Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, Nanoparticles, and Experimental Design
2.2. Explant Preparation and Surface Disinfection
2.3. Culture Conditions and Evaluation
2.4. Callus Differentiation
2.5. Callus Morphological Characterization
2.6. Characterization of Silver Nanoparticle Nanopowder (Sigma-Aldrich®) and Chitosan Nanoparticle Nanopowder
2.7. Statistical Analysis
2.8. Use of Generative AI
3. Results
3.1. Disinfection Treatments in Nodal Segments (Experiment I)
3.2. Effect of Nanoparticles on Shoot Induction from Nodal Segments (Experiment II and III)
3.3. Disinfection in Leaf Explants (Experiment IV)
3.4. Antioxidants in Leaf Explants (Experiment V)
3.5. Effect of AgNPs Concentrations in Leaf Explants Callogenesis (Experiment VI and VII)
3.6. Effect of Nanoparticles and Growth Regulators on Callogenesis (Experiment VIII)
3.7. Characterization of Callus Morphology
3.8. Characterization of Silver and Chitosan Nanopowders
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-D | 2,4-Dichlorophenoxyacetic Acid |
AgNO3 | Silver nitrate |
AgNPS | Silver Nanoparticles |
BAP | 6-Benzylaminopurine |
ChNPS | Chitosan Nanoparticles |
DLS | Dynamic Light Scattering |
GLMs | Generalized Linear Models |
KIN | Cytokinin |
MS | Murashige and Skoog |
NAA | 1-Naphthaleneacetic acid |
PVP | Polyvinylpyrrolidone |
SEM | Scanning Electron Microscopy |
ST | Sodium Thiosulfate |
STS | Silver thiosulfate |
ZEA | Zeatin |
References
- Gawron-Gzella, A.; Chanaj-Kaczmarek, J.; Cielecka-Piontek, J. Yerba mate—A long but current history. Nutrients 2021, 13, 3706. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. FAOSTAT—Crops and Livestock Products. Available online: https://www.fao.org/faostat (accessed on 10 April 2025).
- Gerber, M.R.; Nunes, A.; Moreira, B.R.; Maraschin, M. Yerba mate (Ilex paraguariensis A. St.-Hil.) for new therapeutic and nutraceutical interventions: A review of patents issued in the last 20 years (2000–2020). Phytother. Res. 2023, 37, 527–548. [Google Scholar] [CrossRef]
- Rząsa-Duran, M.; Kryczyk-Poprawa, A.; Drabicki, D.; Podkowa, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Kała, K.; Opoka, W.; Zięba, P.; Fidurski, M.; et al. Yerba mate as a source of elements and bioactive compounds with antioxidant activity. Antioxidants 2022, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Xavier, A.; Wendling, I.; Silva, R.L. Silvicultura Clonal: Princípios e Técnicas, 2nd ed.; UFV: Viçosa, Brazil, 2013. [Google Scholar]
- Wendling, I.; Santin, D. Propagação e Nutrição de Erva-Mate; Embrapa: Brasília, Brazil, 2015. [Google Scholar]
- Pimentel, N.; Gazzana, D.; Spanevello, J.F.; Lencina, K.H.; Bisognin, D.A. Effect of mini-cutting size on adventitious rooting and morphophysiological quality of Ilex paraguariensis plantlets. J. For. Res. 2020, 32, 815–822. [Google Scholar] [CrossRef]
- Duarte, G.O.; Wendling, I.; Bianchini, F.G.; Brondani, G.E. Seasonality and genotype influence on Ilex paraguariensis cuttings rooting and bioactive compounds. Pesqui. Agropecu. Bras. 2023, 58, 174–181. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. Plant tissue culture procedure—Background. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 1–28. [Google Scholar]
- Gupta, N.; Jain, V.; Joseph, M.R.; Devi, S. A review on micropropagation culture method. Asian J. Pharm. Res. Dev. 2020, 8, 86–93. [Google Scholar] [CrossRef]
- Luna, C.; Acevedo, R.; Collavino, M.; González, A.; Mroginski, L.; Sansberro, P. Endophytic bacteria from Ilex paraguariensis shoot cultures: Localization, characterization, and response to isothiazolone biocides. Vitr. Cell. Dev. Biol. Plant 2013, 49, 326–332. [Google Scholar] [CrossRef]
- Tomasi, J.C.; Degenhardt-Goldbach, J.; Grunennvaldt, R.L.; dos Santos, G.D.; Vicente, V.A.; Franciscon, L.; Bona, C.; Quiorin, M. In vitro establishment of shoot meristems of Ilex paraguariensis and identification of endophytic bacteria. J. For. Res. 2019, 30, 1765–1777. [Google Scholar] [CrossRef]
- Liu, C.; Fan, H.; Zhang, J.; Wu, J.; Zhou, M.; Cao, F.; Tao, G.; Zhou, X. Combating browning: Mechanisms and management strategies in in vitro culture of economic woody plants. For. Res. 2024, 4, e032. [Google Scholar] [CrossRef]
- Dutra, L.F.; Hansel, F.A.; Wendling, I. Introdução ao Cultivo In Vitro de Erva-Mate (Ilex paraguariensis); Embrapa Florestas: Colombo, Brazil, 2008; p. 38. [Google Scholar]
- Rey, H.Y.; Sansberro, P.A.; Collavino, M.M.; Daviña, J.R.; González, A.M.; Mroginski, L.A. Colchicine, trifluralin, and oryzalin development of somatic embryos in Ilex paraguariensis (Aquifoliaceae). Euphytica 2002, 123, 49–56. [Google Scholar] [CrossRef]
- Elsahhar, S.; Shahba, M.; Elsayed, T.; Mikhail, M.; Galal, A. Effect of Chitosan Nanoparticles (CS-NPs) on In Vitro Regeneration Response and Production of Potato virus Y (PVY)-Free Plants of Potato. Agronomy 2022, 12, 2901. [Google Scholar] [CrossRef]
- Mancilla-Álvarez, E.; Serrano-Fuentes, M.K.; Fuentes-Torres, M.A.; Sánchez-Páez, R.; Bello-Bello, J.J. Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors. Plants 2025, 14, 1697. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.T.; Thuong, T.T.; Cuong, D.M.; Luan, V.Q.; Hien, V.T.; Hieu, T.; Nam, N.B.; Phuong, H.T.N.; Vinh, B.V.T.; Khai, H.D.; et al. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tiss. Organ Cult. 2021, 145, 393–403. [Google Scholar] [CrossRef]
- Jadczak, P.; Kulpa, D.; Bihun, M.; Przewodowski, W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tiss. Organ Cult. 2019, 139, 191–197. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Salehi, H.; Khosh-Khui, M. Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excel R. Br. var. Glauca explants. Biol. Futur. 2011, 62, 477–484. [Google Scholar]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Ke, C.; Deng, F.; Chuang, C.; Lin, C. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Balamurugan, V.; Abdi, G.; Karthiksaran, C.; Thillaigovindhan, N.; Thillaigovindhan, D. A review: Improvement of plant tissue culture applications by using nanoparticles. J. Nanopart. Res. 2024, 26, 188. [Google Scholar] [CrossRef]
- Alves, H.J.; Vieceli, M.; Alves, C.; Muñiz, G.I.; de Oliveira, C.L.; Feroldi, M.; Arantes, M.K. Chitosan depolymerization and nanochitosan production using a single physical procedure. J. Polym. Environ. 2018, 26, 3913–3923. [Google Scholar] [CrossRef]
- Alves, H.J.; Gasparrini, L.J.; Bueno Silva, F.E.; Caciano, L.; Bolzon de Muniz, G.I.; Cupertino Ballester, E.L.; Cremonez, P.A.; Arantes, M.A. Alternative methods for the pilot-scale production and characterization of chitosan nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 10977–10987. [Google Scholar] [CrossRef]
- Oliveira, K.M.G.; Moura, R.B.P.; Taveira, S.F.; Zielonka, H.L.; Brum, D.O.; Silva, E.Z.M.; Trindade, E.S.; Cestari, M.M.; Cademartori, P.H.G.; Magalhães, W.L.E.; et al. Exploring the applicability of the RTgill-W1 and ZFL cell line assays in aquatic hazard assessment of mineral and organic nanomaterials. Chemosphere 2025, 386, 144617. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Piepho, H.P. An algorithm for a letter-based representation of all-pairwise comparisons. J. Comput. Graph. Stat. 2004, 13, 456–468. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org (accessed on 10 April 2025).
- Pastelín-Solano, M.C.; Ramírez-Mosqueda, M.A.; Bogdanchikova, N.; Castro, C.; Bello-Bello, J.J. Silver nanoparticles affect the micropropagation of vanilla (Vanilla planifolia Jacks. ex Andrews). Agrociencia 2020, 54, 1–13. [Google Scholar]
- El-Sharabasy, S.F.; Moustafa, M.F.; Gabr, A.M.; Ghareeb, R.Y. In vitro application of silver nanoparticles as explant disinfectant for date palm cultivar Barhee. J. Appl. Hortic. 2017, 19, 106–112. [Google Scholar] [CrossRef]
- Tung, H.T.; Bao, H.G.; Cuong, D.M.; Ngan, H.T.M.; Hien, V.T.; Luan, V.Q.; Vinh, B.V.T.; Phuong, H.T.N.; Nam, N.B.; Trieu, L.N.; et al. Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. Vitr. Cell. Dev. Biol. Plant 2021, 57, 297–309. [Google Scholar] [CrossRef]
- Abdi, G.; Salehi, H.; Khosh-Khui, M. Nano silver: A novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol. Plant. 2008, 30, 709–714. [Google Scholar] [CrossRef]
- Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 2006, 67, 2318–2331. [Google Scholar] [CrossRef]
- Binder, B.M.; Schaller, G.E. Ethylene Signaling: Methods and Protocols. Methods Mol. Biol. 2017, 1573, 215–230. [Google Scholar]
- Bashir, M.A.; Silvestri, C.; Salimonti, A.; Rugini, E.; Cristofori, V.; Zelasco, S. Can ethylene inhibitors enhance the success of olive somatic embryogenesis? Plants 2022, 11, 168. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Dimassi-Theriou, K.; Therios, I. Effect of the ethylene inhibitors silver nitrate, silver sulfate, and cobalt chloride on micropropagation and biochemical parameters in the cherry rootstocks CAB-6P and Gisela 6. Turk. J. Biol. 2016, 40, 670–683. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed]
- Timoteo, C.D.; Paiva, R.; dos Reis, M.V.; Claro, P.I.C.; da Silva, D.P.C.; Marconcini, J.M.; de Oliveira, J.E. Silver nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell Tiss. Organ Cult. 2019, 137, 359–368. [Google Scholar] [CrossRef]
- Abogarra, L.; Eisa, N.; El-Habbaa, G.; Darwesh, R.S.; El-Habbak, M. Superiority of nano-silver nitrate and nano-chitosan in controlling bacterial contamination and promoting growth of in vitro date palm cultures. Plant Cell Biotechnol. Mol. Biol. 2022, 23, 85–104. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Hassan, S.A.M.; Abdallatif, A.M. Improve in vitro multiplication of olive shoots using environmental-safe chitosan, selenium, and silver nanostructures. Biosci. Rev. Adv. Concepts 2023, 13, 419. [Google Scholar]
- Johnson, L.; Gray, D.M.; Niezabitowska, E.; McDonald, T.O. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. Nanoscale 2021, 13, 7879–7896. [Google Scholar] [CrossRef]
- Alfarraj, N.S.; Tarroum, M.; Al Qurainy, F.; Nadeem, M.; Khan, S.; Salih, A.M.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alansi, S.; Perveen, K. Biosynthesis of silver nanoparticles and exploring their potential of reducing the contamination of the in vitro culture media and inducing the callus growth of Rumex nervosus explants. Molecules 2023, 28, 3666. [Google Scholar] [CrossRef]
- Cuong, D.T.; Du, P.C.; Tung, H.T.; Ngan, H.T.M.; Luan, V.Q.; Khai, H.D.; Phuong, T.T.B.; Nhut, D.T. Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis—A valuable medicinal plant. Plant Cell Tiss. Organ Cult. 2021, 146, 577–588. [Google Scholar] [CrossRef]
- Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B.; Banowetz, G. Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot Root Growth. Crop Sci. 2002, 42, 457–465. [Google Scholar]
- Xu, Y.; Huang, B. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 2009, 49, 1876. [Google Scholar] [CrossRef]
- Grunennvaldt, R.L.; Degenhardt-Goldbach, J.; Brooks, P.; Tomasi, J.D.C.; Hansel, F.A.; Tran, T.; Gomes, E.N.; Deschamps, C. Callus culture as a new approach for the production of high added value compounds in Ilex paraguariensis: Genotype influence, medium optimization and compounds identification. An. Acad. Bras. Ciênc. 2020, 92, e20181251. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt-Goldbach, J.; Stachevski, T.W.; Franciscon, L.; Buss, S.; Wendling, E.; Dutra, L.F. Calogênese in vitro a partir de folhas de erva-mate (Ilex paraguariensis St. Hil.) mantidas em casa de vegetação. In Proceedings of the Actas del 5º Congreso Sudamericano de la Yerba Mate, Posadas, Argentina, 5–6 May 2011; INYM: Posadas, Argentina, 2011; pp. 61–66. [Google Scholar]
- Khater, N.; Benahmed, A.; Zereg, N.; Cherouana, K. Callogenesis induction of Ilex aquifolium L. (Aquifoliaceae). S. Afr. J. Bot. 2021, 12, 265–272. [Google Scholar]
- Stachevski, T.W.; Franciscon, L.; Degenhardt-Goldbach, J. Callus induction in vitro on leaves explants of Ilex paraguariensi. Braz. J. For. Res. 2013, 33, 339–342. [Google Scholar]
Experiment | Treatment | Culture Medium |
---|---|---|
Exp. I—Disinfection and Shoot Induction | (I and IV) 1% Commercial colloidal silver solution 20 ppm for 20 min; (II and III) 0.2–2% Chlorhexidine for 10 min; (V) 1% Cercobin® (Ihara, Sorocaba, Brazil) for 15 min. | ½ MS + 30 g·L−1 sucrose + 7 g·L−1 agar + 2.22 µM BAP + 0.1 µM NAA + (II–V) 0.075% Coryna® 116-XC (Miracema-Nuodex, Campinas, Brazil); pH 5.6–5.8 |
Exp. II—Silver and Chitosan Nanoparticles | Culture media supplemented with: (I) 0 mg·L−1 NPs; (II) 4 mg·L−1 AgNPs; (III) 7 mg·L−1 AgNPs; (IV) 5 mg·L−1 ChNPs; (V) 15 mg·L−1 ChNPs | ½ MS + 30 g·L−1 sucrose + 7 g·L−1 agar + 2.22 µM BAP + 0.1 µM NAA + 0.075% Coryna® 116-XC; pH 5.6–5.8 |
Exp. III—Silver and Chitosan Nanoparticles | Culture media supplemented with: (I) 25 mg·L−1 AgNPs; (II) 50 mg·L−1 AgNPs; (III) 75 mg·L−1 AgNPs; (IV) 60 mg·L−1 ChNPs; (V) 90 mg·L−1 ChNPs; (VI) 120 mg·L−1 ChNPs | Same as above |
Experiment | Explant Type | Treatment Applied | Culture Media | Evaluated Variables |
---|---|---|---|---|
Exp. IV—Disinfection | Leaf | (I–II) 1.25% NaClO (10/20 min); (III–IV) 1% Commercial colloidal silver solution 20 ppm (10/20 min) | ½ MS + 30 g·L−1 sucrose + 7 g·L−1 agar + 2.22 µM BAP + 0.1 µM NAA + 0.075% Coryna® 116-XC; pH 5.5 | Contamination, Oxidation, Viability |
Exp. V—ethylene-inhibiting and Callogenesis | Leaf | (I) Control; (II) AgNO3—silver nitrate; (III) ST—sodium thiosulfate; (IV) STS—silver thiosulfate | Modified MS (½ NH4NO3 and KNO3) + 30 g·L−1 sucrose + 7 g·L−1 agar + 4.56 µM zeatin + 4.53 µM 2,4-D + 20 µM ethylene-inhibiting; pH 5.5 | Contamination, Oxidation, Viability, Callogenesis, Callus Browning |
Exp. VI—AgNPs and Callogenesis | Leaf | (I) No AgNPs; (II) 2 mg·L−1 AgNPs; (III) 3 mg·L−1 AgNPs; (IV) 4 mg·L−1 AgNPs; | ¼ MS + 30 g·L−1 sucrose + 7 g·L−1 agar + 4.56 µM zeatin + 4.53 µM 2,4-D + 250 mg·L−1 glutamine + AgNPs; pH 5.5 | Contamination, Oxidation, Viability, Callogenesis, Callus Browning |
Exp. VII—AgNPs and Callogenesis | Leaf | (I) No AgNPs; (II) 4 mg·L−1; (III) 8 mg·L−1; (IV) 12 mg·L−1 | Same as above | Contamination, Oxidation, Viability, Callogenesis |
Exp. VIII—Nanoparticles and Growth Regulators | Leaf and Internodal | (I–IV) AgNPs (0, 4, 6, 8 mg·L−1) + ZEA 4.56 µM; (V–VIII) AgNPs (0, 4, 6, 8 mg·L−1) + BAP 4.44 µM | ¼ MS + 30 g·L−1 sucrose + 7 g·L−1 agar + 250 mg·L−1 glutamine + 0.075% Coryna® 116-XC + 4.5 µM 2,4-D + respective cytokinin + AgNPs; pH 5.5 | Contamination, Oxidation, Viability, Callogenesis |
Treatment | Contamination (%) | Oxidized (%) | Viable (%) | Shoots ‘ns’ (%) |
---|---|---|---|---|
Control | 73.30 b | 36.70 a | 10.00 b | 10.00 |
Chlorhexidine 0.2% | 23.30 a | 27.30 a | 60.00 a | 36.70 |
Chlorhexidine 2% | 33.30 a | 36.70 a | 43.30 a | 20.00 |
Colloidal Silver Solution 20 ppm 1% | 17.20 a | 20.70 a | 62.10 a | 20.70 |
Fungicide (Cercobin®) 1% | 40.00 a | 70.00 b | 10.00 b | 0.00 |
Treatment | Contamination (%) | Oxidized (%) ‘ns’ | Viable (%) | Shoots (%) ‘ns’ |
---|---|---|---|---|
Control | 30.00 a | 23.30 | 66.70 a | 13.30 |
4 mg·L−1 AgNPs | 76.70 b | 56.70 | 13.30 c | 0.30 |
7 mg·L−1 AgNPs | 63.30 b | 46.70 | 33.30 bc | 0.00 |
5 mg·L−1 ChNps | 83.30 b | 50.00 | 16.70 bc | 6.70 |
15 mg·L−1 ChNps | 56.70 b | 50.00 | 43.30 b | 10.00 |
Treatment | Contamination (%) ‘ns’ | Oxidized (%) ‘ns’ | Viable (%) ‘ns’ | Shoots (%) ‘ns’ |
---|---|---|---|---|
25 mg·L−1 AgNps | 30.00 | 60.00 | 23.30 | 33.30 |
50 mg·L−1 AgNps | 33.30 | 66.70 | 16.70 | 20.00 |
75 mg·L−1 AgNps | 13.30 | 43.30 | 16.70 | 26.70 |
60 mg·L−1 ChNps | 26.70 | 40.00 | 26.70 | 23.30 |
90 mg·L−1 ChNps | 10.00 | 40.00 | 23.30 | 36.70 |
120 mg·L−1 ChNps | 13.80 | 51.70 | 37.90 | 20.70 |
Treatment | Contamination (%) | Oxidized (%) |
---|---|---|
Sodium hypochlorite 1.25% 10 min. | 65.00 b | 75.00 b |
Sodium hypochlorite 1.25% 20 min. | 35.00 ab | 60.00 b |
Colloidal Silver Solution 20 ppm 1%10 min | 70.00 b | 75.00 b |
Colloidal Silver Solution 20 ppm 1% 20 min | 15.00 a | 35.00 a |
Treatment | Contaminated (%) ‘ns’ | Oxidized (%) ‘ns’ | Viable (%) ‘ns’ | Callus (%) ‘ns’ | Oxidized Callus (%) ‘ns’ |
---|---|---|---|---|---|
Control | 24.10 | 31.00 | 69.00 | 79.30 | 20.70 |
AgNO3 | 26.70 | 40.00 | 60.00 | 66.70 | 3.30 |
ST | 30.00 | 43.30 | 53.30 | 63.30 | 0.00 |
STS | 36.70 | 43.30 | 53.30 | 60.00 | 6.70 |
Treatment | Contamination (%) | Oxidation ‘ns’ (%) | Viable (%) | Callus ‘ns’ (%) | Oxidized Callus (%) |
---|---|---|---|---|---|
Control | 10.00 a | 76.70 | 20.00 a | 90.00 | 63.30 c |
2 mg·L−1 AgNps | 50.00 b | 53.30 | 10.00 a | 76.70 | 16.70 ab |
3 mg·L−1 AgNPs | 13.30 a | 63.30 | 26.70 a | 83.30 | 43.30 b |
4 mg·L−1 AgNps | 6.70 a | 43.30 | 53.30 b | 86.70 | 10.00 a |
Treatment | Contamination (%) | Oxidation ‘ns’ (%) | Viable ‘ns’ (%) | Callus ‘ns’ (%) |
---|---|---|---|---|
Control | 28.80 b | 63.50 | 30.80 | 25.00 |
4 mg·L−1 AgNps | 13.50 a | 67.30 | 32.70 | 13.50 |
8 mg·L−1 AgNps | 9.80 a | 47.10 | 52.90 | 11.80 |
12 mg·L−1 AgNps | 11.50 a | 67.30 | 30.8 | 13.50 |
Treatment | Contamination ‘ns’ (%) | Oxidized ‘ns’ (%) | Viable ‘ns’ (%) | Callus (%) | |
---|---|---|---|---|---|
ZEA (4.56 µM) | 0 mg·L−1 AgNps | 40.00 | 40.00 | 60.00 | 0.00 b |
4 mg·L−1 AgNps | 35.00 | 30.00 | 65.00 | 0.00 b | |
6 mg·L−1 AgNps | 19.00 | 19.00 | 66.70 | 38.10 a | |
8 mg·L−1 AgNps | 35.00 | 55.00 | 35.00 | 15.00 a | |
BAP (4.44 µM) | 0 mg·L−1 AgNps | 25.00 | 60.00 | 40.00 | 0.00 b |
4 mg·L−1 AgNps | 14.30 | 42.90 | 57.10 | 42.90 a | |
6 mg·L−1 AgNps | 19.00 | 47.60 | 52.40 | 19.00 a |
Treatment | Contamination (%) | Oxidized (%) | Viable (%) | Callus (%) | |
---|---|---|---|---|---|
ZEA (4.56 µM) | 0 mg·L−1 AgNps | 32.30 a | 54.80 a | 29.00 a | 25.80 a |
4 mg·L−1 AgNps | 43.30 a | 63.30 a | 33.30 a | 16.70 a | |
6 mg·L−1 AgNps | 35.50 a | 71.00 a | 22.60 ab | 22.60 a | |
8 mg·L−1 AgNps | 40.00 a | 80.00 ab | 16.70 ab | 16.70 a | |
BAP (4.44 µM) | 0 mg·L−1 AgNps | 30.00 a | 73.30 ab | 23.30 ab | 20.00 a |
4 mg·L−1 AgNps | 76.70 bc | 86.70 ab | 0.00 b | 0.00 b | |
6 mg·L−1 AgNps | 56.70 ab | 96.70 b | 0.00 b | 0.00 b | |
8 mg·L−1 AgNps | 83.30 c | 83.30 ab | 16.70 ab | 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, B.Z.; Quisen, R.C.; Degenhardt, J.; Wendling, I. Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles. Forests 2025, 16, 1429. https://doi.org/10.3390/f16091429
Pereira BZ, Quisen RC, Degenhardt J, Wendling I. Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles. Forests. 2025; 16(9):1429. https://doi.org/10.3390/f16091429
Chicago/Turabian StylePereira, Bruna Zanatta, Regina Caetano Quisen, Juliana Degenhardt, and Ivar Wendling. 2025. "Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles" Forests 16, no. 9: 1429. https://doi.org/10.3390/f16091429
APA StylePereira, B. Z., Quisen, R. C., Degenhardt, J., & Wendling, I. (2025). Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles. Forests, 16(9), 1429. https://doi.org/10.3390/f16091429