- Article
Data-Driven Predictive Analytics for Dynamic Aviation Systems: Optimising Fleet Maintenance and Flight Operations Through Machine Learning
- Elmin Marevac,
- Esad Kadušić and
- Natasa Živić
- + 2 authors
The aviation industry operates as a complex, dynamic system generating vast volumes of data from aircraft sensors, flight schedules, and external sources. Managing this data is critical for mitigating disruptive and costly events such as mechanical failures and flight delays. This paper presents a comprehensive application of predictive analytics and machine learning to enhance aviation safety and operational efficiency. We address two core challenges: predictive maintenance of aircraft engines and forecasting flight delays. For maintenance, we utilise NASA’s C-MAPSS simulation dataset to develop and compare models, including one-dimensional convolutional neural networks (1D CNNs) and long short-term memory networks (LSTMs), for classifying engine health status and predicting the Remaining Useful Life (RUL), achieving classification accuracy up to 97%. For operational efficiency, we analyse historical flight data to build regression models for predicting departure delays, identifying key contributing factors such as airline, origin airport, and scheduled time. Our methodology highlights the critical role of Exploratory Data Analysis (EDA), feature selection, and data preprocessing in managing high-volume, heterogeneous data sources. The results demonstrate the significant potential of integrating these predictive models into aviation Business Intelligence (BI) systems to transition from reactive to proactive decision-making. The study concludes by discussing the integration challenges within existing data architectures and the future potential of these approaches for optimising complex, networked transportation systems.
4 November 2025





