the network. This paper explores the use of FL for intrusion detection in IIoT networks and compares its performance with traditional centralized machine learning approaches. A simulated IIoT environment was developed in which each node locally trains a model on synthetic normal and attack traffic data, sharing only model parameters with a central server. The Flower framework was employed to coordinate training and model aggregation across multiple clients without exposing raw data. Experimental results show that FL achieves detection accuracy comparable to centralized models while significantly reducing privacy risks and network transmission overhead. These results demonstrate the feasibility of FL as a secure and scalable solution for IIoT intrusion detection. Future work will validate the approach on real-world datasets and heterogeneous edge devices to further assess its robustness and effectiveness.

19 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

IoT Security
Reprint

IoT Security

Threat Detection, Analysis and Defense
Editors: Olivier Markowitch, Jean-Michel Dricot
Virtual Reality and Metaverse
Reprint

Virtual Reality and Metaverse

Impact on the Digital Transformation of Society II
Editors: Diego Vergara

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Future Internet - ISSN 1999-5903