
 
 

 

 

 
Viruses 2021, 13, 167. https://doi.org/10.3390/v13020167 www.mdpi.com/journal/viruses 

Review 

Nuclear Import of Adeno-Associated Viruses Imaged by  

High-Speed Single-Molecule Microscopy 

Samuel L. Junod, Jason Saredy and Weidong Yang * 

Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA;  

sam.junod@temple.edu (S.L.J.); tug39776@temple.edu (J.S.) 

* Correspondence: weidong.yang@temple.edu; Tel.: +1-215-204-2312 

Abstract: Understanding the detailed nuclear import kinetics of adeno-associated virus (AAV) 

through the nuclear pore complex (NPC) is essential for the application of AAV capsids as a nuclear 

delivery instrument as well as a target for drug development. However, a comprehensive 

understanding of AAV transport through the sub-micrometer NPCs in live cells calls for new 

techniques that can conquer the limitations of conventional fluorescence microscopy and electron 

microscopy. With recent technical advances in single-molecule fluorescence microscopy, we are 

now able to image the entire nuclear import process of AAV particles and also quantify the transport 

dynamics of viral particles through the NPCs in live human cells. In this review, we initially evaluate 

the necessity of single-molecule live-cell microscopy in the study of nuclear import for AAV 

particles. Then, we detail the application of high-speed single-point edge-excitation sub-diffraction 

(SPEED) microscopy in tracking the entire process of nuclear import for AAV particles. Finally, we 

summarize the major findings for AAV nuclear import by using SPEED microscopy. 
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1. Introduction 

1.1. Overview of the NPC and Nuclear Transport of Viruses 

Viruses are obligate intracellular pathogens that hijack the cellular components of an 

infected host cell to produce viral progeny. Production of viral progeny may occur 

exclusively in the cytoplasm or may incorporate the host nucleus for viral replication. 

Typically, this would involve viruses delivering their genetic materials, including DNA 

or RNA, into the nucleus through the nuclear pore complex (NPC) [1], a complex protein 

structure embedded in the nuclear envelope (NE). The NEs of mammalian cells contain 

thousands of NPCs [2,3], which serve as the major pathway for transiting molecules to 

cross the NE [4,5]. The NPC consists of ~30 different types of proteins, known as 

nucleoporins (Nups), possessing a total molecular weight of ~ 60–120 MDa [6]. The eight-

fold stoichiometry of the scaffold Nups [7] gives the NPC an hourglass shape with a 

diameter of ~50 nm within the narrowest central region [8–11]. Anchored to the scaffold 

Nups are intrinsically disordered Nups with varying concentrations of repeating 

phenylalanine–glycine (FG) residues [8]. Based on the primary core sequence of different 

FG repeats, FG Nups can be divided into subfamilies or subtypes. The major types include 

FxFG (phenylalanine-x-phenylalanine-glycine), GLFG (glycine-leucine-

phenylalanineglycine), and xxFG (x-x-phenylalanine-glycine) [2,8]. Spatially, these FG-

Nups are assembled in three distinct locations in the NPCs. In vertebrate cells, nuclear 

basket FG-Nups, Nup153, Nup50, and Tpr occupying the nucleoplasm side of the NPC 

contain only FxFG motifs. Cytoplasmic FG-Nups, hCG1, Nup358, and Nup214 containing 

both FxFG and xxFG motifs situate towards the cytoplasmic side of the NPC. Lastly, 
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central FG-Nups, Nup98, POM121, Nup58/45, Nup54, and Nup62 possessing the xxFG 

and GLFG motifs are located towards the center of the NPC [2,8,12]. 

These dynamic FG-Nups create a hydrophobic barrier within the NPC that prevents 

large molecules (>40–60 kDa) from passively diffusing through the NPC [13]. In order to 

conquer this barrier, large molecules must contain either a nuclear localization signal 

(NLS) for nuclear import or a nuclear export signal (NES) for nuclear export [14]. 

Transport receptors may recognize these signals and ferry the cargo through the NPC by 

direct interactions with the FG-Nups. Following nuclear import of a cargo-receptor 

complex, RanGTP will facilitate cargo-receptor disassembly through an allosteric 

mechanism. Alternatively, RanGDP by GTP hydrolysis will disassemble the cargo-

receptor complex following nuclear export. The concentrated RanGTP and RanGDP—

respectively in the nucleus and the cytoplasm—function as the nuclear transport direction 

regulators. In contrast, small molecules (<~40 kDa) will passively diffuse through the NPC 

with neither the help from transport receptor nor the consumption of energy [13]. 

Although the nuclear translocation mechanisms for a viral genome to be delivered 

into the nucleus may vary between viral classes, transport receptors have been associated 

with the docking at the NPC and/or facilitated translocation through the NPC. In the case 

of herpes simplex virus 1 (HSV-1), the capsid (~125 nm in diameter [15]) contains an NLS 

on the viral protein VP1–2 that is firstly recognized by importin beta 1 (Impβ1) [16]. Then, 

the HSV capsid will dock to an NPC through the interactions between cytoplasmic 

Nup358 and Impβ1 [17,18]. Subsequently, cytoplasmic Nup214 will interact with the 

capsid as well, and the viral genome will be injected into the nucleus, verified by an RNAi 

knockdown of Nup214 resulting in low translocation of viral DNA (Figure 1A) [19]. A 

similar process has been shown for the adenovirus 2 capsids (~95 nm in diameter [20]), in 

which the adenovirus 2 capsid will disassemble and recruit transport receptors, such as 

the Impα and Impβ1 complex, to interact with cytoplasmic Nup214 and translocate the 

viral genome into the nucleus (Figure 1A) [21]. 

 

Figure 1. Involvement of transport receptors in viral genome translocation through the nuclear pore complex (NPC). (A) 

Herpes simplex virus (HSV) and adenovirus capsid dock to an NPC through interacting with cytoplasmic nucleoporins 

(Nups) and then inject viral genome into the nucleus. (B) Facilitated transport of influenza’s viral ribonucleoprotein 

(vRNP) and human immunodeficiency virus’s (HIV’s) pre-integration complex (PIC) through the NPC. (C) Facilitated 

transport of hepatitis B virus (HBV) core protein and adeno-associated virus (AAV) capsid into the nucleus. The viral 

particles—HSV-1 [15], adenovirus 2 [20], Influenza A vRNP [22], HIV-1 PIC [23], HBV viral core [24], and AAV2 [25]—

have been scaled to the NPC dimensions [9]. The transport receptors and the distance between NPCs are not to scale. 

ONM and INM indicate the outer nuclear membrane and inner nuclear membrane, respectively. 
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In the case of human immunodeficiency virus 1 (HIV-1), its nuclear translocation is 

accomplished by the formation of a pre-integration complex (PIC, conical shape ~120 × 60 

× 40 nm in three dimensions [23]) with an NLS-tagged matrix protein and virion-

associated accessory protein, VpR [26,27]. This suggests recruitment of transport receptors 

for facilitated transport through the NPC [28–30] (Figure 1B). Similarly, influenza A will 

form the viral ribonucleoprotein (vRNP, ~10–15 nm in diameter [22]) complex, consisting 

of two NLSs that will be recognized by Impα and Impβ1 transport receptors [31,32] 

(Figure 1B).  

Finally, some parvoviruses, such as adeno-associated virus 2 (AAV2, ~25 nm in 

diameter [25]) (Figure 1C), will hijack the facilitated transport mechanism for the 

translocation of the entire viral capsid into the nucleus [33]. This mechanism is likely 

explained by possible NLSs in the VP1, VP2, and VP3 basic regions, which, when mutated, 

significantly reduce import of the viral capsid [34]. Hepatitis B virus (HBV) core (~36 nm 

in diameter [24]) may transport by a similar mechanism via a C-terminal NLS on the core 

proteins of the virus that is exposed during phosphorylation (Figure 1C) [35,36]. It is 

noteworthy that there are also instances in which parvoviruses have been shown to 

disrupt the NE by caspases, bypassing the NPC, to gain access to the nucleus [37,38]. 

1.2. Live Cell Imaging with High Spatial Resolution is Needed to Detail Viral Nuclear Transport 

Kinetics through the NPC 

To use viral vectors as a nuclear delivery mechanism, it is critical to understand the 

kinetics of viral import through the NPC into the nucleus. Molecular dynamics in live cells 

have been well studied by using conventional fluorescence microscopy, in which 

molecules of interest are typically tagged with fluorescent proteins or dyes. However, due 

to the Abbe diffraction limit, the spatial resolution of light microscopy is approximately 

half of the wavelength of the emission light. If a 500 nm emission light is collected, the 

spatial resolution of ~250 nm in the x and y dimensions and about ~750 nm in the z 

dimension will be expected [13,39–44]. Such limited spatial resolutions of conventional 

light microscopy will prevent distinguishing individual macromolecules moving through 

the sub-micrometer NPC in live cells [45]. In contrast, electron microscopy (EM) can 

provide a high spatial resolution of up to <1 nm; however, chemical fixation or freezing of 

samples makes it almost impossible to achieve the real-time dynamics in live cells [46–48]. 

Thus, new techniques are urgently needed to break these limitations and further study 

the in vivo interactions between the viral particles and the nuclear pores. 

1.3. Overview of Fluorescence Microscopy Techniques Applied to Study Viral–NPC Interactions 

As shown in Table 1, by using different fluorescent microscopy methods, several 

research groups have been able to reveal new information regarding viral–NPC 

interactions. In the studies of the interactions between HSV-1 and Nups, D. Pasdeloup et 

al. employed confocal laser scanning microscopy (CLSM) in combination with 

fluorescently labeled capsid proteins [19]. With RNAi of several cytoplasmic, central, and 

nuclear Nups, they found that capsid protein pUL25 interactions with cytoplasmic 

Nup214 were essential for effective HSV-1 viral genome nuclear import. CLSM was also 

used by B. Rabe et al. to study the nuclear import of intact HBV capsids [49]. To fully 

understand the components of the HBV, the authors used six different forms of the viral 

capsids. They found that import of the virus was dependent on the phosphorylation of 

the capsid proteins and the recruitment of Impβ1 and Impα. Additionally, they found the 

capsid to interact with nuclear basket Nups and that it was independent of the GTP-

binding protein, Ran. 
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Table 1. Studies of virus–NPC interactions using a variety of fluorescence microscopy techniques. 

Included here is a non-exhaustive list of fluorescence microscopy techniques applied in the studies 

of nuclear transport of viral particles. 

Virus 
Microscopy 

Technique 
Main Observations/Conclusions References 

HSV 

Confocal Laser 

Scanning 

Microscopy 

In permeabilized fixed cells, the 

interaction between HSV-1 capsid 

protein pUL25 and Nup214 was 

identified as an important step for 

viral genome delivery into the 

nucleus. 

[19] 

Adenovirus 

Fluorescence 

Resonance 

Energy Transfer 

(FRET) 

Microscopy  

In live cells, the disassembly of 

adenovirus 5 viral capsids was 

quantified by a progressive decrease 

in FRET signal after the capsid 

docked to the NPC. Two major 

decreases occurred, suggesting a 

docked capsid half-life of 3 and 60 

min. 

[50] 

Influenza 

Epi-Fluorescence 

and Single-

Particle Tracking 

In live cells, the time trajectories of 

single vRNPs revealed dissociation 

rate constants ranging from 0.01 to 1 

s−1 for binding between the vRNPs 

and the nuclear envelope (NE). In 

addition, a significant reduction in 

vRNP nuclear localization was 

observed in the presence of anti-NPC 

or wheat germ agglutinin (WGA), 

suggesting the NPC to be the 

primary transport route of vRNPs. 

[51] 

HIV 

Super-

Resolution 

Stimulated 

Emission 

Depletion 

(STED) 

Microscopy  

In live cells, the HIV-1 nucleocapsid 

has been shown to dock at the NE, 

then import the PIC into the nucleus.  

[52] 

HBV 

Confocal Laser 

Scanning 

Microscopy 

In permeabilized cells, the transport 

of intact HBV capsids into the 

nucleus is facilitated by Impα and 

Impβ1. 

[53] 

AAV 
SPEED 

Microscopy 

In live cells, single intact AAV2 

capsids were found to transport 

through single NPCs into the 

nucleus with a nuclear import 

success rate of ~17%.  

[33] 

Fluorescence resonance energy transfer (FRET) is a distance-dependent physical 

process for probing an inter- or intra-molecular distance of <10 nm by measuring the non-

radiative energy transfer between a pair of donor–acceptor fluorophores. By using the 

FRET technique, M. Martin-Fernandez et al. revealed sub-nanometer changes in 

localization dynamics of the adenovirus 5 capsid proteins [50]. In the study, they found 
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that adenovirus 5 capsid has two disassociation steps, suggesting a two-step capsid 

disassembly before viral genome nuclear import.  

To study the nuclear transport kinetics of Influenza A vRNPs at the single-molecule 

level, single vRNPs were tracked as they interacted with the NE or the NPC in live cells. 

These studies revealed dissociation rate constants ranging from 0.01 to 1 s−1 for binding 

between the vRNPs and the NE. In addition, a significant reduction in vRNP nuclear 

localization was observed in the presence of anti-NPC or wheat germ agglutinin (WGA), 

suggesting the NPC to be the primary transport route of vRNPs. Both anti-NPC [49] and 

WGA [54] inhibit nuclear transport by physically blocking the central channel of the NPC. 

For anti-NPC, this is accomplished by protein–protein interactions with central-channel 

Nups. WGA, a lectin, will bind to O-GlcNAc (O-linked β-N-acetylglucosamine) sites that 

have been post-translationally added to Nups [55].  

Moreover, to observe the nucleocapsid interaction of HIV-1 with the NPC and 

subsequent nuclear import of the PIC, A. C. Francis and G. B. Melikyan utilized stimulated 

emission depletion (STED) microscopy, one of the patterned-optics-based super-

resolution techniques [52]. STED microscopy introduces a doughnut-shaped, STED laser 

beam to significantly reduce the size of the effective point spread function (PSF), resulting 

in super-resolution localizations. By observing the co-localization of fluorescently labeled 

integrase-sfGFP, capsid protein-DsRed, and single HIV-1 viral particles, the authors 

concluded that the HIV-1 capsid will dock to an NPC, shed capsid proteins, and import 

the PIC into the nucleus. 

2. Description of Methods 

SPEED Microscopy Illuminates Individual AAV Molecule Transport through Single NPCs 

The studies mentioned in Section 1.3 have provided great insights into the dynamics 

of viral import by imaging single particles across the NE in live cells. However, the AAV 

vectors continue to be the best nuclear gene delivery instrument for the treatment of 

human diseases due to their low pathogenicity and tissue specificity [56]. This motivated 

our group to refine the imaging process of AAV nuclear import by investigating more 

details inside the sub-micrometer NPCs. These details included the nuclear import time, 

the nuclear import success rate, and the configuration of AAV particles through single 

NPCs in live cells [33]. To obtain these kinetics, our lab has developed single-point edge-

excitation sub-diffraction (SPEED) microscopy and applied it to conduct single-particle 

tracking (SPT) of translocation of single AAV molecules through single NPCs in live HeLa 

cells. SPEED microscopy involves new technical developments in both microscopy 

imaging and single-molecule data analyses [13,57]. 

The average distance between human NPCs is around 400-600 nm and limits the use 

of epifluorescence microscopy due to indistinguishable overlapped fluorescence from 

neighboring fluorescence-protein-labeled NPCs [58,59]. Because of this overlap, detailed 

translocation kinetics for AAV particles moving through single NPCs are difficult to 

resolve. To overcome this limitation, an inclined diffraction-limit illumination point 

spread function (iPSF) of SPEED microscopy was generated, which allows for the 

illumination of a single NPC by the iPSF in three dimensions. Technical advances in 

SPEED microscopy are further detailed as follows [33,57]: (1) Compared to wide-field 

microscopy, SPEED microscopy generated a diffraction-limited iPSF (~320–230 nm in the 

x, y, and z directions when using a tilted laser with an angle between 35° and 55° for a 488 

nm excitation laser) that is smaller than the average distance between NPCs on the NE 

(Figure 2A,B). (2) Because of the small inclination of the iPSF of SPEED microscopy, a very 

fast detection speed (up to 0.2 milliseconds per frame) was achieved by using a small pixel 

area of a charge-coupled device (CCD) camera to track single molecules going through 

single NPCs. (3) The high laser power density (100–500 kW/cm2) at the focal plane also 

produced a high number of photons within a short detection time from a single AAV2 

particle labeled with approximately 36 Alexa Fluor 647 dyes. With the high laser power 
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density and label efficiency, more than 5000 photons were collected from a single AAV2 

particle within a 2 ms detection time. (4) The inclined iPSF greatly avoided out-of-focus 

background fluorescence and auto-fluorescence of the objective, resulting in a 

significantly improved signal-to-noise (SNR) ratio [60]. (5) Photobleaching and phototoxic 

effects in live samples were greatly reduced by the unique pinpointed illumination pattern 

of SPEED and an on/off operational mode of the excitation laser with an off-time that is 

ten-fold longer than the on-time. Altogether, these features enabled SPEED microscopy to 

image AAV particles in live cells with a spatiotemporal resolution of 2 ms and <10 nm. 

 

Figure 2. Illumination patterns of wide-field and single-point edge-excitation sub-diffraction (SPEED) microscopy 

techniques. (A) Diagramed illumination volumes of wide-field (light blue) and SPEED (blue) microscopy. (B) GFP-labeled 

NPCs embedded in the NE were highlighted inside (green) and outside (gray) the microscopy illumination volumes in 

the xy and yz planes [60]. (C) Selected area (yellow box) of GFP–NE florescence from wide-field illumination. The x- and 

y- axes are shown as dashed red lines intersecting at the NE equator. Scale bar, 0.5 μm. (D–E) Intensities from a line scan 

of pixels (dashed red lines) in the x dimension and y dimension. (F) The middle plane of the NE, determined by the peak 

x dimension and y dimension intensities, is shown as a green curve. The blue and red curves refer to −100 and +100 nm 

from the middle plane of the NE, respectively. (G) Single GFP–NPC excited with the illumination volume of SPEED 

microscopy. (H–I) The peak x and y position of the 2D line-scanning fitting from a single GFP–NPC fluorescent spot. (J) 

The 2D centroid of a single NPC determined by 2D Gaussian fitting. N, nucleus; C, cytoplasm. Figures were adapted from 

our previous publications with permission [61]. 

3. Discussion 

3.1. New Features for the Nuclear Transport of AAV Particles Obtained by SPEED Microscopy 

In our study, we found significant evidence for nuclear import of intact AAV2 

capsids by tracking individual AAV2 particles across the NE and moving through single 

NPCs in live cells (Figure 3A) [33]. Our data revealed that approximately 17% of the intact 



Viruses 2021, 13, 167 7 of 23 
 

AAV2 particles starting from the cytoplasm successfully transverse the NPC to reach the 

nucleoplasm (Figure 3A). Compared to the higher transport efficiency of transport 

receptor Impβ1, ~50% [13], we concluded that the nuclear import of AAV2 may be another 

rate-limiting step for AAV2 transduction. The other steps, including the cytoplasmic 

membrane [62] and the endosomal membrane [63], have been suggested as potential 

barriers to limit AAV2 transduction rates. 

 

Figure 3. New features for the nuclear transport of AAV obtained by SPEED microscopy. (A) Our measurements revealed 

that approximately 17% of AAV2 capsids can be intact and successfully imported through the NPC to reach the nucleus. 

(B) A model in which AAV2 might bypass the NPC and gain access to the nucleus by disrupting the NE. (C) Another 

model in which the AAV2 capsid could disassemble on the cytoplasmic side of the NPC and inject viral genome into the 

nucleus through the NPC. (D) A suggested approach to increase the nuclear import success rate for AAV2 capsid as a 

nuclear gene delivery instrument. The transport receptors, the distance between NPCs, and the AAV2 particles are not to 

scale. ONM and INM indicate the outer nuclear membrane and inner nuclear membrane, respectively. 

Throughout our experiments, we neither witnessed membrane invaginations on the 

NE by AAV2 particles nor their disassembly on the cytoplasmic side of the NPC (Figure 

3B,C). By observing the GFP-labeled NE with a wide-field illumination area, we found the 

fluorescently labeled NE remained continuous during AAV2 interaction with the NE. If the 

Alexa Flour 647 labeled AAV2 capsid were to disrupt the NE, we would have observed an 

absence of GFP fluorescence at the Alexa Flour 647 labeled AAV2 particle. With a smaller 

illumination area, we confirmed the capsid’s completeness by observing a constant 

fluorescence intensity profile consistent with a singular moving fluorescently labeled 

particle, suggesting that the AAV2 capsid remained intact during nuclear import.  

Achieving a higher nuclear import success rate for the AAV2 capsid through the NPC 

would be a critical step for AAV2 to function as a nuclear gene delivery instrument. 

Previously, several studies have suggested that additions of different quantities and/or 

different types of NLSs on large cargo particles could improve their nuclear import 

efficiencies through the NPC [64,65]. Since intact AAV2 capsids were found to transport into 

the nucleus [33], engineering AAV capsid proteins with more and different types of NLSs 

may have a positive effect on AAV nuclear import (Figure 3D). Additionally, recently, we 

found that the nucleocytoplasmic transport of intrinsically disordered proteins (IDPs) was 

independent of molecular sizes and transport receptors that are well executed for folded 

proteins. Instead, the number of the charge and hydrophobic amino acid residues of the 

IDPs dominates their nuclear transport mechanisms [66]. In detail, the IDPs with a higher 

concentration of hydrophobic residues diffused through the NPCs with higher successful 

transport rates. Thus, another alternative approach for improving the nuclear import 

efficiency of AAV2 capsids could be increasing the external hydrophobicity of the AAV2 

capsids. 
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3.2. Limitations of SPEED Microscopy  

SPEED microscopy has answered critical biological questions surrounding the NPC; 

however, there are still a few limitations in the operation and application of the method. 

The first limitation is the alignment of multiple lasers to form an inclined illumination 

pattern in the focal plane of the optical objective. This requires a good understanding of 

optics and microscopy for the placement of multiple reflection mirrors, dichroic filters, 

and optical beam steering. Another limitation is the large amount of time needed for 

collecting/analyzing data and validating experimental results through computational 

simulations. Typically, for determination of fast dynamics in live cells, hundreds of single-

molecule trajectories are needed for reproducible transport times and efficiencies. To 

obtain sub-micrometer subcellular structural information, thousands of single-molecule 

localizations with high localization precisions need to be collected and analyzed. After 

data collection, post-localization transform algorithms or/and simulations will be applied 

to obtain super-resolution structural and dynamic information. The complete protocol 

includes cell culture and sample preparation, SPEED microscopy imaging, data analysis, 

and validation through simulation, which takes approximately nine days to complete [67]. 

4. Description of the Equipment  

4.1. Microscopy 

An Olympus IX81 microscope was used to perform our experiments. However, any 

high-end inverted microscope with a camera port for a CCD camera, epi-fluorescence port 

for wide-field imaging and scanning, and a side port for excitation lasers may be used as 

well. Our microscope was equipped with 1.4 numerical aperture (NA) 100x oil-immersion 

apochromatic objective (UPLSAPO 100XO; Olympus). A high NA objective is not 

necessary for single-molecule microscopy, but will significantly improve localization 

precision. The stage clips (IX-SCL) were used to clamp the samples on an Olympus IX-

SVL2 stage. A well-calibrated stage is necessary for single-molecule experiments; 

otherwise, the sample may shift away from the focal plane during imaging. Optical axis 

plane movement was controlled by a focus adjustment knob. Sample plane (x and y) 

movement was controlled by a mechanical IX-SVL2 stage. A 100 W halogen lamp was 

used for bright-field illumination. A 100 W mercury lamp was mounted to the 

epifluorescence excitation port. The entire SPEED microscope system was isolated from 

vibrations by mounting on a pneumatic isolator that was pre-mounted on a research-

grade optical table (Newport, Irvine, CA, USA). The microscope was mounted on a 

secondary passive vibration control (Herzan; Onyx Series) to dampen vibrations created 

by equipment on the optical table.  

4.2. Laser Illumination and Filter Setting 

Two lasers were used in the above microscope system to provide the power necessary 

for rapid image acquisition of single-molecule fluorescence signals. Lasers included a 35 

mW 633 nm HeNe laser (Melles Griot) and a 50 mW 488 nm continuous-wave solid-

state laser (Coherent; OBIS Series). Linearly polarized laser light was converted into 

circularly polarized light with a quarter-wave plate to allow homogeneous (polarization-

independent) fluorophore excitation within the focal plane. After converting into a 

circularly polarized light, laser output was modulated with a neutral density filter. Laser 

power should be measured after the last neutral density filter for an accurate reading for 

imaging experiments. After the neutral density filter, an optical chopper (Newport) was 

used to generate an on–off mode of laser excitation. To minimize alignment problems 

in dual-color measurements, both green and red fluorescence emissions were collected 

by the same objective and filtered by a dichroic filter (Di01-R405/488/561/635–25 × 36; 

Semrock) and an emission filter (NF01–405/488/561/635–25 × 5.0; Semrock). 

  



Viruses 2021, 13, 167 9 of 23 
 

4.3. CCD Camera 

In our experimental setup [33], an on-chip electron-multiplying charged-coupled 

device (EMCCD) camera was used for signal detection. CCDs provide wide-field spatial 

information that cannot be obtained with photomultiplier tubes or avalanche 

photodiodes. Frame rates are largely limited by the frame-transfer speed and pixel 

number of a camera. We chose a 128 pixel × 128 pixel CCD camera (Cascade128+; Roper 

Scientific) to track moving AAV2s. For this camera, full-frame and continuous image 

acquisition occurs at 500 frames per second (fps), with > 90% quantum efficiency. Faster 

frame rates can be obtained by limiting the acquisition area using software: e.g., for a 128 

pixel × 20 pixel area, 2500 fps can be acquired. Dark current is a major factor limiting image 

quality for EMCCDs, especially at high frame rates. A solution is used to cool down the 

detection chip. The Cascade128+ camera is cooled to −30 °C, leading to a dark current of 

≤1 e-/p/s.  

4.4. Imaging Software 

For our image acquisition, we used the Slidebook (Intelligent Imaging Innovations) 

software for data acquisition, instrument control, and most image processing. Typically, 

image acquisition software is associated with the selected camera. We recommend the 

software that is compatible with both the image acquisition and the motorized 

components of the microscope, such as a z-stepper, objective changer, filter changer, and 

emission path changer (e.g., eye to camera or camera to camera). Additional 

instrumentation add-ons that we recommend include a laser shutter and motorized stage. 

The laser shutter, properly integrated into the imaging software, can reduce unintentional 

photobleaching between videos by blocking the exciting laser beam. The motorized stage 

can monitor cell drift caused by fluctuations in the optical setup and simplifies laser 

alignment. We used Glimpse, a MatLab-based program written by Jeff Gelles, to fit 

fluorescent emission spots with two-dimensional Gaussian distributions for particle 

tracking purposes [33,68]. Separately, we also used the open-source GDSC single-

molecule software found in ImageJ Fiji [69]. The GDSC software may be used for both 

single-molecule localizations and trajectories, and is described further in Sections 5.6 and 

5.8, respectively.  

5. Experimental Procedures 

5.1. Preparation of AAV Particles 

AAV was originally discovered in 1965 by Hammon [70] and in 1966 by Rowe [71] 

as a potential subunit contaminant of adenovirus preparations. The reader is directed to 

an excellent overview of the early history and use of AAV as a viral vector by Barrie Carter 

[72]. Due to the nature of AAV being non-pathogenic and replication defective, the virus 

is an excellent choice for building viral vectors requiring less than 4.7 kb packaging space. 

As it is replication defective, the virus requires additional helper proteins that are 

expressed by helper viruses, such as adenovirus or herpes virus.  

5.1.1. Production of AAV Particles 

Production of AAV virions can be performed either with a helper virus or plasmids 

containing the required helper proteins. The former introduces potential immunogenicity 

issues if downstream applications are for in vivo use, and also reduces biosafety concerns 

with a functional helper virus during rAAV packaging [73]. The helper-free protocol 

requires the use of three vectors: (1) promotor and gene of interest (GOI) flanked by two 

AAV ITR sequences denoted as pAAV-GOI, (2) a helper plasmid expressing adenovirus 

E2A, E4, and VA genes denoted as pHelper, and (3) AAV Rep and Cap gene denoted as 

pRC (note: Cap has various native and modified serotypes for targeting specific cell 

types). In our single-virus imaging protocol, we introduced a fourth plasmid containing 

an AVI peptide sequence inserted into pRC and E. coli biotin holoenzyme synthetase 
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(BirA). Packaging rAAV using a helper-free protocol must be done in a cell line stably 

expressing Adenovirus E1 protein, of which there are several derivations of HEK293. The 

protocol here lists using HEK293A (ThermoFisher Cat #R70507) and volumes for a T-150 

flask with polyethylenimine (PEI) transfection. The reader may need to adjust seeding 

density according to their desired transfection reagent and flask size. Usage of AAV as a 

recombinant vector (rAAV) removes both AAV proteins Rep and Cap, making rAAV 

nonlytic; thus, incubation post-transfection is typically 48–120 h. 

1. Prepare purified plasmids pAAV-GOI, pRC, pHelper, and pBirA-EGFP. The pRC has 

the AVI peptide sequence inserted into AA139–140 of the basic region (BR1) location.  

2. Culture HEK293A cells in DMEM high glucose with L-glutamine and 1 mM pyruvate 

(Gibco), supplemented by 10% (v/v) Fetal Calf Serum (FBS) and 1% (v/v) Antibiotic–

Antimycotic. Plate and incubate HEK293A cells at 37 °C within a 5% CO2 incubator 

until 70–80% confluent. 

3. With calcium phosphate transfection, insert pAAV-GOI, pRC, pHelper, and pBirA-

EGFP into the HEK293A cells. First, mix a 1:1:1:2 molar ratio of pAAV-

GOI:pRC:pHelper:pBirA-EGFP for a total DNA concentration of 25 μg. Adjust the 

total volume of DNA to 25 μL. 

4. Mix 30 μL of CaCl2 (2.5 M), 245 μL H2O, and 25 μL of the DNA. Add the DNA mixture 

dropwise to bubbling 300 μL of 2X HEPES-buffered saline (HBS; 50 mM HEPES [N-

2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid], 280 mM NaCl, and 1.5 mM 

Na2HPO4, pH 7.05) [74]. To bubble the HEPES-buffered saline, use a Pasteur pipette 

to slowly inject air into the solution as the DNA mixture is added.  

5. Vortex the mixture and allow it to sit for 20 min. Confirm that the precipitate is fine 

with little aggregation. If aggregation does occur, adjust the pH of 2X HEPES to 

produce a fine precipitate. 

6. Add this mixture dropwise to the HEK293A cells and incubate the cells at 37 °C 

within a 5% CO2 incubator for at least 16 h undisturbed. 

7. Replace the cell culture media and incubate for an additional 24–48 h. 

8. rAAV is nonlytic, so the media will have low titer of virus. After incubation, gently 

knock the plate to lift the cells. Alternatively, add EDTA (0.5 M) to help lift the cells. 

If a higher titer is desired, retain cell media and add to the AAV precipitation step. 

9. To ensure effective labeling of biotin on AAV2 capsid proteins, fluorescence-

activated cell sorting (FACS) is used to separate the transfected HEK293A cells 

expressing EGFP from the other cells.  

10. Centrifuge the fluorescently labeled cells at 500× g for 5 min. Then, resuspend in 1 

mL of phosphate-buffered saline (PBS; pH 7.4). 

11. Lyse the cells using a freeze/thaw method of 10 min in liquid nitrogen or a dry ice–

ethanol bath, then transfer to a 37 °C water bath until the cellular mixture is 

completely thawed. Repeat the freeze/thaw three more times (HINT 1). 

12. After the last thaw at 37 °C, add 50 U/mL benzonase and 10 U/mL RNase I to the 

virus-released solution. Incubate for 30 min at 37 °C in a water bath. Then, add 0.5% 

sodium deoxycholate and incubate for an additional 30 min. 

13. Centrifuge the mixture at 10,000× g for 10 min and save the supernatant. Add PEG 

8000 and NaCl for a final concentration of 8% PEG 8000 and 0.5 M NaCl. Then, 

incubate on ice for 60 min.  

14. Centrifuge AAV particles at 2000× g for 30 min at 4 °C. Then, resuspend the pellet in 

a low volume of HBS (pH 8.0). The crude pellet can be stored at −80 °C. 

5.1.2. Purification of AAV Particles 

Purification of rAAV can be accomplished by either ultracentrifugation methods 

[75,76], for which the reader is directed to the referenced material, or the two-phase 

separation method described here. 
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1. Add an equal volume of chloroform to the crude rAAV pellet. Vortex vigorously for 

2 min until a homogenous mixture is obtained. Then, centrifuge for 5 min at 370× g 

and retain the aqueous phase. In a sterile environment, vent the aqueous phase for 

30 min. This will evaporate the remaining chloroform.  

2. Dilute aqueous phase into 10%PEG8000/13.2% (NH4)2SO4 ((w/w), pH 8.0) (HINT 2). 

3. Let the mixture incubate for 15–30 min at room temperature, then centrifuge at 3000× 

g for 15 min. Then, carefully draw out the clear bottom phase with a needle. The 

bottom clear phase is the virus-containing phase.  

4. Concentrate this phase with centrifugal filters (Amicon Ultra-0.5 mL Centrifugal 

Filters; Ultra 50K device). At room temperature, centrifuge the sample for 20 min at 

14,000× g. Rinse the sample twice with a low-salt solution (NaCl (10 mM), pH 7.4).  

5. Store the final concentrated rAAV stock at −20 °C in PBS (pH 7.4) or minimum 

essential media (MEM; Gibco) with 0.001% (v/v) pluronic F68 (Gibco).  

5.1.3. Labeling of AAV Particles  

By using the AVI peptide sequence insert on 139–140 in the pRC plasmid with the 

BriA-EGFP plasmid, we were able to label the AAV2 capsid with biotin. The co-

transfection of a AVI tag plasmid with a BriA plasmid will produce biotin sites at the AVI 

sequence inserts by BirA enzymatic biotinylation of a lysine side chain of the AVI tag 

[77,78]. The FACS of the HEK293A will isolate most of the cells expressing the BirA-EGFP 

protein, so the final purified AAV2 particles should be biotin-labeled and can be labeled 

with the Alexa Fluor 647 streptavidin through a biotin–streptavidin interaction. 

1. At a concentration ratio of 40:1 (streptavidin–biotin), incubate the Alexa Fluor 647-

labeled streptavidin with biotin-labeled AAV2 particles at 4 °C while agitating for 1 

h while covered from light. 

2. Isolate the labeled AAV2 particles from free streptavidin by centrifugal filtration 

(Amicon Ultra-0.5 mL Centrifugal Filters). We recommend the Amicon Ultra 50K 

device.  

3. At room temperature, centrifuge the sample for 20 min at 14,000× g. Rinse the sample 

twice with PBS (pH 7.4). Then, measure the labeling efficiency of the AAV2 particles, 

as shown in Section 5.5.  

5.2. Preparation of Purified Proteins 

To investigate the linkage between the transport receptor, Impβ1, and AAV nuclear 

import, we purified Impβ1 through a 6X-Histidine-tagged protein and gravity-flow 

chromatography with Ni-NTA Superflow (Qiagen). As stated in the introduction, several 

viruses importing into the nucleus have been associated with transport receptors. 

Purification of the transport receptors is a necessary step to investigate the connection 

between viral particles and individual transport receptor types.  

5.2.1. Bacterial Transformation and Expression 

The Impβ1 plasmid contains a T7 promoter region, which can be activated by 

Isopropyl-β-Δ-thiogalactopyranoside (IPTG), a N-terminal 6X-Histidine tag, and the 

ampicillin-resistance sequence.  

1. Transform BL21 (DE3) (New England BioLabs Inc.) E. coli cells with ~0.1–100 ng of 

Impβ1 plasmid DNA through a heat shock at 42 °C for 10 s.  

2. Incubate the transformed BL21 (DE3) cells for 60 min at 37 °C in a 19:1 dilution of 

Super Optimal Broth (SOC, 0.5% Yeast Extract, 2% Tryptone, 10 mM NaCl, 2.5 mM 

KCl, 10 mM MgCl2, 10 mM MgSO4, 20mM Glucose) Media to transform BL21 (DE3) 

cells.  

3. Spread 50 μL of the mixture onto ampicillin (100 mg/mL) agar plates and incubate at 

37 °C overnight (12–14 h) (HINT 3). 
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4. Create a starter culture from a single bacterial colony in 5 mL of Lysogeny Broth (LB) 

with the addition of 5 μL of ampicillin (100 mg/mL) and grow aerobically with 

shaking overnight (12–14 h) at 37 °C at 225 rpm.  

5. Transfer the 5 mL saturated starter culture to 1 L of LB media with 1 mL ampicillin 

(100 mg/mL). Shake the mixture at 37 °C until an OD 600 nm of ~0.6 is reached, 

usually 5–6 h. Add 1 mL of IPTG (1 M) to activate protein production and incubate 

overnight at 30 °C (HINT 4). 

5.2.2. Protein Purification 

Centrifuge the culture at 4000 g for 10 min at 4 °C and discard the supernatant. 

Resuspend the pellet with CelLytic B (Sigma-Aldrich, St. Louis, MO, USA) or Lysis buffer 

(50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole, pH 8.0) with 10 mL of buffer to 1 g of 

pellet (HINT 5). 

To inhibit protein degradation, add a “protease inhibitor cocktail” (400 μL of 0.2 

mg/mL pepstatin A; 400 μL of 0.2 mg/mL leupeptin; 400 μL of 2 mg/mL trypsin inhibitor) 

to the resuspended cells. 

Fractionate the bacterial membrane layer using chemical (B-PER Bacterial Cell Lysis 

Reagents) or physical fractionation. For physical fractionation via the high-pressure 

Avestin Emulsiflex B15 (ATA Scientific), use a chamber pressure of 50 PSI, cycle the 

resuspended cells through the system three times, and place the lysate on ice after 

fractionation.  

Centrifuge the lysate for 10 min at 4 °C and > 12,000 g, and discard the pellet.  

Prepare Ni-NTA resin (Qiagen) by removing the ethanol; it is stored via 

centrifugation at >12,000 g for 1 min followed by aspiration of the supernatant and 

resuspension with CelLytic B (Sigma-Aldrich, St. Louis, MO, USA) or Lysis buffer. Repeat 

this process three times. Then, add the Ni-NTA solution to the protein mixture. 

Stir the mixture in the dark and on ice for 60 min to allow an adequate time for the 

binding reaction between the histidine tag and Ni-NTA beads, then centrifuge at 12,000 g 

for 60 min at 4 °C. 

Resuspend the pellet in 20 mL of 4 °C cooled Lysis buffer, then transfer to a 

polypropylene column. Collect the eluate.  

Wash the column twice with 2.5 mL of 4 °C cooled Lysis buffer. Collect the eluate.  

Use an elution buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM Imidazole, pH 8.0) 

with increasing Imidazole concentration of 20 mM for the starting fraction and 250 mM 

for the final fraction. Collect a minimum of 10 fractions of 0.5 mL eluate.  

5.2.3. Protein Characterization 

To characterize the Impβ1 protein, we used both the NanoDrop 2000/2000c 

(ThermoFisher) UV spectrophotometer and SDS-PAGE.  

Using the NanoDrop 2000/2000c (ThermoFisher) or other UV spectrophotometer, 

measure the A280 of the flow through fractions, and wash and sample them. For an 

accurate reading, dilute the sample so the absorbance is below 1.2.  

Prepare an 8% polyacrylamide gel (4.7 mL DI-H2O, 2.7 mL Acrylamide/Bis (30% 

(w/v), 37.5:1), 2.5 mL Tris-HCl (1.5 M, pH 8.8), 100 μL SDS (10% (w/v)), 10 μL N,N,N′,N′-

tetramethylethylene-diamine (TEMED), and 32 μL Ammonium Persulfate (APS, 10% 

(w/v)) for the resolving fraction of the gel. Then, once the gel has mostly polymerized, 

prepare a 4% polyacrylamide gel (6.1 mL DI-H2O, 1.3 mL Acrylamide/Bis (30% (w/v), 

37.5:1), 2.5 mL Tris-HCl (0.5 M, pH 6.8), 100 μL SDS (10% (w/v)), 10 μL N,N,N′,N′-

tetramethylethylene-diamine (TEMED), 100 μL Ammonium Persulfate (APS, 10% (w/v)).  

Prepare the samples by mixing ≤20 μg of lysate or ≤2 μg of purified sample with 5X 

Loading buffer (300 mM Tris-HCl pH 6.8, 25% (w/v) BME, 10% (w/v) SDS, 50% (w/v) glycerol) 

in a 5:1 sample to loading buffer ratio. The total volume is dependent on well depth, but 

<50% of well volume is preferred to prevent cross-contamination by sample well overflow.  
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Before loading the samples, boil the samples for 5 min at a rapid boil. After loading, 

run the gel at 80–100 V until the progression line leaves the stacking buffer. Then, increase 

the voltage to 120–200 V until the progression line is 1–2 cm from the bottom of the gel.  

Incubate the gel in staining solution (3 mM Coomassie Brilliant Blue R-250 Dye, 45% 

(v/v) methanol, 10% (v/v) glacial acetic acid) for 60 min. Rinse the gel with a wash solution 

(50% (v/v) methanol). Incubate the gel for 60 min, or until the bands are clearly visible, in 

a destaining solution (40% (v/v) methanol, 10% (v/v) glacial acetic acid). 

5.2.4. Protein Desalting and Storage 

Isolate the sample fractions that contain the highest concentration of Impβ1 with the 

smallest amount of impurities. For single-molecule experiments, a protein purity above 

90% and a final concentration of ≥10 μM are needed. To ensure protein stability, the 

sample fractions need to be concentrated and desalted.  

1. To further isolate Impβ1 by centrifugal filters (Amicon Ultra-0.5 mL Centrifugal 

Filters), select a filter that will collect the target protein in the loading chamber while 

the contaminants elute through. For Impβ1, we used an Amicon Ultra 50K device, 

since Impβ1 has a molecular weight of ~97 kDa. 

2. At room temperature, centrifuge the sample for 20 min at 14,000 g. Rinse the sample 

twice with a low-salt solution (NaCl (10 mM), pH 7.4). 

3. Recover the concentrated target protein by inverting the filter into a clean tube and 

centrifuge for 2 min at 1000 g.  

4. Resuspend the protein in one of the following solutions for storage [79]: 

a. for 24 h at 4 °C, PBS (pH 7.4); 

b. for one week at 4 °C, PBS (pH 7.4) with a bacteriostatic agent (0.1% (w/v) sodium 

azide) 

c. from one week to several months at −20 °C, PBS (50% (w/v) glycerol, 10 mg/mL 

BSA, 1 mM DDT, pH 7.4) (HINT 6);  

d. for months to years at −80 °C, PBS (50% (w/v) glycerol).  

5.3. Preparation of a Cell System 

HeLa cells stably expressing GFP fused to the C-terminus of the NPC scaffold protein 

POM121 (RRID:CVCL_A9H3) are used for our live cell system and our permeabilized cell 

system for the single-molecule nuclear transport assays. 

5.3.1. Preparation of the Live Cell System 

Start a fresh culture of POM121-GFP HeLa cell line from a stock by thawing at 37 °C 

and inoculating into a 25 cm2 culture flask with 5 mL DMEM (Gibco) with 10% (v/v) FBS 

(Gibco) and 1% (v/v) penicillin–streptomycin (10,000 U/mL, Gibco). Incubate the cells at 

37 °C within a 5% CO2 incubator until ~80% confluency is reached. The HeLa cells should 

be split at least three times before imaging to ensure ideal cellular health and function.  

Twenty-four hours prior to imaging, the HeLa cells should be transferred to a sterile 

optical dish (MatTek Life Sciences, 35 mm × 50 mm dish, No. 0 coverslip). In addition, the 

HeLa cells may be grown on a sterile coverslip 48 h in a Petri dish with modified DMEM 

(10% (v/v) FBS and 1% (v/v) penicillin–streptomycin (10,000 U/mL)). Then, transfer the 

coverslip to a glass slide for imaging. For the SPEED microscopy setup, we use a coverslip 

(Thermo Scientific Gold Seal, No. 0) and glass slide (Thermo Scientific Gold Seal, No. 0). 

The No. 0 coverslip/slide is used here because of the limited working distance of the 

objective. 

Once the HeLa cells have reached a confluency between 70% and 80%, incubate the 

Alexa Fluor 647-labeled rAAV2 with the HeLa cells for 15 min at 4 °C with a virus–cell 

ratio of 10,000:1.  

Incubate the dish at 37 °C in a 5% CO2 incubator for 1–3 h.  
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After incubation, wash the cells to remove any free AAV particles with 37 °C warmed 

PBS and add 1–2 mL of 37 °C warmed transport buffer (20 mM HEPES, 110 mM KOAc, 5 

mM NaOAc, 2 mM MgOAc, 1 mM EGTA, pH 7.3). 

5.3.2. Preparation of the Permeabilized Cell System 

Refer to Steps 1 and 2 of Section 5.3.1 “Preparation of the Live Cell System”. 

Wash the HeLa cells twice with 37 °C warmed transport buffer.  

Add 1 mL of transport buffer with digitonin (40 μg/mL) and incubate the cells for ~ 

2 min. Then, add ~50 μL of transport buffer with 1.5% polyvinylpyrrolidone (PVP; 360 

kDa) to stop the permeabilization of the HeLa cell cytoplasmic membrane (HINT 7). The 

result will leave several 1–10 μm cavities in the cytoplasmic membrane, while the NE will 

remain intact [80]. To verify the permeabilization process, the permeabilized cells may be 

incubated with fluorescently labeled 500 kDa Dextran molecules (Invitrogen). If the 

molecules enter into the nucleus, then the NE has been compromised.  

Wash the HeLa cells with 1.5% PVP transport buffer to remove any excess digitonin. 

Then, add 1.5% PVP transport buffer to cells for imaging.  

5.4. SPEED Microscopy Tracking of Single Alexa Fluor 647-Labeled AAV through a Single 

GFP-Labeled NPC in Live and Digitonin-Permeabilized Cells 

SPEED microscopy was used to conduct high-speed single molecule tracking of 

single Alexa Fluor 647-labeled rAAV2 nuclear translocation through the NPC in live and 

permeabilized POM121-GFP HeLa cells [33].  

5.4.1. Tracking of Single AAV Particles in Live Cells  

As shown in Figure 4, equivalent to the illumination pattern of a 488 nm laser, a 633 

nm laser is shifted about 237 μm (d) by a micrometer stage off the center of the objective 

to generate an inclined illumination point spread function at 45° to the perpendicular 

direction. To reduce photobleaching and phototoxic effects, an optical chopper was placed 

in the path of the 633 nm laser, creating an on–off laser mode (HINT 8). The 488 nm and 

633 nm lasers were used to excite POM121-GFP NPCs and the Alexa Fluor 647 rAAV2, 

respectively. 
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Figure 4. Optical schematic of the SPEED microscope setup. (A) Co-alignment of 488 and 633 nm laser beams that were 

shifted by ~237 μm d from the optical axis of the objective to generate an inclined illumination volume at an angle of 45° 

to the perpendicular direction by using a micrometer stage. The 633 nm laser was chopped by an optical chopper to achieve 

an on–off laser mode ratio of 1:10 (on–off). The longer laser-off time gives particles transiting the NPC sufficient time to 

escape from the illumination volume and for fresh fluorescent cargo to diffuse from the cytoplasm or the nucleus into the 

NPC. (B) A single Alexa Fluor 647-labeled AAV2 particle approaching a single GFP-labeled NPC from the cytoplasm C to 

transport to the nucleus N. 

Before imaging, the infected cells must incubate for at least 30 min in transport buffer.  

Focus the microscope to the equator of the GFP-fused NE. Target one GFP-labeled 

NPC at the edge of the NE. Take a 1–2 s image with the 12 μm illumination pattern for an 

image of the NE. 

Switch to the 1 μm illumination pattern and take a 1–2 s image with the 488 nm laser 

at a 10 μW laser power for the single NPC image. The fluorescent spot of the NPC can 

then be fitted to a 2D elliptical Gaussian function to determine the centroid position of the 

NPC (HINT 9). This is further explained in Section 5.6. 

If a large number of labeled AAV molecules are within the illumination area, one 

may need to photobleach the area surrounding the single NPC. With the 633 nm laser at 

a laser power of 6 mW, illuminate the sample for 60 s or until only background noise is 

observed. This will improve the signal-to-noise ratio (SNR) for single-molecule tracking. 

Set the 633-nm laser to a laser power between 2 and 5 mW and the chopper at 2 Hz 

to generate a 1:10 on–off ratio.  

In the Slidebook program, respectively set the intensification, gain, and exposure 

time of the CCD to ~4000, 3, and 2 ms. At a frame rate of 2 ms, 500 frames will be collected 

per second. For an individual NPC, up to 2 min of videos can be taken of the single-AAV 

import events. After 2 min, the cell may experience phototoxic effects and the NE may 

have shifted from the original position (HINT 10). 

After single-molecule videos have been taken, switch back to the 12 μm illumination 

pattern and 488 nm laser and take another NE image. This can be compared with the NE 

image taken in Step 3 to measure any shift in the NE location (HINT 11). 

An example of a typical trajectory is seen in Figure 5. The fluorescent spot was fitted to 

a 2D symmetrical Gaussian function and determined the positions of the single-molecule 

events with respect to the GFP-labeled NPC. Combine all collected trajectories and generate 
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the 2D localization distributions via histograms (Figure 5E). Repeat Steps 3–8 for a different 

NPC in another cell until a suitable number of locations are obtained (HINT 12).  

 

Figure 5. Single-molecule trajectories and 2D spatial locations of AVV2 on the NE and in a single NPC [33]. (A) A typical 

successful single-AVV2 import event captured by wide-field microscopy with a 12 μm illumination area. A single Alexa 

Fluor 647-labeled AAV2 particle (red spot) started from the cytoplasm, interacted with the GFP-fused NE (green line), and 

arrived in the nucleus. (B) Single-particle tracks (red squares) were acquired by 2D Gaussian fitting to point spread 

functions in a series of images. The green curve shows the determined position of the middle plane of the NE. The dotted 

lines indicate −100 and +100 nm from the middle plane of the NE. (C) A typical successful single-AAV2 import event 

captured by SPEED microscopy. A single Alexa Fluor 647-labeled AAV2 particle (red spot) started from the cytoplasm, 

interacted with a single GFP-fused NPC (green spot), and arrived in the nucleus. (D) Single-particle tracks (black squares) 

and the location of the NPC were acquired by 2D Gaussian fitting to point spread functions in a series of images. (E) 

Compilation of several trajectories (shown in different colors) representing AAV2 particles successfully importing to the 

nucleus from the cytoplasm through single NPCs. C, cytoplasmic side of the NPC; N, nucleoplasmic side of the NPC. 

Figures were adapted from our previous publications with permission [33]. 

5.4.2. Tracking of Single AAV Particles in Permeabilized Cells.  

Add purified Impβ1 to the permeabilized HeLa cells to reach a final concentration of 

0.5–1 μM in 1.5% PVP transport buffer and incubate for 30 min.  

Add 0.1–1 nM of Alexa Fluor 647-rAAV2 to transport buffer near the illumination 

area. This concentration can be increased further, but if the illumination area becomes 

oversaturated with signal from the labeled AAV molecules, then the optical dish will need 

to be rinsed with 1.5% PVP transport buffer or photobleached similarly to Step 5 of Section 

5.4.1 “Tracking of Single AAV Particles in Live Cells”.  

Refer to Steps 3 and 4 of Section 5.4.1 “Tracking of Single AAV Particles in Live 

Cells”. 
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Refer to Steps 6 through 9 of Section 5.4.1 “Tracking of Single AAV Particles in Live 

Cells”. 

5.5. Determining the Copy Number of POM121-GFP and the Labeling Efficiency of the 

Fluorescently Labeled AAV Particles 

Mount a glass slide containing 10 pM concentration of purified GFP in transport 

buffer on the microscope stage. Give the GFP molecules 30 min to become immobile from 

non-specific absorption. 

Image the single GFP and attain the intensity of single GFP with the 2D Gaussian 

function. 

Replace the glass slide with the POM121-GFP HeLa cells in transport buffer. Then, 

using the 488 nm laser at a laser power between 0.1 and 0.5 mW and an exposure time 

between 20 and 50 ms, image a single NPC. Then, one can plot the intensities over the 

time of the video to generate a photobleaching curve (Figure 6A). Our comparisons 

between the intensities of single GFP and the POM121-GFP NPC revealed that there were 

~8 copies of GFP in each NPC (Figure 6B). 

 

Figure 6. Copy number of GFP-fused NPC and labeling efficiency of Alexa Fluor 647–AAV2 molecules. (A) Photobleaching 

curve of a single GFP-labeled NPC [61]. The steps were determined by the maximum likelihood ratio method. The 

intensity of single GFP was determined by averaging the step intensity of GFP-POM121 in the NPC of live cells. (B) A 

comparison of the fluorescence intensities from single GFPs to ~8 copies of POM121-GFP found in each NPC [61]. (C) A 

comparison of the fluorescence intensities from single streptavidins with three bounded Alexa Fluor 647 dyes to ~12 copies 

of 3X Alexa Fluor 647-labeled streptavidin bound to single biotin-labeled AAV2 particles [33]. 

Repeat Steps 1 and 2 with free Alexa Fluor 647 dye in transport buffer.  

Repeat Steps 1 and 2 with the Alexa Fluor 647 streptavidin conjugate. Verify that 

three of the four binding sites for a single streptavidin are occupied by the Alexa Fluor 

647 dye.  

Repeat Steps 1 and 2 for a single biotin–AAV molecule with the Alexa Fluor 647 

streptavidin conjugate. Our comparisons between the intensities for single Alexa Fluor 

647 streptavidin conjugates and single biotin–AAV molecules with the Alexa Fluor 647 

streptavidin conjugates revealed that there were 36 ± 6 copies of Alexa Fluor 647 on each 

biotin–rAAV2 particle (Figure 6C). 

5.6. Localization of the NE and a Single NPC on the NE 

To visualize the GFP-fused NE, illuminate the entire cell with wide-field epi-

fluorescence or a 12 μm lens with the 488 nm laser (Figure 2A,B). If using the 12 μm lens 

and 488 nm laser, set the laser power to 2–3 mW, exposure time to 20 ms, and the 

intensification and gain to 4000 and 3, respectively.  

To localize the NE, convert and export the image using the Slidebook Reader 

software. Then, plot the intensity profile of the x-axis using the open-source ImageJ 

software.  
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Fit the pixel intensities with a Gaussian distribution. The peak position of the 

Gaussian distribution is the center of the NE for that row. Then, repeat for the remaining 

rows of the NE image. POM121 is an NPC scaffold protein located in the central region of 

the NPC and will indicate the center of the NE (Figure 5B).  

The peak positions of a series of such Gaussians are then fit with a second-degree 

polynomial, yielding the location of the NE within the entire image (Figure 2F). 

To visualize a single GFP-fused NPC, illuminate the 1 μm area with the 488 nm laser 

(Figure 2A, B). Set the laser power to 10 μW, exposure time to 1–2 s, and the intensification 

and gain to 4000 and 3, respectively (HINT 13 and HINT 14).  

To localize the NPC, convert and export the image using the Slidebook Reader 

software. Then, use the “Peak Fit” module from the GDSC SMLM plugin found in the open-

source ImageJ Fiji software [81]. Additionally, the Glimpse software can be used to fit the 

single NPC location through a 2D Gaussian function in both the x and y directions (Figure 

2G) [68]. 

5.7. Localization Precision of Isolated Fluorescent Spots 

The localization precision for fluorescent NPCs, as well as immobile and moving 

fluorescent Alexa Fluor 647–rAAV2 molecules, was defined as how precisely the central 

point of each detected fluorescent diffraction-limited spot was determined. For 

fluorescent NPCs and immobile Alexa Fluor 647–AAV2 molecules, the fluorescent spot 

was fitted with a 2D elliptical and symmetrical Gaussian, respectively, and the localization 

precision was determined by the standard deviation (s.d.) of multiple measurements of 

the central point. For moving Alexa Fluor 647–AAV2 molecules, the fluorescent spot was 

fitted with a 2D elliptical Gaussian function, and the localization precision (σ) was 

determined as Equation (1): 

σ = ��(16(�� + ��)/9� + 8��� ��� +
��

��
�
�

/����, (1)

where F is equal to 2, N is the number of collected photons, a is the effective pixel 

size of the detector, b is the s.d. of the background in photons per pixel, and Equation (2) 

� = ���
� + 1/3�∆�, (2)

where s0 is the standard deviation of the point spread function in the focal plane, D is the 

diffusion coefficient of substrate in the NPC, and Δt is the image acquisition time [82,83]. 

Typically, about 3000 signal photons were collected from individual rAAV2 

molecules with about 36 Alexa Fluor 647 dyes at a detection frame rate of 2 ms in living 

cells. The localization precision was 6–9 nm for moving Alexa Fluor 647–rAAV2 

molecules. Because of the inevitable vibration of NPCs in the NE of living cells, the 

localization precision of the NPC centroid was ~6 nm within our 2 min detection time for 

one single-molecule experiment. The system error of aligned red and green fluorescence 

channels was determined to be 3.0 ± 0.1 nm. This was determined by the detection of 230 

immobile Alexa Fluor 647-labeled GFP molecules on a coverslip. Therefore, the overall 

tracking precision for Alexa Fluor 647–rAAV2 import through the GFP-labeled NPC in 

living cells was estimated to be ~9–12 nm. For a further explanation of single-molecule 

localization fittings, we recommend the 2017 review by A. Diezmann et. al [84].  

5.8. Calculation of Transport Time and Transport Efficiency 

After identifying the single-molecule localizations, use the “Trace Diffusion” module 

from the GDSC SMLM plugin found in the ImageJ Fiji software to find the transport 

trajectories for a single video [81].  

Overlay all the trajectories of Alexa Fluor 647–rAAV2 molecules and the GFP-fused 

NE to identify the locations of all functional NPCs within the imaging area. 

From consecutive frames, identify which single-molecule trajectories interact with a 

single NPC. There are two types of trajectories for molecules that approach within 100 nm 
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of the NE from the cytoplasm. In an abortive event, an AAV molecule interacts with the 

NPC and returns to the cytoplasm, and in a successful event, an AAV molecule interacts 

with an NPC and imports into the nucleus. For an abortive event to occur, the first and last 

points must be >100 nm away from the center of the NE and at least one frame must show 

a localization within the 100 to 100 nm (cytoplasm to nucleoplasm) axial range of the NPC. 

This type of trajectory identifies those molecules that did not successfully cross the NE or 

NPC. A successful event will occur when an AAV molecule’s first and last points are >100 

and >100 nm away from the center of the NE, with the first point located in the cytoplasm 

and the last in the nucleoplasm, with at least one frame showing a localization within the 

100 to 100 nm (cytoplasm to nucleoplasm) axial range of the NPC. This type of trajectory 

identifies that molecules did successfully cross the NE into the nucleus (Figure 5).  

The transport efficiency (p) can be calculated by taking the number of successful 

events and dividing it by total number of successful and abortive events (n). Then, from 

the expected value (� ∙ �), calculate the standard deviation Equation (3): 

s. d.= ��∙(���) �⁄  (3)

The transport times can be calculated by measuring the number of frames in which a 

single AAV molecule interacts with the NPC (100 to 100 nm, cytoplasm to nucleoplasm), 

then multiplying this number by the exposure time. With an exposure time of 2 ms/frame, 

we multiplied the Alexa Fluor 647–rAAV2 events by 2.  

Put the transport times in a histogram and fit an exponential decay function. The 

mean life time (τ) will be the average transport time for an AAV molecule interacting with 

a single NPC.  

6. Hints 

One may experience a low yield when lysing the HEK293A cells. If this occurs, then 

increase the temperature of the water bath for the freeze/thaw to 55 °C and aspirate the 

mixture 3–4 times after the first freeze/thaw with a 23-gauge needle to avoid adding 

bubbles to the mixture. 

To improve the viral yield during the purification step, one may vary the PEG8000 

and salt concentrations. Optimizing these concentrations can improve purity and lead to 

higher infection efficiency. This is discussed in great detail by Guo et al. [85].  

To reduce expression of potential contamination on the ampicillin agar plates, we 

recommend that incubation should not exceed 16 h at 37 °C. After 16 h, bacteria with a 

low-expressing target vector or without the desired vector may express, resulting in low 

target protein yield.  

IPTG is a lactose metabolite that triggers transcription of the lac operon, where the 

lacZ gene is replaced with the gene of interest and IPTG is then used to induce gene 

expression. IPTG is used as a promoter for sequences with the T7 promoter region. 

If a low yield from the protein purification is noticed, then decrease the pH and 

remove the Imidazole from the binding buffer. Then, taking the supernatant from the Ni-

NTA pellet step, incubate for 1 h in the new binding buffer at 4 °C while shaking in a 

covered container. This may increase off-target binding, so additional purification steps 

may be needed to reach a purity of >90% for single-molecule experiments. 

Flash freeze the sample in liquid nitrogen and in small aliquots to reduce protein 

degradation from a slow freezing process and from multiple freeze–thaw cycles, 

respectively. 

Permeabilization of the cytoplasmic membrane can be monitored in real time by light 

microscopy. The contrast between the cytoplasm and nucleus will increase as cytoplasmic 

components flow out of the cell into the extracellular matrix. Similarly, the SNR will 

increase for the fluorescently labeled NE.  

The precision and photobleaching time of a single AAV2 molecule should be 

determined before single-molecule experiments. Plate 10 pM of AAV2 molecules on a 
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glass coverslip and wait ~30 min for the molecules to be immobile. After capturing several 

videos using the same imaging parameters as single-molecule experiments, the intensity 

and time course of the measured fluorescence can be plotted. The intensity can then be 

transformed to determine the number of emitted photons to determine the precision using 

the localization precision formula described in Section 5.7.  

To ensure that an illuminated NPC is perpendicular to the NE, create a histogram of 

the Gaussian width of the x-dimension to the Gaussian width of the y-dimension from a 

single GFP–NPC spot. For other cylindrical biological samples, the x and y dimensions 

would be the short and long axes, respectively. The ratio between the two widths needs 

to fall between 1.74 and 1.82. Within this range, an illuminated NPC only has a free angle 

of 1.4° to the direction perpendicular to the NE. 

Capture a wide-field image of the NE before and after experiments. This will identify 

cellular damage or drift of the optical system during imaging. Additionally, in case the 

high-power laser beam causes some damage to chromatins near the NE, we recommend 

conducting single-molecule nuclear transport experiments separately from other viral 

nuclear experiments.  

The NE area around the single-pore images has likely been photobleached from the 

single GFP–NPC image. Align the wide-field NE images taken before and after single-

molecule experiments and recheck the position of the NPC. If the NPC is not localized to 

the NE, and/or the before and after NE wide-field images do not align, it is likely that the 

collected data have a bias to the cytoplasm or the nucleoplasm. 

The collected single-molecule locations need to be filtered to have good localization 

precision. For our SPT experiments, we typically use an initial range of <30 nm localization 

precision before further analyzing the single-molecule data.  

About eight copies of POM121-GFP for individual GFP–NPCs can be identified by 

obtaining approximately eight-fold fluorescence intensity compared to a single GFP, 

which also allows for a long exposure time at a low laser power. For the reader’s 

experiments, we suggest conducting several controls to find the optimal exposure time 

and laser power to avoid a premature photobleaching of the GFP-NPC. 

To simply data analysis, we suggest choosing a GFP–NPC on the equator of the 

nucleus, so the location of an NPC will be parallel to the y direction of the Cartesian 

coordinates (x, y) in the CCD camera and perpendicular to the NE. 
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